Chelating agent and detergent comprising the same

Abstract
Disclosed is a biodegradable chelating agent which comprises a compound of the following formula [1] and at least one compound selected from the group consisting of aspartic acid, maleic acid, acrylic acid, malic acid, glycine, glycolic acid, iminodiacetic acid, nitrilotriacetic acid, α-alanine, β-alanine, iminodipropionic acid, fumaric acid, a synthetic starting amino acid and a synthetic intermediate amino acid and a salt thereof in an amount of 8% by weight or less based on the compound of the formula [1]: 1
Description


BACKGROUND OF THE INVENTION

[0001] (1) Field of the Invention


[0002] The present invention relates to an amino-carboxylic acid chelating agent excellent in biodegradability and to the uses of the chelating agent. More particularly, it relates to a biodegradable chelating agent in the form of solid, aqueous-solution or slurry excellent in handleability and a detergent composition having excellent detergency and high in biodegradability which comprises the biodegradable chelating agent.


[0003] (2) Description of the Related Art


[0004] In general, chelating agents used in the form of solid are stored in the form of powder or flake in a bag or a hopper. Solid chelating agents gradually change to a hard mass due to the hardening property depending on accumulation condition and period and preservation condition and period. Therefore, the mass must be crushed just before the use and this is very inconvenient in handling.


[0005] Chelating agents used as aqueous solution or slurry are not needed to crush, but have serious problems such as deterioration in purity owing to decomposition in aqueous solution and coloration.


[0006] Generally, aminocarboxylic acid chelating agents are widely used as components of photographic bleaching agents, detergent compositions, detergent builders, heavy metal sequestering agents, stabilizers for peroxides and the like.


[0007] The detergent compositions are widely used for household cleaning of kitchenware, household cleaning of clothing, cleaning of dinnerware for business purpose, cleaning of plant, cleaning of clothing for business purpose, and the like. Furthermore, they are used as bleaching agents, descaling agents, metal sequestering agents, and the like together with additives suitable for the use.


[0008] Sodium tripolyphosphate which has hitherto been used as detergent builders is high in chelating performance. However, it contains phosphorus and causes eutrophication of rivers and lakes when it is discharged into environment. Thus, it is no longer used at present.


[0009] Zeolites which are used as detergent builders at present have disadvantages that they are low in chelating performance and have no biodegradability because they are inorganic materials. Furthermore, zeolites are insoluble in water and have a restriction in that they cannot be used for liquid detergents, especially clear liquid detergents. Moreover, zeolites have many problems such that they stick to inner wall of drainage pipes or settle at the bottom of rivers to cause formation of sludges. Therefore, the attempt is being made to reduce the amount of zeolites used and substitutes for zeolites which have sufficient chelating power and detergency have been desired, but such substitutes have not yet been obtained.


[0010] Of the aminocarboxylic acids which have been used as detergent builders, ethylenediaminetetraacetic acid (EDTA) has an excellent chelating power in a wide pH range, but is poor in biodegradability and is difficult to degrade by the usual waste water treatments which employ activated sludges. Furthermore, nitrilotriacetic acid (NTA) has a certain biodegradability, but is not preferred from the point of environmental health because it has been reported that NTA has teratogenicity and nitrilotriacetic acid-iron complex has carcinogenicity. Among other conventional aminocarboxylic acids, those which are excellent in chelating performance, but are low in biodegradability have the difficulty that they accumulate as injurious heavy metals in the environment when they are discharged into the environment. Various compounds have been studied as for the above-mentioned organic amino acids, but those which are excellent in chelating performance and biodegradability have not yet been reported at present.



SUMMARY OF THE INVENTION

[0011] The object of the present invention is to provide a biodegradable powdery chelating agent which does not harden into a mass during storage or a biodegradable chelating agent in the form of aqueous solution or slurry which does not undergo decomposition or discoloration during storage and to further provide a detergent composition comprising the chelating agent.


[0012] As a result of intensive research conducted by the inventors in an attempt to solve the above problems, it has been found that some chelating agents even in the form of solid can be handled easily without becoming hard under a specific condition, some chelating agents even in the form of aqueous solution or slurry can be handled stably and easily over a long period of time without undergoing decomposition or discoloration under a specific condition, and, further, a high detergency can be obtained by combining these biodegradable chelating agents with surface active agents and the like. Thus, the present invention has been accomplished.


[0013] That is, the chelating agent of the present invention is a chelating agent which comprises a compound of the following formula [1] and at least one compound selected from the group consisting of aspartic acid, maleic acid, acrylic acid, malic acid, glycine, glycolic acid, iminodiacetic acid, nitrilotriacetic acid, α-alanine, β-alanine, iminodipropionic acid, fumaric acid, an amino acid as a starting material for synthesis of the compound of the formula [1] (hereinafter referred to as “synthetic starting amino acid”), an intermediate amino acid produced in the synthesis reaction of the compound of the formula [1] (hereinafter referred to as “synthetic intermediate amino acid”), and salts thereof in an amount of 25% by weight or less based on the compound of the formula [1] and in the form of aqueous solution or slurry, or in an amount of 8% by weight or less based on the compound of the formula [1]:
3


[0014] wherein R1 represents hydrogen or an unsubstituted or substituted hydrocarbon group of 1-10 carbon atoms and R2 represents hydrogen or an unsubstituted or substituted hydrocarbon group of 1-8 carbon atoms, with a proviso that R1 and R2 may form a ring together, the substituent which can be present in R1 and R2 is at least one member selected from the group consisting of —OH, —CO2M and —SO3M where M represents hydrogen or an alkali metal; X represents
4


[0015] where R3 represents hydrogen or an unsubstituted or substituted hydrocarbon group of 1-8 carbon atoms, the substituent is at least one member selected from the group consisting of —OH, —CO2M and —SO3M, R4 represents at least one member selected from the group consisting of hydrogen, —CO2M and —SO3M, A1 and A2 each represent one member selected from the group consisting of hydrogen, CO2M and SO3M, A5 represents an alkylene group of 1-8 carbon atoms which may be of straight chain or branched chain or may form a ring, the alkylene group may contain in the chain an ether bond —O—, an ester bond —COO— or an amide bond —CONH—, M represents hydrogen or an alkali metal, and n represents an integer of 1-8; and Y represents at least one member selected from the group consisting of hydrogen, CO2M and SO3M.


[0016] Furthermore, the chelating agent of the present invention is a chelating agent in the form of aqueous solution or slurry which comprises a compound of the above formula [1] and at least one compound selected from the group consisting of aspartic acid, maleic acid, acrylic acid, malic acid, glycine, glycolic acid, iminodiacetic acid, nitrilotriacetic acid, α-alanine, β-alanine, iminodipropionic acid, fumaric acid, a synthetic starting amino acid, a synthetic intermediate amino acid, and salts thereof in an amount of 25% by weight or less based on the compound of the formula [1].


[0017] Moreover, the present invention relates to detergent compositions having excellent detergency and comprising the said biodegradable chelating agents.



PREFERRED EMBODIMENTS OF THE INVENTION

[0018] As the monoamine compounds of the formula [1] where X is
5


[0019] (wherein R3 and R4 are as defined above), mention may be made of, for example, aspartic acid-N-monoacetic acid (ASMA), aspartic acid-N,N-diacetic acid (ASDA), aspartic acid-N-monopropionic acid (ASMP), imino-disuccinic acid (IDA), N-(2-sulfomethyl)aspartic acid (SMAS), N-(2-sulfoethyl)aspartic acid (SEAS), glutamic acid-N,N-diacetic acid (GLDA), N-(2-sulfomethyl)glutamic acid (SMGL), N-(2-sulfoethyl)glutamic acid (SEGL), N-methyliminodiacetic acid (MIDA), α-alanine-N,N-diacetic acid (α-ALDA), β-alanine-N,N-diacetic acid (β-ALDA), serine-N,N-diacetic acid (SEDA), isoserine-N,N-diacetic acid (ISDA), phenylalanine-N,N-diacetic acid (PHDA), anthranilic acid-N,N-diacetic acid (ANDA), sulfanilic acid-N,N-diacetic acid (SLDA), taurine-N,N-diacetic acid (TUDA) and sulfomethyl-N,N-diacetic acid (SMDA) and alkali metal salts or ammonium salts thereof.


[0020] These compounds have asymmetric carbon and, hence, exist as optical isomers. From the viewpoint of biodegradability, preferred are (S)-aspartic acid-monoacetic acid, (S)-aspartic acid-N,N-diacetic acid, (S)-aspartic acid-monopropionic acid, (S,S)-imino-disuccinic acid, (S,R)-iminodisuccinic acid, (S)-2-sulfomethylaspartic acid, (S)-2-sulfoethylaspartic acid, (S)-glutamic acid-N,N-diacetic acid, (S)-2-sulfomethylglutamic acid, (S)-2-sulfoethylglutamic acid, (S)-α-alanine-N,N-diacetic acid, (S)-serine-N,N-diacetic acid, and (S)-phenylalanine-N,N-diacetic acid and alkali metal salts or ammonium salts thereof.


[0021] As the diamine compounds represented by the formula [1] where X is
6


[0022] (where A1, A2 and A5 are as defined above), mention may be made of, for example, ethylenediaminedisuccinic acid (EDDS), 1,3-propanediaminedisuccinic acid (13PDDS), ethylenediaminediglutaric acid (EDDG), 1,3-propanediaminediglutaric acid (13EDDG), 2-hydroxy-1,3-propanediaminedisuccinic acid (PDDS-OH) and 2-hydroxy-1,3-propanediaminediglutaric acid (PDDG-OH) and alkali metal salts or ammonium salts thereof.


[0023] These compounds have asymmetric carbon and, hence, there exist optical isomers. From the viewpoint of biodegradability, preferred are (S,S)-ethylenediaminedisuccinic acid, (S,S)-1,3-propanediaminedisuccinic acid, (S,S)-ethylenediaminediglutaric acid, (S,S)-1,3-propanediaminediglutaric acid, (S,S)-2-hydroxy-1,3-propanediaminedisuccinic acid and (S,S)-2-hydroxy-1,3-propanediaminediglutaric acid and alkali metal salts or ammonium salts thereof.


[0024] The monoamine compounds are generally obtained by a process which comprises subjecting the starting amino acid or sulfonic acid to addition reaction with hydrocyanic acid and formalin and hydrolyzing the resulting addition product under alkaline condition or a process which comprises subjecting amino acid or sulfonic acid to addition reaction with acrylonitrile or the like and hydrolyzing the resulting addition product under alkaline condition. Therefore, the desired monoamine chelating agents usually contain side reaction products as impurities in addition to the starting amino acid or sulfonic acid.


[0025] For example, in the synthesis of taurine-N,N-diacetic acid salt by adding hydrocyanic acid and formalin to taurine and, then, hydrolyzing the resulting addition reaction product, there are formed by-products such as glycolic acid, glycine, iminodiacetic acid, nitrilotriacetic acid, fumaric acid, β-alanine and iminodipropionic acid in addition to unreacted taurine. In addition to these impurities, impurities such as malic acid and acrylic acid salts are sometimes detected depending on reaction conditions.


[0026] The diamine compounds are generally produced by adding two molecules of maleic acid to one molecule of an alkylenediamine. In this case, the resulting desired diamine chelating agents usually contain, as impurities, unreacted maleic acid, reaction intermediate amino acid having only one molecule of maleic acid added and side reaction products thereof. For example, in the synthesis of an ethylenediaminedissucinic acid salt by adding two molecules of maleic acid to one molecule of ethylenediamine, there are seen by-products such as ethylenediaminemonosuccinic acid, fumaric acid and malic acid in addition to unreacted maleic acid.


[0027] Furthermore, for the production of the diamine compounds, there is a process according to which two molecules of the starting amino acid such as aspartic acid or glutamic acid are linked using dihaloethane, epichlorohydrin or the like. In this case, the resulting desired diaminopolycarboxylic acid chelating agents usually contain, as impurities, the starting amino acid, a reaction intermediate amino acid having only one molecule of the starting amino acid added and side reaction products thereof. For example, in the synthesis of (S,S)-ethylenediaminedissucinic acid by adding two molecules of (S)-aspartic acid to one molecule of dichloroethane and, then, subjecting the addition reaction product to precipitation with addition of a mineral acid, there are seen by-products such as (S)-N-2-chloroethylaspartic acid, (S)-N-2-hydroxyethylaspartic acid, (S,S)-N-2-hydroxyethylethylenediaminedisuccinic acid and fumaric acid in addition to unreacted (S)-aspartic acid.


[0028] In the present invention, the chelating agent is prepared so that the content of the above-mentioned impurity salts is 25% by weight or less, preferably 8% by weight or less based on the weight of the compound of the formula [1] in the form of a salt. When such condition is satisfied, especially when the content of the impurity salts is 8% by weight or less, the hardening of the resulting chelating agent is considerably inhibited even in the ordinary storing state. The total amount of the impurity salts is more preferably 3% by weight or less based on the weight of the compound of the formula [1], and further preferably 0.5% by weight or less for considerably inhibiting the hardening into a mass even under the severer storing conditions. When these conditions are satisfied, a powder inhibited from hardening into a mass can be obtained only by concentrating the reaction mixture for synthesis of the compound of the formula [1] (hereinafter referred to as merely “reaction mixture”) and, thereafter, subjecting the concentrated reaction mixture to spray drying and the like, but, in other cases, amount of the impurity salt can be reduced by carrying out the following purification.


[0029] As the surest purification means for the chelating agent, there is a method which comprises once subjecting the reaction mixture to precipitation with addition of a mineral acid such as sulfuric acid to isolate the chelating agent as a crystal of high purity and, then, redissolving the crystal in alkaline water. Further, when a solid crude chelating agent is purified, it is also effective to wash the chelating agent with an alcohol such as methanol to remove low-molecular impurities high in solubility.


[0030] In the present invention, when the impurities are in the form of acids, the chelating agents are also prepared in the same manner as in the case of the impurities being in the form of salts, namely, so that the content of these impurity acids is 25% by weight or less, preferably 8% by weight or less based on the compound of the formula [1]. When such condition is satisfied, especially when the content of the impurity acids is 8% by weight or less, the hardening of the resulting chelating agent is considerably inhibited even in the ordinary storing state. The total amount of the impurity acids is more preferably 3% by weight or less based on the compound of the formula [1], and further preferably 0.5% by weight or less for considerably inhibiting the hardening even under the severer storing conditions.


[0031] If the total content of the impurity acids (salts) cannot be permitted to meet with the above conditions by subjecting the chelating agent obtained by the above-mentioned reaction to only one precipitation operation with addition of an acid, the crude crystal may be purified by washing it with a large amount of water, by repeating recrystallization of the crude crystal, or by other methods.


[0032] The chelating agent purified to 25% by weight or less in the content of impurities by these methods can be easily returned to a powdery or flaky form even if the chelating agent sets during being stored or transported in the form of crystal or flake. Thus, the chelating agent can be stably and easily handled over a long period of time.


[0033] In the present invention, the chelating agent adjusted to contain the impurity salts in an amount of 25% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less based on the compound of the formula [1) can also be used in the form of an aqueous solution or slurry. When the chelating agent obtained by the above-mentioned reaction satisfies the above condition, the reaction mixture can be used as it is, but if the content of impurities exceeds the above range, an additional operation is needed for purification.


[0034] The chelating agent purified to 25% by weight or less in terms of the content of impurity salts by the above methods can be used as an aqueous solution or slurry containing at least 10% by weight of water, but from the points of preservativity and handleability, desirably, it is used as an aqueous solution or slurry of 5-80% by weight, preferably 20-50% in the salt concentration of chelating agent.


[0035] The materials of drums, tank lorries, storage tanks, stirrers and the like used for handling such as storing, transportation or mixing may be any of alloys, glass linings, synthetic resin linings and the like, and stainless steel is especially preferred.


[0036] The temperature at which the chelating agent of the present invention is handled is preferably 0-75° C. in the case of the compound concentration being 5-40% by weight, 5-75° C. in the case of the compound concentration being 40-50% by weight, and 10-75° C. in the case of the compound concentration being 50-80% by weight.


[0037] Ordinarily, storage for about 3 years is possible under these conditions, and an aqueous solution or slurry of chelating agent not deteriorated in quality can be easily taken out and used as required.


[0038] The chelating agents obtained in this way constitute detergents having excellent detergency with addition of surface active agents and other additives.


[0039] These chelating agents are used normally in the form of alkali metal salts such as sodium salt and potassium salt, but can be used in the form of partially neutralized aqueous solution obtained by dissolving an acid form crystal isolated by precipitation with addition of an acid in an alkaline aqueous solution, in the form of the reaction mixture which is an alkaline aqueous solution, in the form of a solid salt obtained by concentrating the above aqueous solution, or in any other forms. If necessary, these can be adjusted to a pH suitable for the use. That is, the chelating agents of the present invention can be used in any forms of powder or flake inhibited from hardening into a mass and aqueous solution or slurry.


[0040] Next, the detergent composition of the present invention will be explained.


[0041] The detergent composition of the present invention contains the chelating agent of the present invention, especially, (S)-aspartic acid-N,N-diacetic acid, N-methyliminodiacetic acid and/or taurine-N,N-diacetic acid and, if necessary, a nonionic surface active agent, an anionic surface active agent, a silicate, a bleaching agent and/or a fatty acid salt.


[0042] The nonionic surface active agents usable in the present invention include, for example, ethoxylated nonylphenols, ethoxylated octylphenols, ethoxylated sorbitan fatty acid esters and propylene oxide adducts thereof, and are not especially limited. However, compounds obtained by random or block addition of 5-12, preferably 6-8 on an average of ethylene oxides and 0-12, preferably 2-5 on an average of propylene oxides per one molecule of an alcohol or phenol represented by the following formula [2], for example, ethoxylated primary aliphatic alcohols, ethoxylated secondary aliphatic alcohols and propylene oxide adducts thereof have especially high detergency. These nonionic surface active agents can be used each alone or in admixture of two or more.


R-OH   [2]


[0043] (R: an alkyl, alkenyl or alkylphenyl group of 8-24 carbon atoms).


[0044] The anionic surface active agents usable in the present invention include, for example, straight chain alkylbenzenesulfonic acid salts having alkyl group of 8-16 carbon atoms on an average, α-olefin sulfonic acid salts of 10-20 carbon atoms on an average, aliphatic lower alkyl sulfonic acid salts or salts of aliphatic sulfonation products which are represented by the following formula [3], alkylsulfuric acid salts of 10-20 carbon atoms on an average, alkyl ether sulfuric acid salts or alkenyl ether sulfuric acid salts having a straight chain or branched chain alkyl or alkenyl group of 10-20 carbon atoms on an average and having 0.5-8 mols on an average of ethylene oxide added thereto, and saturated or unsaturated fatty acid salts of 10-22 carbon atoms on an average.
7


[0045] (R: an alkyl or alkenyl group of 8-20 carbon atoms, Y: an alkyl group of 1-3 carbon atoms or a counter ion, and Z: a counter ion).


[0046] The silicates usable in the present invention are silicates represented by the following formula [4] or aluminosilicates represented by the following formula [5], and these can be used each alone or in admixture of two or more at an optional ratio. Amount of the silicates is 0.5-80% by weight, preferably 5-40% by weight in the detergent compositions.


LM′SixO2(x+1)·yH2O  [4]


[0047] (L represents an alkali metal, M′ represents sodium or hydrogen, x represents a number of 1.9-4, and y represents a number of 0-20).


Naz[(AlO2)z(SiO2)y]·xH2O  [5]


[0048] (z represents a number of 6 or more, y represent a number which satisfies the ratio of z and y being 1.0-0.5, and x represents a number of 5-276).


[0049] The bleaching agents usable in the present invention include, for example, sodium percarbonate and sodium perborate. The amount of these bleaching agents is 0.5-60% by weight, preferably 1-40% by weight, more preferably 2-25% by weight in the detergent composition.


[0050] The fatty acid salts used in the present invention include, for example, alkali metal salts, alkaline earth metal salts, ammonium salts or unsubstituted or substituted amine salts, preferably alkali metal salts or alkaline earth metal salts, more preferably alkali metal salts of saturated or unsaturated fatty acids of 10-24 carbon atoms on an average. These fatty acid salts may also be used in admixture of two or more.


[0051] Examples of the fatty acid salts used in the present invention are alkali metal salts, alkaline earth metal salts, ammonium salts or unsubstituted or substituted amine salts, preferably alkali metal salts, alkaline earth metal salts, ammonium salts or unsubstituted or substituted amine salts, more preferably alkali metal salts of lauric acid, myristic acid, stearic acid and the like.


[0052] The detergent compositions of the present invention may further contain various additives such as stabilizers, alkali salts, enzymes, perfumes, surface active agents other than those of nonionic and anionic types, scale inhibitors, foaming agents and anti-foaming agents.


[0053] Detergent compositions of further higher performance can be obtained by using a plurality of the chelating agents in combination.


[0054] In some cases, chelating power cannot be sufficiently exhibited with use of one chelating agent depending on the pH employed, but excellent detergent compositions having detergency which is not influenced by the change of pH in the environment where they are used can be obtained by using a plurality of the chelating agents in admixture.


[0055] The chelating agents used in the detergent compositions of the present invention which are excellent in adaptability to pH are three of (S)-aspartic acid-N,N-diacetic acid, taurine-N,N-diacetic acid and N-methyliminodiacetic acid. Features of each of them will be explained below.


[0056] (S)-aspartic acid-N,N-diacetic acid can be used in the detergent compositions of the present invention excellent in adaptability to pH. Particularly, it imparts excellent performance in the neutral pH region, and, therefore, is preferred. It is especially great in chelate stability constant for calcium or the like among the above-mentioned three N,N-diacetic acid type chelating agents. Therefore, also in combination with carboxylic acid surface active agents such as sodium laurate, (S)-aspartic acid-N,N-diacetic acid chelates the objective metals firmly and is preferred.


[0057] It has been reported that the chelate stability constant for calcium of nitrilotriacetic acid is 6.4 and that of (S)-aspartic acid-N,N-diacetic acid is 5.8. However, there is a fact that as for the actual builder performance, (S)-aspartic acid-N,N-diacetic acid is superior to nitrilotriacetic acid. Since (S)-aspartic acid-N,N-diacetic acid is a mono-amine chelating agent having four carboxyl groups, it can trap the objective metals such as calcium by quinquedentate coordination at the maximum. Therefore, when compared with nitrilotriacetic acid having three carboxyl groups and trapping the objective metals such as calcium by quadridentate coordination at the maximum, the chelating power of (S)-aspartic acid-N,N-diacetic acid is higher than that of nitrilotriacetic acid and exhibits conspicuously superior performance in the neutral region.


[0058] In combination with a sulfonic acid surface active agent such as sodium dodecylbenzenesulfonate, (S)-aspartic acid-N,N-diacetic acid has a Ca++ trapping power which is higher than that of nitrilotriacetic acid at a pH of 7-8 and equivalent to that of ethylenediaminetetraacetic acid.


[0059] When sodium laurate which is a carboxylic acid surface active agent is used in place of sodium dodecylbenzenesulfonate which is a sulfonic acid surface active agent, (S)-aspartic acid-N,N-diacetic acid retains a Ca++ trapping power of about 50% at a pH of 12. The Ca++ trapping power of (S)-aspartic acid-N,N-diacetic acid is inferior to that of ethylenediaminetetraacetic acid which retains a Ca++ trapping power of about 90% with the same substitution of the surface active agent as above, but is surprising in view of the fact that most of the known monoamine chelating agents completely lose the Ca++ trapping power in the presence of carboxylic acid surface active agents.


[0060] (S)-aspartic acid-N,N-diacetic acid is completely decomposed to inorganic materials in biodegradability tests such as 302A Modified SCAS Test described in OECD Guideline for Testing of Chemicals. It is completely decomposed in a certain period of time by activated sludges domesticated with waste water containing (S)-aspartic acid-N,N-diacetic acid.


[0061] Taurine-N,N-diacetic acid can be used in the detergent compositions of the present invention excellent in adaptability to pH and is especially preferred since it imparts an excellent performance in the weakly alkaline pH region.


[0062] As the chelate stability constant for calcium, a value of 4.2 has been reported for taurine-N,N-diacetic acid. However, on actual builder performance, there is a fact that taurine-N,N-diacetic acid is superior to nitrilotriacetic acid. When molecular structure of taurine-N,N-diacetic acid is viewed from the point of chelating performance, it comprises iminodiacetic acid portion which directly participates in trapping of the objective metal and sulfonic acid portion which participates in adaptation to pH of the objective metal trapping power. That is, it is considered that the sulfonic acid group of taurine-N,N-diacetic acid does not directly participate in trapping of the objective metal, but arranges the chemical environment so that molecules can readily exhibit the chelating power in more neutral side by the actions such as shifting of isoelectric point to the neutral side.


[0063] In combination with sulfonic acid surface active agents, taurine-N,N-diacetic acid has a Ca++ trapping power equal to that of ethylenediaminetetraacetic acid at a pH of 8 and superior to that of ethylenediaminetetraacetic acid at a pH of 8.5 or higher. This fact is surprising when compared with the fact that nitrilotriacetic acid which is a typical one of the same N,N-diacetic acid chelating agents exceeds ethylenediaminetetraacetic acid in Ca++ trapping power only when pH reaches 10, under the same conditions.


[0064] Taurine-N,N-diacetic acid is completely decomposed to inorganic materials in a short time in biodegradability tests such as 302A Modified SCAS Test mentioned above. It is completely decomposed in a short time by activated sludges domesticated with waste water containing tuarine-N,N-diacetic acid.


[0065] Methyliminodiacetic acid can be used in the detergent compositions of the present invention excellent in adaptability to pH and is especially preferred since it imparts an excellent performance in the alkaline pH region.


[0066] As the chelate stability constant for calcium, a value of 3.7 has been reported for methyliminodiacetic acid. However, on the actual builder performance, there is a fact that methyliminodiacetic acid exceeds nitrilotriacetic acid. When molecular structure of methyliminodiacetic acid is viewed from the point of chelating performance, it is considered that the chelate stability constant for calcium increases than that of simple iminodiacetic acid due to the conversion of the amino group to tertiary amino group by the introduction of methyl group and the Ca++ trapping power per weight increases due to its small molecular weight.


[0067] In combination with sulfonic acid surface active agents, methyliminodiacetic acid is far greater in the Ca++ trapping power than ethylenediaminetetraacetic acid at a pH of at least 10 and, besides, it shows a surprising performance which further exceeds the performance of nitrilotriacetic acid which has been considered to have excellent performance under the same conditions.


[0068] Methylimino-N,N-diacetic acid is completely decomposed to inorganic materials in a short time in biodegradability tests such as 301C Modified MITI Test (1) described in OECD Guideline for Testing of Chemicals. Methyliminodiacetic acid is readily decomposed by microorganisms living in environmental water such as rivers, lakes, and general sewage without subjecting to activated sludge treatment and the like.


[0069] (S)-aspartic acid-N-monoacetic acid and (S)-aspartic acid-N-monopropionic acid are biodegradable builders substitutable for methyliminodiacetic acid, but although they show excellent builder performance at a pH of 10 or higher, they are inferior to methyliminodiacetic acid in Ca++ trapping power per weight, and, hence, they must be used in a large amount. (S)-aspartic acid-N-monoacetic acid and (S)-aspartic acid-N-monopropionic acid are completely converted to inorganic materials in a short time in biodegradability tests such as 301C Modified MITI Test mentioned above. They are readily decomposed by microorganisms living in environmental water such as rivers, lakes and general sewage without subjecting to activated sludge treatment and the like.


[0070] In the above, (S)-aspartic acid-N,N-diacetic acid, taurine-N,N-diacetic acid and methyliminodiacetic acid are explained on their features as biodegradable builders. The detergent compositions containing simultaneously at least two of them as builder components can exhibit excellent performances in a wide pH condition. That is, by properly containing these builder components, performances equal to or higher than those of ethylenediaminetetraacetic acid which has hitherto been preferably used as an excellent builder can be obtained in a wide pH condition of from neutral region to alkaline region. Furthermore, it is also possible to bring out especially excellent performances under the conditions of a specific pH and a specific surface active agent by increasing the content of a specific biodegradable builder component.


[0071] In the uses such as pulp and clothing, hydrogen peroxide or organic peroxides are added for the purpose of bleaching, and builders have the function to protect these peroxides from decomposition action catalyzed by heavy metals such as iron.


[0072] In the field of food processing industry, detergent compositions containing only the builder component as a main ingredient and containing no surface active agent are sometimes used for removal of calcium carbonate, calcium oxalate and the like in washing of beer bottles, dinnerwares and plants.


[0073] The detergent compositions of the present invention may contain, as buffers, stabilizers and resticking inhibitors, general auxiliary additives, salts of silicic acid, crystalline alluminosilicic acid, laminar silicic acid and the like, salts of amino acids such as glycine, β-alanine, taurine, aspartic acid and glutamic acid, salts of polymers such as polyacrylic acid, polymaleic acid, polyaconitic acid, polyacetalcarboxylic acid, polyvinyl pyrrolidone, carboxymethylcellulose and polyethylene glycol, salts of organic acids such as citric acid, malic acid, fumaric acid, succinic acid, gluconic acid and tartaric acid, enzymes such as protease, lipase and cellulase, and salts of p-toluenesulfonic acid and sulfosuccinic acid.


[0074] There can be further added caking inhibitors such as calcium silicate, peroxide stabilizers such as magnesium silicate, antioxidants such as t-butyl-hydroxytoluene, fluorescent paints, perfumes and others. These are not limited and may be added depending on the uses.


[0075] The present invention does not preclude to use, in combination with the above builders, salts of tripolyphosphoric acid, pyrophosphoric acid and the like, salts of diethylenetriaminepentaacetic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid and the like, and others as builders. However, from the points of safety and diminishment of environmental load, it is desirable to avoid use of these conventional builders.


[0076] Next, use conditions and ratio of the components of the detergent compositions according to the present invention will be explained in detail.


[0077] In order to obtain a performance equal to or higher than that of ethylenediaminetetraacetic acid which is an excellent builder under wide use conditions, it is desired to use simultaneously at least two biodegradable builders among the three builders of (S)-aspartic acid-N,N-diacetic acid, taurine-N,N-diacetic acid and methyliminodiacetic acid. It is preferred to use (S)-aspartic acid-N,N-diacetic acid in an amount of 5-97% by weight, preferably 40-95% by weight in terms of acid, taurine-N,N-diacetic acid in an amount of 0-97% by weight, preferably 40-90% by weight in terms of acid, and methyliminodiacetic acid in an amount of 0-97% by weight, preferably 30-70% by weight in terms of acid. Desirably, the total amount of the builders is 6-810% by weight, preferably 20-240% by weight, more preferably 80-120% by weight in terms of acid based on the surface active agent component.


[0078] In case of employing such compositional ratio of the biodegradable builders, a builder performance per weight in terms of acid equal to or higher than that of ethylenediaminetetraacetic acid or nitrilotriacetic acid is developed in the pH range of 6-13 in combination with surface active agents such as of sulfonic acid type excellent in dispersibility and in the pH range of 7-12 in combination with surface active agents such as of carboxylic acid type poor in dispersibility. The builder performance here includes not only the Ca++ trapping power, but also performances such as dispersing ability for scale or heavy metals, pH buffering ability, inhibition of dirt from resticking, inhibition of liquid detergent from setting and shape retention of solid detergent, and the builders according to the present invention also exceed nitrilotriacetic acid in these performances and performances not inferior to those of ethylenediaminetetraacetic acid and tripolyphosphoric acid can be obtained.


[0079] When conditions such as pH and surface active agent used are previously known for some uses, it is advantageous to prepare the detergent compositions with compositional ratio of the biodegradable builders suitable for these use conditions.


[0080] In many cases, household neutral detergents for kitchen and clothing are used at a pH of about 6.5-8.5 in combination with surface active agents such as dodecylbenzenesulfonates, lauryl alcohol sulfate esters and polyethylene glycol. In these uses, it is suitable to use (S)-aspartic acid-N,N-diacetic acid in an amount of 20-97% by weight, preferably 50-95% by weight in terms of acid, taurine-N,N-diacetic acid in an amount of 5-90% by weight, preferably 50-80% by weight in terms of acid, and methyliminodiacetic acid in an amount of 0-20% by weight, preferably 10-15% by weight in terms of acid on the basis of the builder composition.


[0081] Industrial detergents for cleaning of clothing, dinnerwares, plants, bottles and others are used at a pH in a wide range from neutral to strongly alkaline conditions. Especially, in the uses under alkaline condition of pH 9-13, it is suitable to use (S)-aspartic acid-N,N-diacetic acid in an amount of 0-90% by weight, preferably 20-50% by weight in terms of acid, taurine-N,N-diacetic acid in an amount of 5-90% by weight, preferably 50-80% by weight in terms of acid, and methyliminodiacetic acid in an amount of 20-97% by weight, preferably 60-90% by weight in terms of acid on the basis of the builder composition.


[0082] However, even in the uses of industrial detergents under alkaline condition of pH 9-13, when surface active agents such as laurates inferior in dispersibility are used, it is favorable to use (S)-aspartic acid-N,N-diacetic acid in an amount of 20-95% by weight, preferably 50-90% by weight in terms of acid, taurine-N,N-diacetic acid in an amount of 5-90% by weight, preferably 50-80% by weight in terms of acid, and methyliminodiacetic acid in an amount of 0-20% by weight, preferably 10-15% by weight in terms of acid on the basis of the builder composition.


[0083] Furthermore, in any uses, the whole or a part of methyliminodiacetic acid which is a biodegradable builder component in the detergent composition of the present invention can be replaced with one or both of (S)-aspartic acid-N-monoacetic acid and (S)-aspartic acid-N-monopropionic acid. When (S)-aspartic acid-N-monoacetic acid is used, it is suitable to use it in an amount of 80-350% by weight, preferably 150-320% by weight in terms of acid based on the methyliminodiacetic acid. When (S)-aspartic acid-N-monopropionic acid is used, it is suitable to use it in an amount of 120-560% by weight, preferably 240-420% by weight in terms of acid based on the methyliminodiacetic acid.


[0084] The detergent composition of the present invention can also be prepared as a liquid detergent or powder detergent of high concentration by mixing, at a predetermined ratio, the chelating agent with surface active agents and others which are the constituting components and this can be diluted to a desired concentration with water at the time of use. Alternatively, these components can be added to a diluting water at a predetermined ratio.


[0085] The present invention will be explained in more detail by the following examples, which should not be construed as limiting the invention in any manner.







EXAMPLE 1

[0086] Hardening strength of a dry powder comprising 1000 g of trisodium salt of (S)-aspartic acid-N-monoacetic acid (S-ASMA-3Na) and 25.0 g of impurity salts (comprising 18.3 g of disodium aspartate, 4.0 g of disodium fumarate, 2.2 g of monosodium salt of glycine and 0.5 g of disodium malate) was expressed by compression strength after lapse of 2 months under the load of 200 [g/cm2] measured by the following method which is in accordance with JIS A 1108 (method for the measurement of compression strength of concrete) and, thus, the hardening property of the powder was evaluated.


[0087] <Method for the Measurement of Compression Strength>


[0088] (1) A test sample (500 g) is put in a polyethylene bag of 20 cm×20 cm in a room at a temperature of 20-30° C. and a relative humidity of 40-70%. The powder is levelled to an area of 20 cm×20 cm and air is forced out of the bag, and, then, the bag is sealed. This bag is further put in a kraft bag and this kraft bag is sealed.


[0089] (2) The kraft bag of (1) is placed horizontally on a flat plate and a plate is put thereon. Four weights of 20 kg each are put on the upper plate to apply a load of 200 [g/cm2] to the test sample.


[0090] (3) With keeping the temperature of 20-30° C. and the relative humidity of 40-70%, the test sample is taken out after lapse of 2 months from the starting of application of load. Several test pieces (4 cm long×4 cm broad×2 cm high) are cut out from the sample.


[0091] (4) The test piece is loaded by a compression tester (computer controlled universal precision tester: Simadzu Autograph AGS-100B; maximum load: 100 kg; loading speed: 2 [cm/min]), and the maximum load which the tester shows when the test piece is broken is divided by sectional area of the test piece and the resulting value is employed as the compression strength.


[0092] As a result of the measurement, the test piece had a compression strength of 1.2 [kg/cm2] and it was in such a state that it could be disintegrated without any special grinding treatment.



EXAMPLE 2

[0093] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of trisodium salt of (S)-aspartic acid-N-monopropionic acid (S-ASMP-3Na) and 20.0 g of impurity salts (comprising 8.2 g of disodium fumarate, 6.2 g of disodium aspartate, 4.3 g of disodium iminodiacetate, 1.1 g of disodium malate and 0.2 g of trisodium nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 3

[0094] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium salt of (S)-aspartic acid-N,N-diacetic acid (S-ASDA-4Na) and 15.0 g of impurity salts (comprising 5.5 g of disodium aspartate, 3.1 g of disodium fumarate, 3.1 g of sodium salt of α-alanine, 2.4 g of disodium iminodipropionate, 0.7 g of disodium malate and 0.2 g of sodium acrylate). The results are shown in Table 1.



EXAMPLE 4

[0095] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of trisodium salt of (S)-α-alanine-N,N-diacetic acid (S-ALDA-3Na) and 22.5 g of impurity salts (comprising 10.5 g of monosodium salt of α-alanine, 3.6 g of monosodium salt of glycine, 4.8 g of disodium iminodiacetate, and 3.7 g of trisodium nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 5

[0096] An experiment was conducted in the same manner as in Example 1, except that the content of the impurity salts was changed to 5.0% with the composition being the same and the load applied to the test sample was 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 6

[0097] An experiment was conducted in the same manner as in Example 2, except that the content of the impurity salts was changed to 6.0% with the composition being the same and the load applied to the test sample was 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 7

[0098] An experiment was conducted in the same manner as in Example 3, except that the content of the impurity salts was changed to 8.0% with the composition being the same and the load applied to the test sample was 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 8

[0099] An experiment was conducted in the same manner as in Example 4, except that the content of the impurity salts was changed to 7.0% with the composition being the same and the load applied to the test sample was 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 9

[0100] An experiment was conducted in the same manner as in Example 1, except that the content of the impurity salts was changed to 0.3% with the composition being the same and the load applied to the test sample was 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 10

[0101] An experiment was conducted in the same manner as in Example 2, except that the content of the impurity salts was changed to 0.2% with the composition being the same and the load applied to the test sample was 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 11

[0102] An experiment was conducted in the same manner as in Example 3, except that the content of the impurity salts was changed to 0.4% with the composition being the same and the load applied to the test sample was 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 12

[0103] An experiment was conducted in the same manner as in Example 4, except that the content of the impurity salts was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 13

[0104] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S)-aspartic acid-N-monoacetic acid (S-ASMA) and 30.0 g of impurity acids (comprising 20.1 g of aspartic acid, 6.0 g of fumaric acid, 3.2 g of glycine and 0.7 g of malic acid). The results are shown in Table 1.



EXAMPLE 14

[0105] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S)-aspartic acid-N-monopropionic acid (S-ASMP) and 15.0 g of impurity acids (comprising 6.3 g of fumaric acid, 4.7 g of aspartic acid, 3.1 g of iminodiacetic acid, 0.8 g of malic acid and 0.1 g of nitrilotriacetic acid). The results are shown in Table 1.



EXAMPLE 15

[0106] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S)-aspartic acid-N,N-diacetic acid (S-ASDA) and 20.0 g of impurity acids (comprising 8.5 g of aspartic acid, 5.3 g of fumaric acid, 3.3 g of β-alanine, 2.3 g of iminodipropionic acid, 0.5 g of malic acid and 0.1 g of acrylic acid). The results are shown in Table 1.



EXAMPLE 16

[0107] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S)-α-alanine-N,N-diacetic acid (S-ALDA) and 24.5 g of impurity acids (comprising 11.0 g of α-alanine, 4.6 g of glycine, 5.2 g of iminodiacetic acid and 3.7 g of nitrilotriacetic acid). The results are shown in Table 1.



EXAMPLE 17

[0108] An experiment was conducted in the same manner as in Example 13, except that the content of the impurity acids was changed to 4.0% with the composition thereof being the same and the load applied to the test sample was 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 18

[0109] An experiment was conducted in the same manner as in Example 14, except that the content of the impurity acids was changed to 8.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 19

[0110] An experiment was conducted in the same manner as in Example 15, except that the content of the impurity acids was changed to 7.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 20

[0111] An experiment was conducted in the same manner as in Example 16, except that the content of the impurity acids was changed to 6.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 21

[0112] An experiment was conducted in the same manner as in Example 13, except that the content of the impurity acids was changed to 0.2% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 22

[0113] An experiment was conducted in the same manner as in Example 14, except that the content of the impurity acids was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 23

[0114] An experiment was conducted in the same manner as in Example 15, except that the content of the impurity acids was changed to 0.5% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 24

[0115] An experiment was conducted in the same manner as in Example 16, except that the content of the impurity acids was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 25

[0116] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of trisodium salt of taurine-N,N-diacetic acid (TUDA-3Na) and 25.0 g of the impurity salts (comprising 6.0 g of monosodium salt of taurine, 5.0 g of monosodium salt of glycine, 7.0 g of disodium iminodiacetate and 7.0 g of trisodium nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 26

[0117] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of disodium N-methyliminodiacetate (MIDA-2Na) and 20.0 g of the impurity salts (comprising 8.0 g of monosodium salt of glycine, 7.0 g of disodium iminodiacetate and 5.00 g of trisodium nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 27

[0118] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of trisodium salt of anthranilic acid-N,N-diacetic acid (ANTDA-3Na) and 15.0 g of the impurity salts (comprising 4.0 g of monosodium anthranilate, 3.0 g of monosodium salt of glycine, 5.0 g of disodium iminodiacetate and 3.0 g of trisodium nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 28

[0119] An experiment was conducted in the same manner as in Example 25, except that the content of the impurity salts was changed to 5.0% with the composition thereof being the same and the load applied tb the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 29

[0120] An experiment was conducted in the same manner as in Example 26, except that the content of the impurity salts was changed to 6.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 30

[0121] An experiment was conducted in the same manner as in Example 27, except that the content of the impurity salts was changed to 8.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 31

[0122] An experiment was conducted in the same manner as in Example 25, except that the content of the impurity salts was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 32

[0123] An experiment was conducted in the same manner as in Example 26, except that the content of the impurity salts was changed to 0.2% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 33

[0124] An experiment was conducted in the same manner as in Example 27, except that the content of the impurity salts was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 34

[0125] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of taurine-N,N-diacetic acid (TUDA) and 25.0 g of the impurity acids (comprising 6.0 g of taurine, 5.0 g of glycine, 7.0 g of iminodiacetic acid and 7.0 g of nitrilotriacetic acid). The results are shown in Table 1.



EXAMPLE 35

[0126] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of N-methyliminodiacetic acid (MIDA) and 20.0 g of the impurity acids (comprising 8.0 g of glycine, 7.0 g of iminodiacetic acid and 5.00 g of nitrilotriacetic acid). The results are shown in Table 1.



EXAMPLE 36

[0127] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of anthranilic acid-N,N-diacetic acid (ANTDA) and 15.0 g of the impurity acids (comprising 4.0 g of anthranilic acid, 3.0 g of glycine, 5.0 g of iminodiacetic acid and 3.0 g of nitrilotriacetic acid). The results are shown in Table 1.



EXAMPLE 37

[0128] An experiment was conducted in the same manner as in Example 34, except that the content of the impurity acids was changed to 4.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 38

[0129] An experiment was conducted in the same manner as in Example 35, except that the content of the impurity acids was changed to 8.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 39

[0130] An experiment was conducted in the same manner as in Example 36, except that the content of the impurity acids was changed to 7.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 40

[0131] An experiment was conducted in the same manner as in Example 34, except that the content of the impurity acids was changed to 0.2% with the composition thereof being the same and the load applied to the sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 41

[0132] An experiment was conducted in the same manner as in Example 35, except that the content of the impurity acids was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 42

[0133] An experiment was conducted in the same manner as in Example 36, except that the content of the impurity acids was changed to 0.5% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



EXAMPLE 43

[0134] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of iron salt of anthranilic acid-N,N-diacetic acid (ANTDA-Fe) and 15.0 g of the impurity Fe salts (comprising 4.0 g of anthranilate, 3.0 g of salt of glycine, 5.0 g of iminodiacetate and 3.0 g of nitrilotriacetate). The results are shown in Table 1.



EXAMPLE 44

[0135] An experiment was conducted in the same manner as in Example 43, except that the content of the impurity salts was changed to 5.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 1.



EXAMPLE 45

[0136] An experiment was conducted in the same manner as in Example 43, except that the content of the impurity salts was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 1.



COMPARATIVE EXAMPLE 1

[0137] An experiment was conducted in the same manner as in Example 1, except that the content of the impurity salts was changed to 10% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 2

[0138] An experiment was conducted in the same manner as in Example 2, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 3

[0139] An experiment was conducted in the same manner as in Example 3, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 4

[0140] An experiment was conducted in the same manner as in Example 4, except that the content of the impurity salts was changed to 18% with the composition being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 5

[0141] An experiment was conducted in the same manner as in Example 13, except that the content of the impurity acids was changed to 30% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 6

[0142] An experiment was conducted in the same manner as in Example 14, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 7

[0143] An experiment was conducted in the same manner as in Example 15, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 8

[0144] An experiment was conducted in the same manner as in Example 16, except that the content of the impurity salts was changed to 23% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 9

[0145] An experiment was conducted in the same manner as in Example 25, except that the content of the impurity salts was changed to 10% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 10

[0146] An experiment was conducted in the same manner as in Example 26, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 11

[0147] An experiment was conducted in the same manner as in Example 27, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 12

[0148] An experiment was conducted in the same manner as in Example 34, except that the content of the impurity acids was changed to 30% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table.



COMPARATIVE EXAMPLE 13

[0149] An experiment was conducted in the same manner as in Example 35, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 14

[0150] An experiment was conducted in the same manner as in Example 36, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.



COMPARATIVE EXAMPLE 15

[0151] An experiment was conducted in the same manner as in Example 43, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 2.
1TABLE 1CompressionCompoundContentstrengthof theofafter storedformulaimpurityLoadfor 2 monthsExample[I][wt. %][Kg][Kg/cm2] 1S-ASNA-3Na2.42001.2 2S-ASMP-3Na2.02001.0 3S-ASDA-4Na1.52000.9 4S-ALDA-3Na2.22001.1 5S-ASMA-3Na5.01001.2 6S-ASMP-3Na6.01001.2 7S-ASDA-4Na8.01001.3 8S-ALDA-3Na7.01001.0 9S-ASMA-3Na0.33000.810S-ASMP-3Na0.23001.011S-ASDA-4Na0.43000.812S-ALDA-3Na0.33000.913S-ASMA2.92001.114S-ASMP1.52000.615S-ASDA2.02000.916S-ALDA2.42000.817S-ASMA4.01000.918S-ASMP8.01001.219S-ASDA7.01001.120S-ALDA6.01001.021S-ASMA0.23000.822S-ASMP0.33000.923S-ASDA0.53001.024S-ALDA0.43000.925TUDA-3Na2.42001.126MIDA-2Na2.02001.227ANTDA-3Na1.52001.028TUDA-3Na5.01001.329MIDA-2Na6.01001.230ANTDA-3Na8.01001.231TUDA-3Na0.33001.032MIDA-2Na0.23000.833ANTDA-3Na0.43000.934TUDA2.92001.235MIDA1.52000.836ANTDA2.02000.937TUDA4.01001.038MIDA8.01001.139ANTDA7.01001.240TUDA0.23000.941MIDA0.33001.042ANTDA0.53001.143ANTDA-Fe1.52000.944ANTDA-Fe5.01001.045ANTDA-Fe0.33000.8


[0152]

2









TABLE 2












Compression



Compound
Content

strength



of the
of

after stored


Comparative
formula
impurity
Load
for 2 months


Example
[I]
[wt. %]
[Kg]
[Kg/cm2]







1
S-ASMA-3Na
10
100
2.6


2
S-ASMP-3Na
15
100
3.0


3
S-ASDA-4Na
20
100
3.2


4
S-ALDA-3Na
18
100
2.8


5
S-ASMA
30
100
2.8


6
S-ASMP
20
100
2.5


7
S-ASDA
15
100
2.3


8
S-ALDA
23
100
2.6


9
TUDA-3Na
10
100
2.5


10 
MIDA-2Na
15
100
2.6


11 
ANTDA-3Na
20
100
2.5


12 
TUDA
30
100
3.3


13 
MIDA
20
100
2.7


14 
ANTDA
15
100
2.5


15 
ANTDA-Fe
15
100
2.5










[0153] It can be seen from these examples that when the impurity acids or salts thereof were present in an amount larger than 8% based on the compound of the formula [1], hardening of the stored powder increased and, at the same time, the compression strength increased. When the impurity acids or salts thereof were present in an amount of at most 8%, such increase in hardening property of the stored powder and increase in compression strength were not seen.



EXAMPLE 46

[0154] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium ethylenediaminedisuccinate (EDDS-4Na) and 25.0 g of the impurity salts (comprising 8.0 g of disodium maleate, 9.0 g of disodium fumarate, 5.0 g of disodium ethylenediaminemonosuccinate and 3.0 g of disodium malate). The results are shown in Table 3.



EXAMPLE 47

[0155] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium (S,S)-ethylenediaminedisuccinate (SS-EDDS-4Na) and 20.0 g of impurity salts (comprising 5.0 g of disodium (S)-aspartate, 5.0 g of disodium (S)-N-(2-hydroxyethyl)-aspartate, 5.0 g of tetrasodium (S,S)-N-(2-hydroxyethyl)-ethylenediaminedisuccinate and 5.0 g of disodium fumarate). The results are shown in Table 3.



EXAMPLE 48

[0156] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium 1,3-propanediaminedisuccinate (PDDS-4Na) and 15.0 g of the impurity salts (comprising 5.0 g of disodium maleate, 4.0 g of disodium fumarate, 3.0 g of disodium 1,3-propanediaminemonosuccinate and 3.0 g of disodium malate). The results are shown in Table 3.



EXAMPLE 49

[0157] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium (S,S)-1,3-propanediaminedisuccinate (SS-PDDS-4Na) and 20.0 g of impurity salts (comprising 5.0 g of disodium (S)-aspartate, 5.0 g of disodium (S)-3-hydroxypropylaspartate, 5.0 g of tetrasodium (S,S)-3-hydroxypropyl-1,3-propanediaminedisuccinate and 5.0 g of disodium fumarate). The results are shown in Table 3.



EXAMPLE 50

[0158] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of tetrasodium (S,S)-2-hydroxy-1,3-propanediaminedisuccinate (SS-PDDS-OH-4Na) and 25.0 g of impurity salts (comprising 15.0 g of disodium (S)-aspartate, 5.0 g of disodium (S)-N-(1,2-dihydroxypropyl)-aspartate and 5.0 g of disodium fumarate). The results are shown in Table 3.



EXAMPLE 51

[0159] An experiment was conducted in the same manner as in Example 46, except that the content of the impurity salts was changed to 5.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 52

[0160] An experiment was conducted in the same manner as in Example 47, except that the content of the impurity salts was changed to 6.0% with the composition being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 53

[0161] An experiment was conducted in the same manner as in Example 48, except that the content of the impurity salts was changed to 8.0% with the composition being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 54

[0162] An experiment was conducted in the same manner as in Example 49, except that the content of the impurity salts was changed to 6.0% with the composition being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 55

[0163] An experiment was conducted in the same manner as in Example 50, except that the content of the impurity salts was changed to 8.0% with the composition being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 56

[0164] An experiment was conducted in the same manner as in Example 46, except that the content of the impurity salts was changed to 0.3% with the composition being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 57

[0165] An experiment was conducted in the same manner as in Example 47, except that the content of the impurity salts was changed to 0.2% with the composition being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 58

[0166] An experiment was conducted in the same manner as in Example 48, except that the content of the impurity salts was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 59

[0167] An experiment was conducted in the same manner as in Example 49, except that the content of the impurity salts was changed to 0.2% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 60

[0168] An experiment was conducted in the same manner as in Example 50, except that the content of the impurity salts was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 61

[0169] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of ethylenediaminedisuccinic acid (EDDS) and 25.0 g of impurity acids (comprising 8.0 g of maleic acid, 9.0 g of fumaric acid, 5.0 g of ethylenediaminemonosuccinic acid and 3.0 g of malic acid). The results are shown in Table 3.



EXAMPLE 62

[0170] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S,S)-ethylenediaminedisuccinic acid (SS-EDDS) and 20.0 g of impurity acids (comprising 5.0 g of (S)-aspartic acid, 5.0 g of (S)-N-(2-hydroxyethyl)-aspartic acid, 5.0 g of (S,S)-N-(2-hydroxyethyl)-ethylenediaminedisuccinic acid and 5.0 g of fumaric acid). The results are shown in Table 3.



EXAMPLE 63

[0171] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of 1,3-propanediaminedisuccinic acid (PDDS) and 15.0 g of impurity acids (comprising 5.0 g of maleic acid, 4.0 g of fumaric acid, 3.0 g of 1,3-propanediaminemonosuccinic acid and 3.0 g of malic acid). The results are shown in Table 3.



EXAMPLE 64

[0172] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S,S)-1,3-propanediaminedisuccinic acid (SS-PDDS) and 20.0 g of impurity acids (comprising 5.0 g of (S)-aspartic acid, 5.0 g of (S)-3-hydroxypropylaspartic acid, 5.0 g of (S,S)-3-hydroxypropyl-1,3-propanediaminedisuccinic acid and 5.0 g of fumaric acid). The results are shown in Table 3.



EXAMPLE 65

[0173] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of (S,S)-2-hydroxy-1,3-propanediaminedisuccinic acid (SS-PDDS-OH) and 25.0 g of impurity acids (comprising 15.0 g of (S)-aspartic acid, 5.0 g of (S)-N-(1,2-dihydroxypropyl)-aspartic acid and 5.0 g of fumaric acid). The results are shown in Table 3.



EXAMPLE 66

[0174] An experiment was conducted in the same manner as in Example 61, except that the content of the impurity acids was changed to 5.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 67

[0175] An experiment was conducted in the same manner as in Example 62, except that the content of the impurity acids was changed to 6.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 68

[0176] An experiment was conducted in the same manner as in Example 63, except that the content of the impurity acids was changed to 8.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 69

[0177] An experiment was conducted in the same manner as in Example 64, except that the content of the impurity acids was changed to 6.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 70

[0178] An experiment was conducted in the same manner as in Example 65, except that the content of the impurity acids was changed to 8.0% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 3.



EXAMPLE 71

[0179] An experiment was conducted in the same manner as in Example 61, except that the content of the impurity acids was changed to 0.3% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 72

[0180] An experiment was conducted in the same manner as in Example 62, except that the content of the impurity acids was changed to 0.2% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 73

[0181] An experiment was conducted in the same manner as in Example 63, except that the content of the impurity acids was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 74

[0182] An experiment was conducted in the same manner as in Example 64, except that the content of the impurity acids was changed to 0.2% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 75

[0183] An experiment was conducted in the same manner as in Example 65, except that the content of the impurity acids was changed to 0.4% with the composition thereof being the same and the load applied to the test sample was changed to 300 [g/cm2]. The results are shown in Table 3.



EXAMPLE 76

[0184] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of iron ammonium ethylenediaminedisuccinate (EDDS-Fe-NH4) and 25.0 g of impurity ammonium salts (comprising 8.0 g of maleate, 9.0 g of fumarate, 5.0 g of ethylenediaminemonosuccinate and 3.0 g of malate). The results are shown in Table 3.



EXAMPLE 77

[0185] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of copper disodium ethylenediaminedisuccinate (EDDS-Cu-2Na) and 25.0 g of impurity sodium salts (comprising 8.0 g of maleate, 9.0 g of fumarate, 5.0 g of ethylenediaminemonosuccinate and 3.0 g of malate). The results are shown in Table 3.



EXAMPLE 78

[0186] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of nickel disodium ethylenediaminedisuccinate (EDDS-Ni-2Na) and 25.0 g of impurity sodium salts (comprising 8.0 g of maleate, 9.0 g of fumarate, 5.0 g of ethylenediaminemonosuccinate and 3.0 g of malate). The results are shown in Table 3.



EXAMPLE 79

[0187] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of iron ammonium (S,S)-ethylenediaminedisuccinate (SS-EDDS-Fe-NH4) and 20.0 g of impurity ammonium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-N-(2-hydroxyethyl)-aspartate, 5.0 g of (S,S)-N-(2-hydroxyethyl)-ethylenediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



EXAMPLE 80

[0188] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of copper disodium (S,S)-ethylenediaminedisuccinate (SS-EDDS-Cu-2Na) and 20.0 g of impurity sodium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-N-(2-hydroxyethyl)-aspartate, 5.0 g of (S,S)-N-(2-hydroxyethyl)-ethylenediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



EXAMPLE 81

[0189] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of nickel disodium (S,S)-ethylenediaminedisuccinate (SS-EDDS-Ni-2Na) and 20.0 g of impurity sodium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-N-(2-hydroxyethyl)-aspartate, 5.0 g of (S,S)-N-(2-hydroxyethyl)-ethylenediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



EXAMPLE 82

[0190] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of iron ammonium (S,S)-1,3-propanediaminedisuccinate (SS-PDDS-Fe-NH4) and 20.0 g of impurity ammonium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-3-hydroxypropylaspartate, 5.0 g of (S,S)-3-hydroxypropyl-1,3-propanediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



EXAMPLE 83

[0191] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of copper disodium (S,S) -1, 3-propanediaminedisuccinate (SS-PDDS-Cu-2Na) and 20.0 g of impurity sodium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-3-hydroxypropylaspartate, 5.0 g of (S,S)-3-hydroxypropyl-1,3-propanediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



EXAMPLE 84

[0192] An experiment was conducted in the same manner as in Example 1, except for using 1000 g of nickel disodium (S,S)-1,3-propanediaminedisuccinate (SS-PDDS-Ni-2Na) and 20.0 g of impurity sodium salts (comprising 5.0 g of (S)-aspartate, 5.0 g of (S)-3-hydroxypropylaspartate, 5.0 g of (S,S)-3-hydroxypropyl-1,3-propanediaminedisuccinate and 5.0 g of fumarate). The results are shown in Table 3.



COMPARATIVE EXAMPLE 16

[0193] An experiment was conducted in the same manner as in Example 46, except that the content of the impurity salts was changed to 10% with the composition thereof being the same and the load applied to the test sample w as changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 17

[0194] An experiment was conducted in the same manner as in Example 47, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 18

[0195] An experiment was conducted in the same manner as in Example 48, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 19

[0196] An experiment was conducted in the same manner as in Example 49, except that the content of the impurity acids was changed to 30% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 20

[0197] An experiment was conducted in the same manner as in Example 50, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 21

[0198] An experiment was conducted in the same manner as in Example 61, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 22

[0199] An experiment was conducted in the same manner as in Example 62, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 23

[0200] An experiment was conducted in the same manner as in Example 63, except that the content of the impurity salts was changed to 10% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 24

[0201] An experiment was conducted in the same manner as in Example 64, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 25

[0202] An experiment was conducted in the same manner as in Example 65, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 26

[0203] An experiment was conducted in the same manner as in Example 79, except that the content of the impurity acids was changed to 30% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 27

[0204] An experiment was conducted in the same manner as in Example 80, except that the content of the impurity salts was changed to 20% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.



COMPARATIVE EXAMPLE 28

[0205] An experiment was conducted in the same manner as in Example 81, except that the content of the impurity salts was changed to 15% with the composition thereof being the same and the load applied to the test sample was changed to 100 [g/cm2]. The results are shown in Table 4.
3TABLE 3CompressionCompoundContentstrengthof theofafter storedformulaimpurityLoadfor 2 monthsExample[I][wt. %][Kg][Kg/cm2]46EDDS-4Na2.42001.147SS-EDDS-4Na2.02001.248PDDS-4Na1.52001.049SS-PDOS-4Na2.02001.350PDDS-OH-4Na2.42001.251EDDS-4Na5.01001.252SS-EDDS-4Na6.01001.053PDDS-4Na8.01000.854SS-PDDS-4Na6.01000.955PDDS-OH-4Na8.01001.256EDDS-4Na0.33000.857SS-EDDS-4Na0.23000.958PDDS-4Na0.43001.059SS-PDDS-4Na0.23001.160PDDS-OH-4Na0.43001.261EDDS2.42000.962SS-EDDS2.02001.063PDDS1.52001.164SS-PDDS2.02000.965PDDS-OH2.42001.066EDDS5.01000.867SS-EDDS6.01001.168PDDS8.01001.269SS-PDDS6.01001.070PDDS-OH8.01000.871EDDS0.33001.272SS-EDDS0.23001.373PDDS0.43001.174SS-PDDS0.23001.275PDDS-OH0.43001.076EDDS-Fe-NH42.42001.177EDDS-Cu-2Na2.42001.278EDDS-Ni-2Na2.02001.079SS-EDDS-Fe-NH4 S2.02000.980S-EDDS-Cu-2Na S2.02001.081S-EDDS-Ni-2Na S2.02001.282S-PDDS-Fe-2NH4 S2.02001.183S-PDDS-Cu-2Na S2.02001.384S-PDDS-Ni-2Na2.02001.0


[0206]

4









TABLE 4












Compression



Compound
Content

strength



of the
of

after stored


Comparative
formula
impurity
Load
for 2 months


Example
[I]
[wt. %]
[Kg]
[Kg/cm2]







16
EDDS-4Na
10
100
2.8


17
SS-EDDS-4Na
15
100
2.9


18
PDDS-4Na
20
100
3.0


19
SS-PDDS-4Na
30
100
2.9


20
SS-PDDS-OH-4Na
20
100
2.7


21
EDDS
15
100
2.8


22
SS-EDDS
15
100
2.5


23
PDDS
10
100
2.7


24
SS-PDDS
15
100
2.8


25
SS-PDDS-OH
20
100
2.5


26
SS-EDDS-Fe-NH4
30
100
2.7


27
SS-EDDS-Cu-2Na
20
100
2.8


28
SS-EDDS-Ni
15
100
2.5











EXAMPLE 85

[0207] A dry powder comprising 1000 g of trisodium salt of (S)-aspartic acid-N-monoacetic acid (ASMA-3Na) and 250 g of impurity salts (comprising 183 g of disodium aspartate, 40 g of disodium fumarate, 22 g of monosodium salt of glycine and 5 g of disodium malate) was dissolved in 1500 g of water in a stainless steel vessel externally provided with a thermoelectric heater to prepare a transparent aqueous solution with a light yellow color. This aqueous solution was kept at 50° C. for 60 days, and, then, the components were analyzed by HPLC and, simultaneously, the appearance of the solution was observed. The results are shown in Table 5.



EXAMPLE 86

[0208] An experiment was conducted in the same manner as in Example 85, except for using 1000 g of tetrasodium salt of (S)-aspartic acid-N,N-diacetic acid (ASDA-4Na) and 200 g of impurity salts (comprising 82 g of disodium fumarate, 62 g of disodium aspartate, 43 g of disodium iminodiacetate, 11 g of disodium malate and 2 g of trisodium nitrilotriacetate). The results are shown in Table 5.



EXAMPLE 87

[0209] An experiment was conducted in the same manner as in Example 85, except for using 1000 g of trisodium salt of (S)-aspartic acid-N-monopropionic acid (ASMP-3Na) and 150 g of impurity salts (comprising 55 g of disodium aspartate, 31 g of disodium fumarate, 31 g of monosodium salt of β-alanine, 24 g of disodium iminodipropionate, 7 g of disodium malate and 2 g of sodium acrylate). The results are shown in Table 5.



EXAMPLE 88

[0210] An experiment was conducted in the same manner as in Example 85, except for using 1000 g of trisodium salt of (S)-α-alanine-N,N-diacetic acid (S-ALDA-3Na) and 200 g of impurity salts (comprising 100 g of monosodium salt of α-alanine, 40 g of monosodium salt of glycine, 30 g of disodium iminodiacetate and 30 g of trisodium nitrilotriacetate). The results are shown in Table 5.



EXAMPLE 89

[0211] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 2.5% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.4%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 90

[0212] An experiment was conducted in the same manner as in Example 86, except that the content of the impurity salts was 2.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 91

[0213] An experiment was conducted in the same manner as in Example 87, except that the content of the impurity salts was 1.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.8%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 92

[0214] An experiment was conducted in the same manner as in Example 88, except that the content of the impurity salts was 1.2% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 93

[0215] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 94

[0216] An experiment was conducted in the same manner as in Example 86, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 95

[0217] An experiment was conducted in the same manner as in Example 87, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 96

[0218] An experiment was conducted in the same manner as in Example 88, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 97

[0219] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 2.5% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 78.4%, and the aqueous solution was kept at 70° C. The results are shown in Table 5.



EXAMPLE 98

[0220] An experiment was conducted in the same manner as in Example 86, except that the content of the impurity salts was 2.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 78.7%, and the aqueous solution was kept at 70° C. The results are shown in Table 5.



EXAMPLE 99

[0221] An experiment was conducted in the same manner as in Example 87, except that the content of the impurity salts was 1.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 79.4%, and the aqueous solution was kept at 70° C. The results are shown in Table 5.



EXAMPLE 100

[0222] A dry powder comprising 1000 g of trisodium salt of taurine-N,N-diacetic acid (TUDA-3Na) and 250 g of impurity salts (comprising 50 g of monosodium salt of taurine, 50 g of disodium glycolate, 50 g of monosodium salt of glycine, 50 g of disodium iminodiacetate and 50 g of trisodium nitrilotriacetate) was dissolved in 1500 g of water in a stainless steel vessel externally provided with a thermoelectric heater to prepare a transparent aqueous solution with a light yellow color. This aqueous solution was kept at 50° C. for 60 days, and, then, the components were analyzed by HPLC and, simultaneously, the appearance of the solution was observed. The results are shown in Table 5.



EXAMPLE 101

[0223] An experiment was conducted in the same manner as in Example 100, except for using 1000 g of disodium N-methyliminodiacetate (MIDA-2Na) and 200 g of impurity salts (comprising 50 g of disodium glycolate, 50 g of monosodium salt of glycine, 50 g of disodium iminodiacetate and 50 g of trisodium nitrilotriacetate). The results are shown in Table 5.



EXAMPLE 102

[0224] An experiment was conducted in the same manner as in Example 100, except for using 1000 g of trisodium salt of anthranilic acid-N,N-diacetic acid (ANTDA-3Na) and 150 g of impurity salts (comprising 30 g of monosodium anthranilate, 60 g of disodium glycolate, 30 g of monosodium salt of glycine, 30 g of disodium iminodiacetate and 30 g of trisodium nitrilotriacetate). The results are shown in Table 5.



EXAMPLE 103

[0225] An experiment was conducted in the same manner as in Example 100, except that the content of the impurity salts was 2.5% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.4%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 104

[0226] An experiment was conducted in the same manner as in Example 101, except that the content of the impurity salts was 2.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 105

[0227] An experiment was conducted in the same manner as in Example 102, except that the content of the impurity salts was 1.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.8%, and the aqueous solution was kept at 75° C. The results are shown in Table 5.



EXAMPLE 106

[0228] An experiment was conducted in the same manner as in Example 100, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 107

[0229] An experiment was conducted in the same manner as in Example 101, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 65.4%, and the aqueous solution was kept at 65° C. The results are shown in Table 5.



EXAMPLE 108

[0230] An experiment was conducted in the same manner as in Example 102, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 78.4%, and the aqueous solution was kept at 70° C. The results are shown in Table 5.



EXAMPLE 109

[0231] An experiment was conducted in the same manner as in Example 101, except that the content of the impurity salts was 2.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 78.7%, and the aqueous solution was kept at 70° C. The results are shown in Table 5.



EXAMPLE 110

[0232] An experiment was conducted in the same manner as in Example 100, except that 1000 g of iron salt of anthranilic acid-N,N-diacetic acid (ANTDA-Fe) and 20 g of impurity Fe salts (comprising 4 g of anthranilate, 8 g of glycolate, 4 g of glycine salt, 4 g of iminodiacetate and 4 g of nitrilotriacetate) were used, the content of the compound of the formula [1] in the aqueous solution was 49.5%, and the aqueous solution was kept at 40° C. The results are shown in Table 5.



EXAMPLE 111

[0233] An experiment was conducted in the same manner as in Example 100, except that 1000 g of iron salt of anthranilic acid-N,N-diacetic acid (ANTDA-Fe) and 10 g of impurity Fe salts (comprising 2 g of anthranilate, 4 g of glycolate, 2 g of glycine salt, 2 g of iminodiacetate and 2 g of nitrilotriacetate) were used, the content of the compound of the formula [1] in the aqueous solution was 39.8%, and the aqueous solution was kept at 40° C. The results are shown in Table 5.



COMPARATIVE EXAMPLE 29

[0234] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 30

[0235] An experiment was conducted in the same manner as in Example 86, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 31

[0236] An experiment was conducted in the same manner as in Example 87, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 32

[0237] An experiment was conducted in the same manner as in Example 88, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 33

[0238] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 50.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 33.3%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 34

[0239] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 75° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 35

[0240] An experiment was conducted in the same manner as in Example 85, except that the content of the impurity salts was 28.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 51.4%, and the aqueous solution was kept at 60° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 36

[0241] An experiment was conducted in the same manner as in Example 86, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 37

[0242] An experiment was conducted in the same manner as in Example 100, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 38

[0243] An experiment was conducted in the same manner as in Example 101, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 39

[0244] An experiment was conducted in the same manner as in Example 102, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 40

[0245] An experiment was conducted in the same manner as in Example 100, except that the content of the impurity salts was 50.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 33.3%, and the aqueous solution was kept at 50° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 41

[0246] An experiment was conducted in the same manner as in Example 101, except that the content of the impurity salts was 35.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.1%, and the aqueous solution was kept at 75° C. The results are shown in Table 6.



COMPARATIVE EXAMPLE 42

[0247] An experiment was conducted in the same manner as in Example 110, except that the content of the impurity salts was 28.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 43.8%, and the aqueous solution was kept at 40° C. The results are shown in Table 6.
5TABLE 5Content *KeepingCompoundoftemper-Exam-of theimpurityatureChange before and after kept for 60 days **pleformula [I]wt. %° C.wt. %Appearance85S-ASMA-3Na25.05036.4Light yellow transparent aqueous solution35.4Light yellow transparent aqueous solution86S-ASDA-4Na20.05037.0Light yellow transparent aqueous solution36.4Light yellow transparent aqueous solution87S-ASMP-3Na15.05037.8Light yellow transparent aqueous solution37.8Light yellow transparent aqueous solution88S-ALDA-3Na20.05037.0Light yellow transparent aqueous solution36.5Light yellow transparent aqueous solution89S-ASMA-3Na2.57549.4Colorless transparent aqueous solution49.4Colorless transparent aqueous solution90S-ASDA-4Na2.07549.5Colorless transparent aqueous solution49.5Colorless transparent aqueous solution91S-ASMP-3Na1.07549.8Colorless transparent aqueous solution49.8Colorless transparent aqueous solution92S-ALDA-3Na1.07549.8Colorless transparent aqueous solution49.8Colorless transparent aqueous solution93S-ASMA-3Na10.06565.4Light yellow slurry63.7Light yellow slurry94S-ASDA-4Na10.06565.4Light yellow slurry64.5Light yellow slurry95S-ASMP-3Na10.06565.4Light yellow slurry65.4Light yellow slurry96S-ALDA-3Na10.06565.4Light yellow slurry64.7Light yellow slurry97S-ASMA-3Na2.57078.4White slurry76.8White slurry98S-ASDA-4Na2.07078.7White slurry78.5White slurry99S-ASMP-3Na1.07079.4White slurry79.4White slurry100TUDA-3Na25.05036.4Light yellow transparent aqueous solution34.7Light yellow transparent aqueous solution101MIDA-2Na20.05037.0Light yellow transparent aqueous solution36.6Light yellow transparent aqueous solution102ANTDA-3Na15.05037.8Light yellow transparent aqueous solution37.8Light yellow transparent aqueous solution103TUDA-3Na2.57549.4Colorless transparent aqueous solution49.4Colorless transparent aqueous solution104MIDA-2Na2.07549.5Colorless transparent aqueous solution49.5Colorless transparent aqueous solution105ANTDA-3Na1.07549.8Colorless transparent aqueous solution49.8Colorless transparent aqueous solution106TUDA-3Na10.06565.4Light yellow slurry63.7Light yellow slurry107MIDA-2Na10.06565.4Light yellow slurry64.5Light yellow slurry108TUDA-3Na2.57078.4White slurry76.9White slurry109MIDA-2Na2.07078.7White slurry78.5White slurry110ANTDA-Fe2.04049.5Reddish brown aqueous solution49.3Reddish brown aqueous solution111ANTDA-Fe1.04039.8Reddish brown aqueous solution39.8Reddish brown aqueous solution1*(Content of impurity)=(Weight of impurity)(Weight of the compound of the formula [I])×100 [wt. %]**wt. %: Content of the compound of the formula [I] in aqueous solutionThe upper row: Before kept at the given temperature for 60 days (just after preparation of theaqueous solution)The lower row: After kept for 60 days


[0248]

6









TABLE 6










Compara-

Content *
Keeping



tive
Compound
of
temper-


Exam-
of the
impurity
ature
Change before and after kept for 60 days **












ple
formula [I]
wt. %
° C.
wt. %
Appearance





29
S-ASMA-3Na
35.0
50
35.1
Light yellow transparent aqueous solution














31.1
Brown aqueous solution


30
S-ASDA-4Na
35.0
50
35.1
Light yellow transparent aqueous solution














31.8
Brown aqueous solution


31
S-ASMP-3Na
35.0
50
33.3
Light yellow transparent aqueous solution














33.2
Brown aqueous solution


32
S-ALDA-3Na
35.0
50
35.1
Light yellow transparent aqueous solution














31.8
Brown aqueous solution


33
S-ASMA-3Na
50.0
50
33.3
Light yellow transparent slurry














30.5
Brown slurry


34
S-ASMA-4Na
35.0
75
35.1
Light yellow transparent aqueous solution














30.6
Brown aqueous solution


35
S-ASMA-3Na
28.0
60
51.4
Light yellow transparent slurry














47.3
Brown slurry


36
S-ASDA-4Na
28.0
60
51.4
Light yellow transparent slurry














48.3
Brown slurry


37
TUDA-3N
35.0
50
35.1
Light yellow transparent aqueous solution














30.4
Brown aqueous solution


38
MIDA-2Na
35.0
50
35.1
Light yellow transparent aqueous solution














29.9
Brown aqueous solution


39
ANTDA-3Na
35.0
50
35.1
Light yellow transparent aqueous solution














31.8
Brown aqueous solution


40
TUDA-3Na
50.0
5
33.3
Light yellow transparent slurry














29.5
Brown slurry


41
MIDA-2Na
35.0
75
35.1
Light yellow transparent aqueous solution














29.6
Light yellow transparent aqueous solution


42
ANTDA-Fe
28.0
40
43.8
Reddish brown aqueous solution














40.6
Blackish brown aqueous solution















2



*(Content of impurity)

=



(Weight of impurity)


(Weight of the compound of the formula [I])


×

100 [wt. %]










** wt. %: Content of the compound of the formula [I] in aqueous solution


The upper row: Before kept at the given temperature for 60 days (just after preparation of the


aqueous solution)


The lower row: After kept for 60 days











EXAMPLE 112

[0249] A dry powder comprising 1000 g of tetrasodium ethylenediamine-N,N′-disuccinate (EDDS-4Na) and 250 g of impurity salts (comprising 100 g of disodium maleate, 100 g of disodium fumarate and 50 g of disodium ethylenediaminemonosuccinate) was dissolved in 1500 g of water in a stainless steel vessel externally provided with a thermoelectric heater to prepare a transparent aqueous solution with a light yellow color. This aqueous solution was kept at 50° C. for 60 days. Then, the components were analyzed by HPLC and, simultaneously, the appearance of the solution was observed. The results are shown in Table 7.



EXAMPLE 113

[0250] An experiment was conducted in the same manner as in Example 112, except for using 1000 g of tetrasodium (S,S)-ethylenediamine-N,N′-disuccinate (SS-EDDS-4Na) and 200 g of impurity salts (comprising 40 g of disodium (S)-aspartate, 40 g of disodium (S)-N-(2-chloroethyl)-aspartate, 40 g of disodium (S)-N-(2-hydroxyethyl)-aspartate, 40 g tetrasodium of (S,S)-N-(2-hydroxyethyl)-ethylenediamine-N,N′-disuccina te and 40 g of disodium fumarate). The results are shown in Table 7.



EXAMPLE 114

[0251] An experiment was conducted in the same manner as in Example 112, except for using a dry powder comprising 1000 g of tetrasodium 1,3-propanediamine-N,N′-disuccinate (PDDS-4Na) and 250 g of impurity salts (comprising 100 g of disodium maleate, 100 g of disodium fumarate and 50 g of disodium ethylenediaminemonosuccinate). The results are shown in Table 7.



EXAMPLE 115

[0252] An experiment was conducted in the same manner as in Example 112, except for using 1000 g of tetrasodium (S,S)-1,3-propanediamine-N,N′-disuccinate (SS-PDDS-4Na) and 200 g of impurity salts (comprising 40 g of disodium (S)-aspartate, 40 g of disodium (S)-N-(2-chloropropyl)-aspartate, 40 g of disodium (S)-2-hydroxypropylaspartate, 40 g of tetrasodium (S,S)-N-(2-hydroxypropyl)-1,3-propanediamine-N,N′-disuc cinate and 40 g of disodium fumarate). The results are shown in Table 7.



EXAMPLE 116

[0253] An experiment was conducted in the same manner as.in Example 112, except for using 1000 g of tetrasodium (S,S)-2-hydroxy-1,3-propanediamine-N,N′-disuccinate (SS-PDDS-OH-4Na) and 150 g of impurity salts (comprising 50 g of disodium (S)-aspartate, 50 g of disodium (S)-N-(1,2-dihydroxypropyl)-aspartate and 50 g of disodium fumarate). The results are shown in Table 7.



EXAMPLE 117

[0254] An experiment was conducted in the same manner as in Example 112, except that the content of the impurity salts was 1.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 49.8%, and the aqueous solution was kept at 75° C. The results are shown in Table 7.



EXAMPLE 118

[0255] An experiment was conducted in the same manner as in Example 113, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the slurry solution was 65.4%, and the solution was kept at 65° C. The results are shown in Table 7.



EXAMPLE 119

[0256] An experiment was conducted in the same manner as in Example 114, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the slurry solution was 65.4%, and the solution was kept at 65° C. The results are shown in Table 7.



EXAMPLE 120

[0257] An experiment was conducted in the same manner as in Example 115, except that the content of the impurity salts was 2.5% with the composition thereof being the same, the content of the compound of the formula [1] in the slurry solution was 78.4%, and the solution was kept at 70° C. The results are shown in Table 7.



EXAMPLE 121

[0258] An experiment was conducted in the same manner as in Example 116, except that the content of the impurity salts was 2.0% with the composition thereof being the same, the content of the compound of the formula [1] in the slurry solution was 78.7%, and the solution was kept at 70° C. The results are shown in Table 7.



EXAMPLE 122

[0259] An experiment was conducted in the same manner as in Example 112, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 74.1%, and the solution was kept at 40° C. The results are shown in Table 7.



EXAMPLE 123

[0260] An experiment was conducted in the same manner as in Example 114, except that the content of the impurity salts was 10.0% with the composition thereof being the same, the content of the compound of the formula [1] in the slurry solution was 74.1%, and the solution was kept at 40° C. The results are shown in Table 7.



EXAMPLE 124

[0261] A dry powder comprising 1000 g of copper disodium ethylenediamine-N,N′-disuccinate (EDDS-Cu-2Na) and 250 g of impurity salts (comprising 100 g of disodium maleate, 100 g of disodium fumarate and 50 g of disodium ethylenediaminemonosuccinate) was dissolved in 1500 g of water in a stainless steel vessel externally provided with a thermoelectric heater to prepare a transparent aqueous solution with a light yellow color. This aqueous solution was kept at 50° C. for 60 days. Then, the components were analyzed by HPLC and, simultaneously, the appearance of the solution was observed. The results are shown in Table 7.



EXAMPLE 125

[0262] An experiment was conducted in the same manner as in Example 112, except for using 1000 g of iron ammonium (S,S)-ethylenediamine-N,N′-disuccinate (SS-EDDS-Fe-NH4) and 200 g of impurity salts (comprising 40 g of diammonium (S)-aspartate, 40 g of diammonium (S)-N-(2-chloroethyl)-aspartate, 40 g of diammonium (S)-N-(2-hydroxyethyl)-aspartate, 40 g of tetraammonium (S,S)-N-(2-hydroxyethyl)-ethylenediamine-N,N′-disuccinate and 40 g of diammonium fumarate). The results are shown in Table 7.



EXAMPLE 126

[0263] An experiment was conducted in the same manner as in Example 112, except for using a dry powder comprising 1000 g of copper disodium 1,3-propanediamine-N,N′-disuccinate (PDDS-Cu-2Na) and 250 g of impurity salts (comprising 100 g of disodium maleate, 100 g of disodium fumarate and 50 g of disodium ethylenediaminemonosuccinate). The results are shown in Table 7.



EXAMPLE 127

[0264] An experiment was conducted in the same manner as in Example 112, except for using 1000 g of nickel disodium (S,S)-1,3-propanediamine-N,N′-disuccinate (SS-PDDS-Ni-2Na) and 200 g of impurity salts (comprising 40 g of disodium (S)-aspartate, 40 g of disodium (S)-N-(2-chloropropyl)-aspartate, 40 g of disodium (S)-2-hydroxypropylaspartate, 40 g of tetrasodium (S,S)-N-(2-hydroxypropyl)-1,3-propanediamine-N,N′-disuccinate and 40 g of disodium fumarate). The results are shown in Table 7.



EXAMPLE 128

[0265] An experiment was conducted in the same manner as in Example 112, except for using 1000 g of copper disodium (S,S)-2-hydroxy-1,3-propanediamine-N,N′-disuccinate (SS-PDDS-Cu-2Na) and 150 g of impurity salts (comprising 50 g of disodium (S)-aspartate, 50 g of disodium (S)-N-(1,2-dihydroxypropyl)-aspartate and 50 g of disodium fumarate). The results are shown in Table 7.



COMPARATIVE EXAMPLE 43

[0266] An experiment was conducted in the same manner as in Example 112, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.7%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 44

[0267] An experiment was conducted in the same manner as in Example 113, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.7%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 45

[0268] An experiment was conducted in the same manner as in Example 114, except that the content of the impurity salts was 50.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 33.3%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 46

[0269] An experiment was conducted in the same manner as in Example 115, except that the content of the impurity salts was 40.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 41.6%, and the aqueous solution was kept at 75° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 47

[0270] An experiment was conducted in the same manner as in Example 116, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 43.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 48

[0271] An experiment was conducted in the same manner as in Example 124, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.7%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 49

[0272] An experiment was conducted in the same manner as in Example 125, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.7%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 50

[0273] An experiment was conducted in the same manner as in Example 126, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 35.7%, and the aqueous solution was kept at 50° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 51

[0274] An experiment was conducted in the same manner as in Example 127, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 43.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 8.



COMPARATIVE EXAMPLE 52

[0275] An experiment was conducted in the same manner as in Example 128, except that the content of the impurity salts was 30.0% with the composition thereof being the same, the content of the compound of the formula [1] in the aqueous solution was 43.5%, and the aqueous solution was kept at 75° C. The results are shown in Table 8.


[0276] It has become clear from these examples that when the impurity salts are present in a large amount for the compound of the formula [1] in the aqueous solution or slurry, deterioration of purity and coloration due to the decomposition of the compound of the formula [1] proceed during storage.


[0277] According to the present invention, the compounds of the formula [1] which have been considerably difficult to handle in the form of solid can be stored or handled as an aqueous solution or slurry stably for a long period of time without causing deterioration in purity or coloration due to decomposition of the components by reducing the content of the coexisting impurity salts and setting a proper water content or a proper temperature at which the aqueous solution or slurry is kept.
7TABLE 7Content *KeepingCompoundoftemper-Change before and after kept at theExam-of theimpurityaturegiven temperature for 60 days **pleformula [I]wt. %° C.wt. %Appearance112EDDS-4Na25.05036.4Light yellow transparent aqueous solution36.4Light yellow transparent aqueous solution113SS-EDDS-4Na20.05037.0Light yellow transparent aqueous solution35.6Light yellow transparent aqueous solution114PDDS-4Na25.05036.4Light yellow transparent aqueous solution36.4Light yellow transparent aqueous solution115SS-PDDS-4Na20.07545.4Colorless transparent aqueous solution44.3Colorless transparent aqueous solution116SS-OPDDS-4Na15.07546.5Colorless transparent aqueous solution44.7Colorless transparent aqueous solution117EDDS-4Na1.07549.8Colorless transparent aqueous solution49.8Colorless transparent aqueous solution118SS-EDDS-4Na10.06565.4Light yellow slurry65.4Light yellow slurry119PDDS-4Na10.06565.4Light yellow slurry65.4Light yellow slurry120SS-PDDS-4Na2.57078.4White slurry78.4White slurry121SS-OPDDS-4Na2.07078.7White slurry78.7White slurry122EDDS-4Na10.04074.1White slurry74.1White slurry123PDDS-4Na10.04074.1White slurry74.1White slurry124EDDS-Cu-2Na25.05036.4Dark blue transparent aqueous solution36.3Dark blue transparent aqueous solution125SS-EDDS-Fe-NH420.05037.0Reddish brown aqueous solution36.5Reddish brown aqueous solution126PDDS-CU-2Na25.05036.4Dark blue transparent aqueous solution36.4Dark blue transparent aqueous solution127SS-PDDS-Ni-2Na20.07545.4Blue transparent aqueous solution44.0Blue transparent aqueous solution128SS-PDDS-OH-Cu-15.07549.4Dark blue transparent aqueous solution2Na47.9Dark blue transparent aqueous solution3*(Content of impurity)=(Weight of impurity)(Weight of the compound of the formula [I])×100 [wt. %]** wt. %: Content of the compound of the formula [I] in aqueous solutionThe upper row: Before kept at the given temperature for 60 days (just after preparation of the aqueoussolution)The lower row: After kept at the given temperature for 60 days


[0278]

8










TABLE 8










Compara-

Content *
Keeping




tive
Compound
of
temper-

Change before and after kept at the


Exam-
of the
impurity
ature

given temperature for 60 days **


ple
formula [I]
wt. %
° C.
wt. %
Appearance





43
EDDS-4Na
30.0
50
35.7
Light yellow transparent aqueous solution














35.7
Light yellow transparent aqueous solution


44
SS-EDDS-4Na
30.0
50
35.7
Light yellow transparent aqueous solution














34.4
Light yellow transparent aqueous solution


45
PDDS-4Na
50.0
50
33.3
Light yellow transparent aqueous solution














33.3
Light yellow transparent aqueous solution


46
SS-PDDS-4Na
40.0
75
41.6
Colorless transparent aqueous solution














40.7
Colorless transparent aqueous solution


47
SS-PDDS-OH-
30.0
75
43.5
Colorless transparent aqueous solution



4Na










41.8
Colorless transparent aqueous solution


48
EDDS-Cu-2Na
30.0
50
35.7
Dark blue transparent aqueous solution














31.4
Dark blue transparent aqueous solution


49
SS-EDDS-Fe—NH4
30.0
50
35.7
Reddish brown aqueous solution














29.9
Blackish brown aqueous solution


50
PDDS-Cu-2Na
30.0
50
35.7
Dark blue transparent aqueous solution














32.2
Dark blue transparent aqueous solution


51
SS-PDDS-Ni-2Na
30.0
75
43.5
Blue transparent aqueous solution














38.4
Blue transparent aqueous solution


52
SS-PDDS-OH—Cu-
30.0
75
43.5
Dark blue transparent aqueous solution



2Na










38.7
Dark blue transparent aqueous solution















4



*(Content of impurity)

=



(Weight of impurity)


(Weight of the compound of the formula [I])


×

100 [wt. %]










** wt. %: Content of the compound of the formula [I] in aqueous solution


The upper row: Before kept at the given temperature for 60 days (just after preparation of the aqueous


solution)


The lower row: After kept at the given temperature for 60 days











[Detergent Composition]


Method for the Measurement of Detergency

[0279] 1) Preparation of Artificial Soil


[0280] A clay mainly composed of kaolinite, vermiculite or the like which is a crystalline mineral was dried at 200° C. for 30 hours, and this was used as an inorganic soil.


[0281] 3.5 Grams of gelatin was dissolved in 950 cc of water at about 40° C., and, then, 0.25 g of carbon black was dispersed in water by an emulsification dispersing machine. Then, 14.9 g of the inorganic soil was added and emulsified and, furthermore, 31.35 g of the organic soil was added thereto and emulsified and dispersed to prepare a stable soil bath. A given cleaning cloth (cotton cloth #60 designated by Japan Oil Chemical Society) of 10 cm×20 cm was dipped in the soil bath and, thereafter, squeezed by twin rubber roll made of rubber to remove water and the adhesion amount of the soil was made uniform, followed by subjecting both sides of the cloth to rubbing 25 times each. The cloth was cut to 5 cm×5 cm and those of 42 ±2% in reflectance were used as soiled cloths. The composition of the soils of the resulting artificial soiled cloths is as shown in Table 9.
9TABLE 9Soil componentsComposition (wt %)Organic soilOleic acid28.3Triolein15.6Cholesterol oleate12.2Liquid paraffin 2.5Squalene 2.5Cholesterol 1.6Total of oily soils62.7Gelatin 7.0Inorganic soil29.8Carbon black (designated by 0.5Japan Oil Chemical Society)


[0282] 2) Method of Cleaning


[0283] Ten artificially soiled cloths and knitted cloths were introduced into Terg-O-Tometer manufactured by Testing Co., Ltd. U.S. and with setting the bath ratio to 30 times, cleaning was carried out at 120 rpm and at 25° C. for 10 minutes. A cleaning solution of 0.083% in detergent concentration was used in an amount of 900 ml, and rinsing was carried out with 900 ml of water for 3 minutes. Water of 3° DH was used.


[0284] 3) Evaluation


[0285] Detergency was obtained by the formula (5).
5Detergency(%)=(K/Sofsoiledcloth-K/Sofcleanedcloth)(K/Sofsoiledcloth-K/Sofunsoiledcloth)(5)


[0286] K/S=(1−R/100)/(2R/100)


[0287] R denotes the reflectance (%) measured by a reflectometer. The detergency was evaluated in terms of the average value of the results on the ten artificially soiled cloths tested.



EXAMPLE 129

[0288] A detergent slurry of 60% in solid content was prepared using the components of the detergent compositions shown in Tables 10-21 given hereinafter from which the nonionic surface active agent, a part of the silicate, a part of sodium carbonate, the enzyme and the perfume were excluded. The detergent slurry was dried using a counter-current spray drying tower at a hot air temperature of 270° C. so that water content reached 5%, thereby to obtain a spray dried product.


[0289] This spray dried product, a nonionic surface active agent and water were introduced into a continuous kneader to obtain a dense and uniform kneaded product. A porous plate (10 mm thick) having 80 holes of 5 mmφ (diameter) was provided at the outlet of the kneader and the kneaded product was made to cylindrical pellets of about 5 mmφ×10 mm.


[0290] The pellets were introduced together with cooling air of 15° C. in an amount twice (by weight) that of the pellets into a crusher. The crusher had cutters of 15 cm long at crossing four stages, which revolve at 3000 rpm, and screen comprises a punching metal of 360°, with diameter of the holes being 20 mmφ and the opening being 20%.


[0291] The particles which passed through the screen were mixed with taurine-N,N-diacetic acid derivative powder, 6.5% by weight of pulverized sodium carbonate and 2% by weight of silicate powder, and thereto were added the enzyme and the perfume to obtain a detergent composition having the composition as shown in Tables 10-21 given hereinafter. The detergency of the detergent composition was evaluated.


[0292] The meaning and detail of the abbreviations in Tables 10-21 are as follows. EOp indicates the average addition mol number of ethylene oxide and POp indicates the average addition mol number of propylene oxide.


[0293] (1) Anionic Surface Active Agents:


[0294] α-SF: Sodium salt of α-sulfofatty acid (C,4-C16) methyl ester.


[0295] AOS: Sodium α-olefinsulfonates (C14-C18).


[0296] LAS: Sodium alkylbenzenesulfonate (alkyl group: C10-C14).


[0297] (2) Nonionic Surface Active Agents:


[0298] AE: C12 alcohol ethoxylate (EOp=15).


[0299] NFE: Nonylphenol ethoxylate (EOp=15).


[0300] AOE•PO: EO•PO adducts of C12-C13 alcohols (EOp=15, POp=5).


[0301] FEE: C11H23CO(OCH2OCH2)15OCH3


[0302] (3) Builders:


[0303] TUDA: Trisodium salt of taurine-N,N-diacetic acid


[0304] Silicates: A type zeolite


[0305] (4) Enzymes: Protease, Amylase, Cellulase, Lipase


[0306] (5) Other Additives:


[0307] Fluorescent agent


[0308] Perfume


[0309] PAa: Sodium polyacrylate


[0310] PEG400: Polyethylene glycol #400
10TABLE 10Sample No.12345678Composition(wt. %)Anionic:α-SF2020202020202020AOS3353333LAS2252222Nonionic:AE55555NFE33335AOE · PO22225FEE5Builders:ASDA510101010101010Potassium88888888carbonateSodium2222222222222222carbonateEnzymes:Protease0.50.50.50.50.50.50.50.5Amylase0.10.10.10.10.10.10.10.1Cellulase0.10.10.10.10.10.10.10.1Lipase0.30.30.30.30.30.30.30.3Otheradditives:Sodium sulfite11111111Perfume0.20.20.20.20.20.20.20.2Fluorescent0.40.40.40.40.40.40.40.4agentPAa0.30.30.30.30.30.30.30.3PEG4000.20.20.20.20.20.20.20.2Sodium sulfateBalanceDetergency (%)8688868685858485


[0311]

11













TABLE 11








Sample No.
9
10
11
12
13
14
15
16























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


ASDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
88
86
90
88
88
88
87
88










[0312]

12













TABLE 12








Sample No.
17
18
19
20
21
22
23
24























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
5

3
3
3
3


LAS
2
2

5
2
2
2
2


Nonionic:


AE
5
5
5
5
5





NFE
3
3
3
3

5




AOE · PO
2
2
2
2


5



FEE







5


Builders:


TUDA
5
10
10
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
22
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Cellulase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Lipase
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
84
87
87
85
84
85
86
85










[0313]

13













TABLE 13








Sample No.
25
26
27
28
29
30
31
32























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


TUDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
90
88
87
90
89
87
86
89










[0314]

14













TABLE 14








Sample No.
33
34
35
36
37
38
39
40























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
5

3
3
3
3


LAS
2
2

5
2
2
2
2


Nonionic:


AE
5
5
5
5
5





NFE
3
3
3
3

5




AOE · PO
2
2
2
2


5



FEE







5


Builders:


Silicate
15
15
15
15
15
15
15
15


ASDA
5
10
10
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
22
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Cellulase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Lipase
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
85
87
87
88
86
84
85
85










[0315]

15













TABLE 15








Sample No.
41
42
43
44
45
46
47
48























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


Silicate


15
15
15
15
15
15


ASDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
86
87
90
87
88
86
88
87










[0316]

16













TABLE 16








Sample No.
49
50
51
52
53
54
55
56























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
5

3
3
3
3


LAS
2
2

5
2
2
2
2


Nonionic:


AE
5
5
5
5
5





NFE
3
3
3
3

5




AOE · PO
2
2
2
2


5



FEE







5


Builders:


Silicate
15
15
15
15
15
15
15
15


TUDA
5
10
10
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Cellulase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Lipase
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
87
88
87
85
86
86
85
84










[0317]

17













TABLE 17








Sample No.
57
58
59
60
61
62
63
64























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


Silicate


15
15
15
15
15
15


TUDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
90
87
88
87
88
87
89
86










[0318]

18













TABLE 18








Sample No.
65
66
67
68
69
70
71
72























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
5

3
3
3
3


LAS
2
2

5
2
2
2
2


Nonionic:


AE
5
5
5
5
5





NFE
3
3
3
3

5




AOE · PO
2
2
2
2


5



FEE







5


Builders:


Silicate
15
15
15
15
15
15
15
15


ASDA
5
10
10
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
22
22
22
22
22
22


carbonate


Bleaching


agents:


Sodium
10
10
10
10
10
10
10
10


percarbonate


Sodium
10
10
10
10
10
10
10
10


perborate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Cellulase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Lipase
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
85
86
87
87
86
85
85
85










[0319]

19













TABLE 19








Sample No.
73
74
75
76
77
78
79
80























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


Silicate


15
15
15
15
15
15


ASDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Bleaching


agents:


Sodium
10
10
10
10
10
10
10
10


percarbonate


Sodium
10
10
10
10
10
10
10
10


perborate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
90
88
87
86
87
88
88
87










[0320]

20













TABLE 20








Sample No.
81
82
83
84
85
86
87
88























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
5

3
3
3
3


LAS
2
2

5
2
2
2
2


Nonionic:


AE
5
5
5
5
5





NFE
3
3
3
3

5




AOE · PO
2
2
2
2


5



FEE







5


Builders:


Silicate
15
15
15
15
15
15
15
15


TUDA
5
10
10
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
22
22
22
22
22
22


carbonate


Bleaching


agents:


Sodium
10
10
10
10
10
10
10
10


percarbonate


Sodium
10
10
10
10
10
10
10
10


perborate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Cellulase
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Lipase
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
84
85
87
87
88
84
88
85










[0321]

21













TABLE 21








Sample No.
89
90
91
92
93
94
95
96























Composition










(wt. %)


Anionic:


α-SF
20
20
20
20
20
20
20
20


AOS
3
3
3
3
3
3
3
3


LAS
2
2
2
2
2
2
2
2


Nonionic:


AE
5
5
5
5
5
5
5
5


NFE
3
3
3
3
3
3
3
3


AOE · PO
2
2
2
2
2
2
2
2


FEE










Builders:


Silicate


15
15
15
15
15
15


TUDA
15
25
5
10
10
10
10
10


Potassium
8
8
8
8
8
8
8
8


carbonate


Sodium
22
22
27
22
22
22
22
22


carbonate


Bleaching


agents:


Sodium
10
10
10
10
10
10
10
10


percarbonate


Sodium
10
10
10
10
10
10
10
10


perborate


Enzymes:


Protease
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5


Amylase
0.1
0.1
0.1

0.5


0.1


Cellulase
0.1
0.1
0.1


0.5

0.1


Lipase
0.3
0.3
0.3



0.5
0.3


Other


additives:


Sodium sulfite
1
1
1
1
1
1
1
1


Perfume
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2


Fluorescent
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4


agent


PAa
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3


PEG400
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2








Sodium sulfate
Balance















Detergency (%)
89
88
88
89
87
87
86
90











EXAMPLES 130-153

[0322] (1) Table 22 shows examples of the detergent compositions of the present invention containing some of the builders of (S)-aspartic acid-N,N-diacetic acid (ASDA), taurine-N,N-diacetic acid (TUDA), methyliminodiacetic acid (MIDA), (S)-aspartic acid-N-monoacetic acid (ASMA) and (S)-aspartic acid-N-monopropionic acid (ASMP).


[0323] Table 22 further shows the compositions of comparative examples where each of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), ASDA, TUDA, MIDA, ASMA and ASMP was used alone as the builder.


[0324] (2) Table 23 shows Ca++ trapping power of the builders per weight in terms of acid at the respective pH in the above examples and comparative examples. The Ca++ trapping power was determined by the titration conducted using 1% by weight of aqueous calcium acetate solution in the presence of 100 ppm of sodium dodecylbenzenesulfonate as an indicator.


[0325] (3) Detergency test was conducted on the builders having the composition of the above examples and comparative examples or zeolite and sodium tripolyphosphate (STPP). An artificially soiled cotton cloth, 1000 ml of tap water (hardness: 50 DH) of 25° C. and 1.2 g of the detergent composition were put in a cleaning apparatus (Terg-O-Tometer), followed by adjusting to a predetermined pH with 48% aqueous sodium hydroxide solution. Then, cleaning was carried out at a revolution number of 200 per minute for 10 minutes. Furthermore, after draining off, 1000 ml of tap water (hardness: 3° DH) of 25° C. was added freshly and rinsing was carried out at 200 rpm for 5 minutes. The results are shown in Table 24.


[0326] The detergency was obtained by the following formula.
6Detergency(%)=Reflectanceofclothaftercleaned-ReflectanceofclothbeforecleanedReflectanceofunsoiledchloth-Reflectanceofclothbeforecleaned×100


[0327] The detergent composition used had the following composition. As the surface active agent, sodium dodecylbenzenesulfonate (SDS) or sodium laurate (SLA) was selected.
22Surface active agent25 wt %Builder25 wt % (in terms ofacid)Sodium silicate 5 wt %Sodium carbonate 3 wt %Carboxymethylcellulose 1 wt %Sodium sulfate41 wt %


[0328]

23







TABLE 22













Composition of builder
















Example
ASDA
:
TUDA
:
MIDA
:
ASMA
:
ASMP





Example 130
60
:
20
:
20
:
 0
:
 0


Example 131
60
:
10
:
30
:
 0
:
 0


Example 132
50
:
25
:
25
:
 0
:
 0


Example 133
50
:
10
;
40
:
 0
:
 0


Example 134
50
:
40
:
20
:
 0
:
 0


Example 135
40
:
30
:
30
:
 0
:
 0


Example 136
40
:
40
:
10
:
 0
:
 0


Example 137
40
:
10
:
40
:
 0
:
 0


Example 138
30
:
35
:
35
:
 0
:
 0


Example 139
30
:
60
:
10
:
 0
:
 0


Example 140
20
:
10
:
60
:
 0
:
 0


Example 141
20
:
10
:
40
:
10
:
 0


Example 142
90
:
10
:
 0
:
 0
:
 0


Example 143
50
:
50
:
 0
:
 0
:
 0


Example 144
20
:
80
:
 0
:
 0
:
 0


Example 145
80
:
20
:
 0
:
 0
:
 0


Example 146
20
:
10
:
40
:
10
:
 0


Example 147
90
:
10
:
 0
:
 0
:
 0


Example 148
95
:
 0
:
 5
:
 0
:
 0


Example 149
80
:
 5
:
15
:
 0
:
 0


Example 150
80
:
15
:
 5
:
 0
:
 0


Example 151
10
:
 0
:
 0
:
80
:
10


Example 152
20
:
 0
:
 0
:
80
:
 0


Example 153
45
:
 0
:
 0
:
50
:
 5










[0329]

24






TABLE 23











Ca++ trapping power


Composition of
[CaCO3 mg/builder (g) in terms of acid]
















builder
pH
7.0
8.0
8.5
9.0
10.0
11.0
12.0
13.0


















Example 130
214
271
316
340
460
536
621
624


Example 131
206
208
276
305
474
569
659
668


Example 132
188
255
307
336
477
558
633
637


Example 133
176
209
248
284
499
606
691
708


Example 134
199
304
374
403
519
592
665
671


Example 135
162
239
299
332
495
579
646
650


Example 136
169
268
332
353
416
464
519
518


Example 137
144
175
213
248
460
561
634
648


Example 138
137
223
290
328
512
601
658
663


Example 139
157
300
390
415
475
520
562
565


Example 140
 86
145
203
254
559
687
747
761


Example 141
 81
152
210
262
482
640
697
208


Example 142
294
335
361
370
400
456
564
569


Example 143
208
333
407
423
440
477
538
541


Example 144
 71
331
441
464
471
493
517
518


Example 145
273
335
372
383
410
461
558
566


Example 146
 83
114
153
195
408
530
580
598


Example 147
305
337
355
345
402
469
587
593


Example 148
301
320
335
345
402
469
587
593


Example 149
261
288
313
331
432
469
587
593


Example 150
269
319
352
366
417
477
577
579


Example 151
 51
 80
120
187
263
555
578
587


Example 152
 79
110
151
216
282
563
598
616


Example 153
154
180
210
254
313
517
578
582










[0330]

25










TABLE 24











Composition
Surface

Detergency



of builder
active agent
pH
[%]





















Example 130
SDS
8
56.6



Example 131
SDS
11
59.5



Example 132
SDS
9
58.0



Example 133
SDS
12
60.1



Example 134
SLA
12
51.3



Example 135
SDS
8
55.4



Example 136
SDS
8
61.1



Example 137
SDS
10
58.2



Example 138
SLA
10
51.1



Example 139
SDS
9
56.6



Example 140
SDS
11
61.3



Example 141
SDS
10
60.0



Example 142
SLA
9
50.2



Example 143
SDS
8
57.7



Example 144
SDS
9
58.9



Example 145
SDS
7
58.1



Example 146
SDS
12
60.0



Example 147
SLA
11
53.2



Example 148
SLA
12
51.6



Example 149
SLA
13
54.8



Example 150
SDS
9
57.4



Example 151
SDS
12
60.1



Example 152
SDS
12
60.2



Example 153
SDS
12
60.3



Zeolite
SDS
12
48.1



STPP
SDS
12
60.5











[0331] As can be seen from Tables 23 and 24, the detergent compositions of the present invention exhibit, in a wide pH range, the Ca++ trapping power and detergency far superior to those of the compositions which contained aspartic acid-N,N-diacetic acid, taurine-N,N-diacetic acid, methyliminodiacetic acid, aspartic acid-N-monoacetic acid, aspartic acid-N-monopropionic acid, nitrilotriacetic acid or zeolite each alone as a single builder, and, further, they exhibit excellent detergency equal to or higher than that of sodium tripolyphosphate or ethylenediaminetetraacetic acid. The detergent compositions of the present invention contain safe biodegradable builders substitutable for the conventional builders such as sodium tripolyphosphate, ethylenediaminetetraacetic acid and nitrilotriacetic acid which have the problems of eutrophication, non-biodegradation and toxicity.



EXAMPLE 154

[0332] The detergent compositions shown in Tables 25, 26 and 27 were prepared and evaluated on the detergency.


[0333] The abbreviations of the components are shown below.


[0334] S-ASDA: Tetrasodium salt of (S)-aspartic acid-N,N-diacetic acid


[0335] S-GLDA: Tetrasodium salt of (S)-glutamic acid-N,N-diacetic acid


[0336] TUDA: Trisodium salt of taurine-N,N-diacetic acid


[0337] SLA: Sodium laurate


[0338] SMA: Sodium myristate


[0339] CMC: Carboxymethylcellulose
26TABLE 25Sample No.12345678910Composition (wt. %)S-ASDA25 25 25 25 25 00000S-GLDA0000025 25 25 25 25 TUDA0000000000SLA25 020 15 10 25 020 15 10 SMA025 510 15 025 510 15 Sodium silicate5555555555Potassium carbonate3333333333CMC1111111111Sodium sulfate41 41 41 41 41 41 41 41 41 41 Detergency (%)90 88 88 86 85 85 84 85 84 87 


[0340]

27















TABLE 26








Sample No.
11
12
13
14
15
16
17
18
19
20







Composition (wt. %)












S-ASDA
0
0
0
0
0
15 
15 
15 
15 
15 


S-GLDA
0
0
0
0
0
10 
10 
10 
10 
10 


TUDA
25 
25 
25 
25 
25 
0
0
0
0
0


SLA
25 
0
20 
15 
10 
25 
0
20 
15 
10 


SMA
0
25 
5
10 
15 
0
25 
5
10 
15 


Sodium silicate
5
5
5
5
5
5
5
5
5
5


Potassium carbonate
3
3
3
3
3
3
3
3
3
3


CMC
1
1
1
1
1
1
1
1
1
1


Sodium sulfate
41 
41 
41 
41 
41 
41 
41 
41 
41 
41 


Detergency (%)
85 
88 
85 
87 
88 
88 
85 
86 
85 
86 










[0341]

28















TABLE 27








Sample No.
21
22
23
24
25
26
27
28
29
30







Composition (wt. %)












S-ASDA
15 
15 
15 
15 
15 
10 
10 
10 
10 
10 


S-GLDA
0
0
0
0
0
10 
5
10 
5
10 


TUDA
10 
10 
10 
10 
10 
5
10 
5
10 
5


SLA
25 
0
20 
15 
10 
25 
0
20 
15 
10 


SMA
0
25 
5
10 
15 
0
25 
5
10 
15 


Sodium silicate
5
5
5
5
5
5
5
5
5
5


Potassium carbonate
3
3
3
3
3
3
3
3
3
3


CMC
1
1
1
1
1
1
1
1
1
1


Sodium sulfate
41 
41 
41 
41 
41 
41 
41 
41 
41 
41 


Detergency (%)
88 
87 
87 
86 
85 
84 
87 
88 
88 
86 










[0342] Biodegradability Test:


[0343] The biodegradability of iminodiacetic acid derivatives used in the present invention was tested by the amended SCAS method which is a method for the biodegradability test using activated sludge described in the OECD chemical product testing guideline.


[0344] Test method:


[0345] (1) 150 ml of an activated sludge mixed solution was charged in a test tank and exposed to air by an air pump.


[0346] (2) The exposure to air was continued for 23 hours and, then, stopped, and the sludge was settled for 45 minutes, followed by removing 100 ml of the supernatant liquid.


[0347] (3) 95 ml of the waste water left to stand and a test substance undiluted solution (400 mg/l) were charged in the test tank and 100 ml of waste water left to stand was charged in a tank for the control sample, and the content of the tanks was again exposed to air.


[0348] (4) The above procedure was repeated every day and the supernatant liquid was sampled, and retention rate of the test substance was traced by HPLC (high percision liquid chromatography) method and TOC (dissolved organic carbon) method.


[0349] Results:


[0350] Tetrasodium salt of (S)-aspartic acid-N,N-diacetic acid, racemic aspartic acid-N,N-diacetatic acid tetrasodium salt, tetrasodium (S)-glutamic acid-N,N-diacetatic acid, racemic glutamic acid-N,N-diacetatic acid tetrasodium salt, trisodium salt of taurine-N,N-diacetic acid and tetrasodium ethylene-diaminetetraacetate were tested in parallel. The retention rate obtained in each of the test methods is shown in Table 28.
29TABLE 28RetentionRetentionrate by HPLCrate by TOCCompound(%)(%)Tetrasodium salt of (S)-00aspartic acid-N,N-diacetic acidRacemic aspartic acid-6550N,N-diacetic acidtetrasodium saltTetrasodium salt of (S)-00glutamic acid-N,N-diacetic acidRacemic glutamic acid-6050N,N-diacetic acidtetrasodium saltTrisodium salt of00taurine-N,N-diaceticacidTetrasodium100100ethylenediaminetetra-acetate


Claims
  • 1. A chelating agent which comprises a compound of the following formula [1] and at least one compound selected from the group consisting of aspartic acid, maleic acid, acrylic acid, malic acid, glycine, glycolic acid, iminodiacetic acid, nitrilotriacetic acid, α-alanine, β-alanine, iminodipropionic acid, fumaric acid, a synthetic starting amino acid, a synthetic intermediate amino acid and a salt thereof in an amount of 8% by weight or less based on the compound of the formula [1]:
  • 2. A chelating agent in the form of aqueous solution or slurry which comprises a compound of the following formula [1] and at least one compound selected from the group consisting of aspartic acid, maleic acid, acrylic acid, malic acid, glycine, glycolic acid, iminodiacetic acid, nitrilotriacetic acid, α-alanine, β-alanine, iminodipropionic acid, fumaric acid, a synthetic starting amino acid, a synthetic intermediate amino acid and a salt thereof in an amount of 25% by weight or less in total based on the compound of the formula [1]:
  • 3. A chelating agent according to claim 1 or 2, wherein X in the formula [1] is
  • 4. A chelating agent according to claim 1 or 2, wherein X in the formula [1] is
  • 5. A chelating agent according to claim 3, wherein the compound of the formula [1] is selected from the group consisting of aspartic acid-N-monoacetic acid, aspartic acid-N,N-diacetic acid, aspartic acid-N-monopropionic acid, iminodisuccinic acid, N-(2-sulfomethyl) aspartic acid, N-(2-sulfoethyl)aspartic acid, glutamic acid-N,N-diacetic acid, N-(2-sulfomethyl) glutamic acid, N-(2-sulfoethyl)glutamic acid, N-methyliminodiacetic acid, α-alanine-N,N-diacetic acid, β-alanine-N,N-diacetic acid, serine-N,N-diacetic acid, isoserine-N,N-diacetic acid, phenylalanine-N,N-diacetic acid, anthranilic acid-N,N-diacetic acid, sulfanilic acid-N,N-diacetic acid, taurine-N,N-diacetic acid, sulfomethyl-N,N-diacetic acid and alkali metal salts and ammonium salts thereof.
  • 6. A chelating agent according to claim 3, wherein the compound of the formula [1] is selected from the group consisting of (S)-aspartic acid-monoacetic acid, (S)-aspartic acid-N,N-diacetic acid, (S)-aspartic acid-monopropionic acid, (S,S)-iminodisuccinic acid, (S,R)-iminodisuccinic acid, (S)-2-sulfomethylaspartic acid, (S)-2-sulfoethylaspartic acid, (S)-glutamic acid-N,N-diacetic acid, (S)-2-sulfomethylglutamic acid, (S)-2-sulfoethylglutamic acid, (S)-α-alanine-N,N-diacetic acid, (S)-serine-N,N-diacetic acid, (S)-phenylalanine-N,N-diacetic acid and alkali metal salts and ammonium salts thereof.
  • 7. A chelating agent according to claim 4, wherein the compound of the formula [1] is selected from the group consisting of ethylenediaminedisuccinic acid, 1,3-propanediaminedisuccinic acid, ethylenediaminediglutaric acid, 1,3-propanediaminediglutaric acid, 2-hydroxy-1,3-propanediaminedisuccinic acid, 2-hydroxy-1,3-propanediaminediglutaric acid and alkali metal salts thereof.
  • 8. A chelating agent according to claim 4, wherein the compound of the formula [1] is selected from the group consisting of (S,S)-ethylenediaminedisuccinic acid, (S,S)-1,3-propanediaminedisuccinic acid, (S,S)-ethylenediaminediglutaric acid, (S,S)-1,3-propanediaminediglutaric acid, (S,S)-2-hydroxy-1,3-propanediaminedisuccinic acid, (S,S)-2-hydroxy-1,3-propanediaminediglutaric acid and alkali metal salts thereof.
  • 9. A detergent composition containing (S)-aspartic acid-N,N-diacetic acid, taurine-N,N-diacetic acid or a mixture of them as a chelating agent.
  • 10. A detergent composition according to claim 9, which additionally contains a nonionic surface active agent and an anionic surface active agent.
  • 11. A detergent composition according to claim 9, which additionally contains a nonionic surface active agent, an anionic surface active agent and a silicate.
  • 12. A detergent composition according to claim 9, which additionally contains a nonionic surface active agent, an anionic surface active agent, a silicate and a bleaching agent.
  • 13. A detergent composition according to claim 10, which comprises the following composition: (a) 0.5-80% by weight of the chelating agent of claim 9, (b) 0.2-60% by weight of a nonionic surface active agent, and (c) 0.2-60% by weight of an anionic surface active agent.
  • 14. A detergent composition according to claim 11, which comprises the following composition: (a) 0.5-80% by weight of the chelating agent of claim 9, (b) 0.2-60% by weight of a nonionic surface active agent, (c) 0.2-60% by weight of an anionic surface active agent, and (d) 0.5-80% by weight of a silicate.
  • 15. A detergent composition according to claim 12, which comprises the following composition: (a) 0.5-80% by weight of the chelating agent of claim 1 or 2, (b) 0.2-60% by weight of a nonionic surface active agent, (c) 0.2-60% by weight of an anionic surface active agent, (d) 0.5-80% by weight of a silicate, and (e) 0.5-60% by weight of a bleaching agent.
  • 16. A detergent composition according to claim 9, which additionally contains a fatty acid salt.
  • 17. A detergent composition which contains simultaneously at least one component selected from each of at least two groups of the following three groups: group A: (S)-aspartic acid-N,N-diacetic acid, group B: taurine-N,N-diacetic acid, and group C: methyliminodiacetic acid, (S)-aspartic acid-N-monoacetic acid and (S)-aspartic acid-N-monopropionic acid.
Priority Claims (15)
Number Date Country Kind
07-349512 Dec 1995 JP
07-349513 Dec 1995 JP
07-349514 Dec 1995 JP
07-352124 Dec 1995 JP
07-352125 Dec 1995 JP
07-352126 Dec 1995 JP
07-352127 Dec 1995 JP
07-352128 Dec 1995 JP
07-352129 Dec 1995 JP
08-022999 Jan 1996 JP
08-026215 Jan 1996 JP
08-039075 Feb 1996 JP
08-039076 Feb 1996 JP
08-039077 Feb 1996 JP
08-119502 Apr 1996 JP
Continuations (2)
Number Date Country
Parent 09352132 Jul 1999 US
Child 09754210 Jan 2001 US
Parent 09276706 Mar 1999 US
Child 09352132 Jul 1999 US