Increasing world energy demand is creating unprecedented challenges for recovering energy resources, and mitigating the environmental impact of using those resources. Some have argued that the worldwide production rates for oil and domestic natural gas will peak within a decade or less. Once this peak is reached, primary recovery of oil and domestic natural gas will start to decline, as the most easily recoverable energy stocks start to dry up. Historically, old oil and gas fields are abandoned once the easily recoverable materials are extracted. These abandoned reservoirs, however, still contain significant amounts of energy containing carbonaceous material. The Powder River Basin in northeastern Wyoming, for example, is estimated to contain approximately 1,300 billion short tons of coal. Just 1% of the Basin's remaining coal converted to natural gas could supply the current annual natural gas needs of the United States (i.e., about 23 trillion cubic feet) for the next four years. Several more abandoned coal and oil resources of this magnitude are present in the United States.
As worldwide energy prices continue to rise, it may become economically viable to extract additional oil and coal from these formations with conventional drilling and mining techniques. However, a point will be reached where more energy has to be used to recover the resources than can be gained by the recovery. At that point, traditional recovery mechanisms will become uneconomical, regardless of the price of energy. Thus, new recovery techniques are needed that can extract resources from these formations with significantly lower expenditures of energy and costs.
One route for light hydrocarbon recovery that has received little commercial attention is biogenic conversion of carbonaceous materials in geologic formations into methane. As noted above, large potential sources of methane and other hydrocarbons with enhanced hydrogen content are locked up in the carbonaceous materials in coal, residual oil, etc. In biogenic conversion, microorganisms in the formation treat these carbonaceous materials as a food source and metabolize them into metabolic intermediates and products, such as alcohols, organic acids, aromatic compounds, hydrogen and methane, among others.
In many formations, however, the environmental chemistry does not favor the biogenic production of metabolic products like hydrogen and methane. In some of these formations, the presence of an inhibitor (e.g., saline) can prevent the microorganisms from metabolizing the carbonaceous substrate into the products. In other formations, the low concentration of one or more compounds (e.g., nutrient compounds) in the formation environment can slow or stop biogenic production of the products. In still other formations, a rise in concentration of a metabolic intermediate or product generated by an active consortium of microorganisms can slow additional metabolic activity.
Thus, there remains a need to identify chemical compounds that affect the rate of biogenic production of metabolic products by microorganisms in a formation environment. There also remains a need for methods of introducing chemical amendments to a geologic formation that will stimulate the biogenic production of the metabolic products in an efficient manner. These and other needs are addressed by the present invention.
Embodiments of the invention include methods of stimulating biogenic production of a metabolic product with enhanced hydrogen content. The methods may include accessing a consortium of microorganisms in a geologic formation that includes a carbonaceous material. The methods may also include providing a phosphorous compound to the microorganisms. The phosphorous compound relieves a nutritional deficiency allowing the consortium to metabolize the carbonaceous material into a metabolic product with enhanced hydrogen content.
Embodiments of the invention also include additional methods of stimulating biogenic production of a metabolic product with enhanced hydrogen content. The methods may include accessing a consortium of microorganisms in a geologic formation that includes a carbonaceous material and providing a yeast extract amendment to the microorganisms. The yeast extract amendment stimulates the consortium to metabolize carbonaceous material in the formation into the metabolic product with enhanced hydrogen content.
Embodiments of the invention still also include methods of activating a consortium of microorganisms in a geologic formation to produce a metabolic product with enhanced hydrogen content. The methods may include accessing the consortium in the formation, providing a phosphorous and/or yeast extract compound amendment to the formation. The combination of the phosphorous compound amendment and the yeast extract amendment activates the consortium to metabolize carbonaceous material in the formation into the metabolic product with enhanced hydrogen content. Embodiments may also include transferring the activated consortium to regions of the same formation, or a different formation, which may contain less active consortia.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
Methods of stimulating the production of metabolic products with enhanced hydrogen content (e.g., gases such as hydrogen and methane) through chemical amendments are described. The amendments stimulate a consortium of microorganisms in a geologic formation to metabolize carbonaceous material in the formation into the metabolic products. The stimulation effects of the amendments may include increasing the rate of production of a metabolic intermediary and/or the metabolic product. They may also include activating a consortium in the formation to start producing the metabolic products. They may further include stopping or decreasing a “rollover” effect such as when the concentration of one or more metabolic products starts to plateau after a period of monotonically increasing. In addition, transfer and dilution of the activated consortium to other regions or formations may be done to generate an enriched consortium in a new region or formation with increased methanogenic activity. These and other stimulation effects may be promoted by the chemical amendments that are introduced by the methods of the invention.
Referring now to
Once access to the microorganisms in the formation is available, an amendment may be provided to them. In method 100, providing the amendment may include providing hydrogen to the microorganisms 104. Providing the hydrogen 104 may involve the direct injection of hydrogen gas into the formation region were the microorganisms are located. Alternatively (or in addition) a liquid, solid-phase, and/or aqueous hydrogen release compound may be provided to the formation. The compound can undergo a chemical or biochemical reaction in the formation that produces hydrogen gas in situ where the microorganisms reside. Examples of hydrogen release compounds may include polyacetate ester compounds that release lactic acid on contact with water. The lactic acid may then be metabolized by the microorganisms to produce organic acids (e.g., pyruvic acid, acetic acid, etc.) and hydrogen gas. Subsequent bioconversion of the organic acids may generate additional hydrogen. The hydrogen release compounds may also include solid-phase compounds containing zero valent iron particles. Hydrogen may also be generated by, for example, adding alcohols such as methanol and/or ethanol, and/or organic acids such as formic acid, acetic acid, propionic acid, butyric acid and/or lactic acid directly to the formation region in addition to (or in lieu of) other hydrogen generating amendments.
The amendment may also include providing one or more phosphorous compounds to the microorganisms 106. These phosphorous compounds may include phosphorous compounds (e.g., POx compounds were x is 2, 3 or 4), such as sodium phosphate (Na3PO4) and potassium phosphate (K3PO4), as well as monobasic and dibasic derivatives of these salts (e.g., KH2PO4, K2HPO4, NaH2PO4, Na2HPO4, etc.). They may also include phosphorous oxyacids and/or salts of phosphorous oxyacids. For example, the phosphorous compounds may include H3PO4, H3PO3, and H3PO2 phosphorous oxyacids, as well as dibasic sodium phosphate and dibasic potassium phosphate salts. The phosphorous compounds may also include alkyl phosphate compounds (e.g., a trialkyl phosphate such as triethyl phosphate), and tripoly phosphates. The phosphorous compounds may further include condensed forms of phosphoric acid, including tripolyphosphoric acid, pyrophosphoric acid, among others. They may also include the salts of condensed phosphoric acids, including alkali metal salts of tripolyphosphate (e.g., potassium or sodium tripolyphosphate), among other salts.
The hydrogen and phosphate may be provided to the formation in a single amendment, or they may be provided in separate stages. For example, if the phosphorous amendment takes the form of an aqueous solution, the solution may be injected into the formation with aid of compressed hydrogen gas. This allows the two components to be provided to the formation at substantially the same time. Alternatively, the hydrogen or phosphate amendment may be introduced first, followed by the introduction of the other compounds.
Whether the hydrogen and phosphorous compounds are introduced to the formation simultaneously or separately, they will be combined in situ and exposed to microorganisms. The combination of the hydrogen and phosphorous compound(s) can stimulate the microorganisms to metabolize carbonaceous material in the formation into metabolic products with enhanced hydrogen content, like methane. The enhanced hydrogen content products have a higher mol. % of hydrogen atoms than the starting carbonaceous material. For example, methane, which has four C—H bonds and no C—C bonds, has a higher mol. % hydrogen than a large aliphatic or aromatic hydrocarbon with a plurality of C—C single and double bonds. Additional details about compounds with enhanced hydrogen content may be found in co-assigned U.S. patent application Ser. No. 11/099,881, to Pfeiffer et al, filed Apr. 5, 2005, and entitled “GENERATION OF MATERIALS WITH ENHANCED HYDROGEN CONTENT FROM ANAEROBIC MICROBIAL CONSORTIA” the entire contents of which is herein incorporated by reference for all purposes.
Method 100 may further include adding additional amendments to the formation. For example, a yeast extract amendment may be added to provide nutrients to the microorganisms in the formation. The yeast extract may include digests and extracts of commercially available brewers and bakers yeasts.
Method 100 may also include measuring the concentration of a metabolic product 108. For gas phase metabolic products, the partial pressure of the product in the formation may be measured, while aqueous metabolic products may involve measurements of molar concentrations.
The concentration of a metabolic product may be measured 206 following the introduction of the carboxylate compound. The product concentration may also be measured before the carboxylate compound is introduced, to determine the effect of adding the compound. In some instances, introducing the carboxylate compound to the microorganisms may cause an almost immediate increase in the production rate of the metabolic product. In other instances, there may be a period of delay between the introduction of the carboxylate compound and an increase in the production of the metabolic product. For example, the concentration of the metabolic product in the formation may stay at pre-introduction levels for about 30, 40, 50, 60, 70, or 80 days or more before significantly increasing. This may be easily monitored by following the concentration of an added non-degradable marker, for example bromide, over time.
A delay of several days or months between introducing the carboxylate compound and measuring a increase in the production of the metabolic product may be called the activation period. During this time, the presence of the carboxylate compound(s) may be influencing the population or metabolic pathways of the microorganisms. Very little (or even none) of the carboxylate compound may be metabolized by the microorganisms during the activation period. In these instances, the carboxylate compound may be acting as a catalyst that activates a metabolic pathway for the production of the metabolic product. Multiple introductions of the amendment may be made over the course of the activation period to maintain a concentration level of the amendment in the formation. Alternatively, the amendment can be pulsed into the formation using discontinuous injections. Experiments demonstrating activation of methane production with an acetate amendment are described in the Experimental section below.
Method 200 may also include removing the metabolic product 208 building up in the formation as a result of the carboxylate compound amendment. If the metabolic product is a gas such as hydrogen or methane, it may be removed with conventional natural gas recovery equipment. In some examples, the products may be removed through the same access points that were used to provide the carboxylate compound to the microorganisms. In additional examples, the products may be forced out of the formation by injecting a displacement fluid (e.g., nitrogen, water, etc.) into the formation.
Referring now to
For example, extracted formation samples may be analyzed using spectrophotometry, NMR, HPLC, gas chromatography, mass spectrometry, voltammetry, and other chemical instrumentation. The tests may be used to determine the presence and relative concentrations of elements like dissolved carbon, phosphorous, nitrogen, sulfur, magnesium, manganese, iron, calcium, zinc, tungsten, cobalt and molybdenum, among other elements. The analysis may also be used to measure quantities of polyatomic ions such as PO23−, PO33−, and PO43−, NH4+, NO2−, NO3−, and SO42−, among other ions. The quantities of vitamins, and other nutrients may also be determined. An analysis of the pH, salinity, oxidation potential (Eh), and other chemical characteristics of the formation environment may also be performed. Microorganism activity analyses may also be performed on extracted consortium samples. These analyses may include the use of 14C-acetate, 14C-bicarbonate, and other methanogen substrates to estimate methanogenic activity in samples including formation water collected before and during field applications. Additional details of analyses that may be performed are described in co-assigned PCT Application No. PCT/US2005/015259, filed May 3, 2005; and U.S. patent application Ser. No. 11/343,429, filed Jan. 30, 2006, of which the entire contents of both applications are herein incorporated by reference for all purposes.
A biological analysis of the microorganisms may also be conducted. This may include a quantitative analysis of the population size determined by direct cell counting techniques, including the use of microscopy, flow cytometry, plate counts, as wall as indirect techniques, such as DNA quantification, phospholipid fatty acid analysis, quantitative PCR, protein analysis, etc. The identification of the genera and/or species of one or more members of the microorganism consortium by genetic analysis may also be conducted. For example, an analysis of the DNA of the microorganisms may be done where the DNA is optionally cloned into a vector and suitable host cell to amplify the amount of DNA to facilitate detection. In some embodiments, the detecting is of all or part of ribosomal DNA (rDNA), of one or more microorganisms. Alternatively, all or part of another DNA sequence unique to a microorganism may be detected. Detection may be by use of any appropriate means known to the skilled person. Non-limiting examples include restriction fragment length polymorphism (RFLP) or terminal restriction fragment length polymorphism (TRFLP); polymerase chain reaction (PCR); DNA-DNA hybridization, such as with a probe, Southern analysis, or the use of an array, microchip, bead based array, or the like; denaturing gradient gel electrophoresis (DGGE); or DNA sequencing, including sequencing of cDNA prepared from RNA as non-limiting examples. Additional details of the biological analysis of the microorganisms is described in co-assigned U.S. patent application Ser. No. 11/099,879, filed Apr. 5, 2005, the entire contents of which is herein incorporated by reference for all purposes.
The method 300 also includes providing an amendment to the microorganisms in the formation 306. Embodiments of the present invention include providing amendments of hydrogen, phosphorous compounds, and/or carboxylate compounds (e.g., acetate) to the microorganisms. The amendments may also include vitamins, minerals, metals, yeast extracts, and other nutrients. The amendments may still further include water amendments to dilute metabolic inhibitors and/or the microorganism consortium.
The effect of the amendments can be analyzed by measuring the concentration of a metabolic intermediary or metabolic product 308 in the formation environment. If the product concentration and/or rate of product generation does not appear to be reaching a desired level, adjustments may be made to the composition of the amendment 310. For example, if an acetate amendment does not appear to be activating the microorganisms after a set period of time (e.g., 90 days or more), a different amendment may be introduced to stimulate the microorganisms (e.g., hydrogen and/or phosphorous compounds).
The method 300 may also include removing the metabolic product 312 from the formation. Removal may be triggered when the concentration of the reaction product increases above a threshold level in the formation. In some of these instances, removal may performed to keep the product in a concentration range that has been found to stimulate the microorganisms to generate more of the product.
Method 400 also includes providing an amendment 404 to the microorganisms in the consortium. The amendment may include providing a phosphorous compound to the microorganisms, such as one or more of the phosphorous compounds described above. Compounds that are soluble in water may be added to an amount of water that is injected into the geologic formation and provided to at least a portion of the microorganisms in the consortium. In another example, the amendment provided to the consortium may include yeast extract. The yeast extract amendment may include brewer's yeast extract, a baker's yeast extract, a protein hydrolysate, blood meal, fish meal, meat and bone meal, beef peptone, or products of barley, beet, corn, cottonseed, potato, wheat, oat, soybean, and mixtures thereof. The yeast extract may be added as a solution or suspension to water that is injected into the geologic formation. In still another example, the phosphorous compound and yeast extract may both be added to the formation, simultaneously or separately, and exposed to at least a portion of the microorganism consortium. In still further examples the phosphorous compound and yeast extract, either alone or in combination, may be added with one or more additional amendments (e.g., hydrogen, acetic acid, minerals, metals, vitamins, etc.) to the geologic formation and provided to microorganisms.
Following the introduction of the amendment, one or more metabolic products related to methanogenesis may be monitored to confirm an increase in the production of the product 406. The assumption is that a production increase of the product within a short time (e.g., days, weeks, etc.) after the introduction of the amendment was caused by the amendment. The amendment stimulated the microorganisms to metabolize carbonaceous material in the formation into metabolic products with enhanced hydrogen content, like methane. As noted above, the enhanced hydrogen content products have a higher mol. % of hydrogen atoms than the starting carbonaceous material.
The confirmation of a significant increase in the production of a metabolic product, like methane following the introduction of an amendment indicates a microorganism consortium is active in at least a part of the geologic formation. Method 400 includes the step of relocating a portion of the active consortium 408 to a relocation site, which may be in another part of the same geologic formation, or in a different geologic formation. It has been observed that, under the right environmental conditions, the introduction of microorganisms from an active consortium to a location with reduced methanogenic activity can boost methanogenic activity at the new location. Additional details on systems and methods of transporting methanogenic microorganisms can be found in co-assigned U.S. patent application Ser. No. 11/343,429 to Pfeiffer et al, filed Jan. 30, 2006, and titled “BIOGENIC FUEL GAS GENERATION IN GEOLOGIC HYDROCARBON DEPOSITS” the entire contents of which are herein incorporated by reference for all purposes. The stimulation of methanogenic activity at the new location may be evidenced by measuring the concentration of a metabolic product at the relocation site 410.
In additional embodiments, removal of the metabolic product may be done independently of the product concentration in the formation. For example, the reaction products may be continuously removed from the formation as part of a process that cycles the amendment through the formation. The mixture of metabolic products, amendment components and other materials removed from the formation may be processed to separate the products from components that will be sent back into the formation.
Experiments were conducted to compare biogenic methane generation from coal samples after introducing an amendment of hydrogen gas, a phosphorous compound, and ammonia. For each experiment, methane generation from coal samples from the Monarch coal seam in the Powder River Basin in Wyoming was periodically measured over the course of about 627 days. Each anaerobic 5 gram coal sample was placed in a nominal 36.5 ml serum bottle with 15 mL of anaerobic water that was also taken from the formation. The coal and formation water were placed in the serum bottle while working in an anaerobic glove bag. The headspace in the bottle above the sample was flushed with a mixture of N2 and CO2 (95/5).
Amendments were then added to the samples. In a second set of experiments, 4.5 mL of H2 gas (i.e., 179 μmol of H2) was added to each bottle. Also added to the bottles was 0.15 mL of a 2500 mg/L (as N) aqueous ammonium chloride solution to provide a concentration of 25 mg/L, as nitrogen, to the samples, and 0.04 mL of a 1800 mg/L potassium phosphate solution that provided a concentration of 5 mg/L, as phosphate, to the samples. In a second set of experiments, the same amount of H2 was added to the bottles, but no ammonium chloride or potassium phosphate. A third set of experiments introduced the ammonium chloride and potassium phosphate at the same levels as the first set, but no hydrogen gas was added. The samples were then sealed, removed from the glove bag, and stored at room temperature over the course of the experiments.
The methane levels in the headspace above the samples was periodically measured and recorded. The methane was measured by running samples of the headspace gases through a gas chromatograph equipped with a thermal conductivity detector. The highest levels of methane production after 627 days occurred in samples treated with an amendment of hydrogen gas, ammonium chloride, and potassium phosphate, with average levels reaching 248 μmol of CH4. This compares with 128 μmol CH4 for samples just having the H2 amendment, and 64 μmol CH4 for samples just having the ammonia and phosphorous compound amendment.
The combination of the hydrogen and potassium phosphate generated more methane than can be accounted for by methanogenic conversion of the added hydrogen to methane. In the methanogenic metabolism of hydrogen to methane, four moles of molecular hydrogen and 1 mole of carbon dioxide are converted into 1 mole of methane:
4H2+CO2→CH4+2H2O
This means the 179 μmols of H2 added to the sample bottles could, at most, be converted into 44.7 μmols of methane. For samples measuring peak methane production of 248 μmols, this leaves 203 μmols coming from other sources. Samples without hydrogen amendments produced about 64 μmols of methane from these coal substrates. This still leaves at least 139 μmols of methane that was generated from another source.
The source of the additional methane is believed to come from the biogenic metabolism of the coal into methane. The hydrogen and phosphorous compound amendment is believed to have stimulated the microorganisms present in the sample to metabolize the coal into methane. The stimulatory effect of the hydrogen and phosphorous amendment is not limited to enhancing the conversion of the added hydrogen gas to methane. It also includes stimulating the microorganisms to use methanogenic metabolic pathways that convert the coal substrate into methane. In additional experiments conducted with a different coal and formation water sample, hydrogen addition without an ammonium and phosphate amendment stimulated coal metabolism to methane.
Acetate Amendments
Experiments were conducted to measure the effects of acetate amendments on methane production from samples of carbonaceous materials. The carbonaceous materials used in these experiments were coal samples taken from underground coal beds at the Monarch coal site. The samples were transported under anaerobic conditions to nominal 36.5 ml serum bottles, where 1 gram samples of the coal were combined in an anaerobic glove bag with 20 mL of formation water from the same site and 0.2 mL of cell concentrate. The cell concentrate consisted of cells from about 6.6 L of formation water added to 15 mL of formation water. The headspace in the bottle above the sample was exchanged with a mixture of N2 and CO2 (95/5).
In a first set of samples, the acetate amendment included adding an aqueous sodium acetate solution to the sample bottles to give the samples an 18.0 mM acetate concentration (an average measured concentration). A second set of control samples were prepared in the same manner except for lacking the acetate amendment. Methane levels (measured as a mol. % methane in the headspace of the sample bottle) were periodically measured in both the amendment and control samples over the course of 90 days.
Very little methane generation occurred in either the amendment or control sample during the first 50 days. But the measurement taken on day 65 shows the methane levels starting to build in the acetate amendment sample while the control sample continued to show negligible methane generation. By the 90th day, the acetate amendment sample showed rapid and significant methane generation with methane representing over 12 mol. % of the headspace in the sample bottles. Meanwhile, the control samples that lacked the acetate amendment still showed almost no methane generation after 90 days.
Phosphorous Compound Amendments and Rollover
Rollover is a condition where the rate of biogenic methane production starts to plateau as the in situ methane concentration reaches a certain level. In many instances, the rate flattens to zero, and the methane concentration remains constant over time. The rollover point (i.e., the point where the methane concentration begins to break from a monotonically increasing state) can vary between microorganism consortia, but appears to be reached in almost all unamended samples of carbonaceous material that have been examined to date.
But some samples receiving minerals, metals and nutrient amendments exhibited less of a rollover effect than unamended controls. Further tests revealed that the agents responsible for reducing rollover were often phosphate compounds, such as sodium or potassium phosphate.
A more volatile, but similar pattern was observed for samples treated with an ammonium amendment. In these samples, ammonium chloride was introduced to give each sample a concentration of 25 mg/L nitrogen at the start of the methane measurements. The rate of methane production in these samples was initially greater than for the unamended samples or samples with other types of amendments (including an amendment of ammonium and phosphate). In addition, the peak methane level in the ammonium samples exceeded the peak plateau levels in the unamended samples. By about day 600 the methane levels in the samples were about the same as those measured in the unamended samples.
The samples treated with an amendment that included a phosphorous compound (i.e., potassium phosphate) all appeared to breakthrough the plateau methane level observed in the samples that were prone to rollover. As
Single and Multiple Nutrient Amendments
Additional experiments indicate that single nutritional amendments can stimulate methanogenesis in many cases to levels greater than observed with the addition of more complex amendments.
Similar to the hydrogen plus phosphorous and acetate experiments, the samples were prepared under anaerobic conditions in nominal 36.5 ml serum bottles, where 5 grams samples of the coal were combined in an anaerobic glove bag with 15 mL of formation water from the same site. The headspace in the bottle above the sample was exchanged with helium.
The amendments were added to the sample bottles until a target concentration of the amendment was reached. For the phosphorous only amendment, potassium phosphate was added to the sample bottles until a concentration of 5 mg/L was reached. For the yeast extract only amended, Difco® yeast extract from Becton Dickinson and Company was added to the sample bottles until a concentration of about 500 mg/L was reached. For the metals only amendment, an aqueous solution of the metal salts listed in Table 1 below was added to the sample bottles until the listed sample bottle concentrations were reached:
For the minerals only amendment, an aqueous solution of minerals listed in Table 2 below was added to the sample bottles until the listed sample bottle concentrations were reached:
For the minerals, metals and vitamins amendment (MMV), aqueous solutions of the minerals and metals listed above where added to a solution of vitamins listed in Table 3 below. The vitamins were present in the sample bottles at the listed concentrations.
Finally, for the samples used in the comparative example where methane production from methanogenesis was inhibited, BESA was added to the sample bottles until it reached a concentration of about 10 mM.
Methane production from the samples were measured and plotted as the percentage of methane in the headspace above the liquid in the serum bottle. Three sample bottles were prepared for each amendment, and the methane concentrations were measured in triplicate and averaged.
As the graph shows in
Methane production appeared to be inhibited in samples amended with a metals mixture alone, possibly due to metal toxicity. This was not expected since the concentrations used for these experiments are commonly added to microbiological media for culturing microorganisms. Metal toxicity to methanogenesis has also been observed in some samples even after reducing the concentration of metals by ten-fold. Overall, the data acquired for this sample indicate that conventional nutritional supplements were either less effective relative to phosphorous compounds and yeast extracts alone, or were inhibitory.
Phosphorous Compound Amendments in Oil Samples
Produced water and oil samples were collected directly from well heads after passing produced fluids through a portable anaerobic and disinfected oil-water separator. Strict anoxic techniques were used. The water samples were maintained at field temperature prior to use in experiments.
Twenty mls of produced water and 0.1 ml of oil were distributed into sterile 36.5 ml serum bottles contained within a disinfected anaerobic glove bag. The anaerobic glove bag contained a filtration apparatus for removing airborne microbial contaminants. The final headspace of the incubations was He/CO2 at a mixture that resulted in a pH within 0.3 pH units of produced water pH (6.7) measurements. Incubation temperature was 45° C., the approximate in-situ temperature. Incubation period prior to headspace gas analysis was 14 days. The samples were prepared with the following amendments: (1) Sodium phosphate. Final bottle concentration −0.5 mg/L as Phosphorous; (2) Minerals (100× less the stock concentration in Table 2); (3) Metals (300× less the stock concentration in Table 1); (4) Minerals+Metals+Yeast extract (25 mg/L); (5) Minerals+Metals+Vitamins (100× less the stock concentration in appendix 1)+Yeast extract (25 mg/L). In addition, two comparative experiments were run for: (1) Unamended samples; and (2) Samples treated with BESA (10 mM).
The experimental bottles were placed into a heated water bath maintained at the field temperature during gas analysis to avoid temperature fluctuations. Gas samples were periodically obtained for methane and carbon dioxide analysis using a gas chromatograph equipped with a thermal conductivity detector. The methane measurements, expressed as the percentage of methane in the headspace above the sample bottles, were plotted in
As
In order to confirm that the oil results were not unique to the specific oil substrate used (which was taken from a field in Texas), the experiments were re-run with oil from a different field in Montana. The sample collection, experimental workups and analytical measurements were the same as described above, and the results were plotted in
Acetate measurements were also taken on the samples, and the results plotted in
Identification and Cultivation of Methanogenic Microorganism Consortia
Methanogenic consortia have been detected from a diverse array of subsurface geologic formations, including coal seams in the Powder River Basin, oil reservoirs, Antrim shale, and siltstone formations in Montana. The detection of methanogenic microorganisms over a wide range of geologic formation environments indicate a wide prevalence of native microorganism consortia with methanogenic activity. In some instances, however, methanogenic microorganisms were detected in formation waters but not solid samples of the formation. This is presumably due to inadequate fracture and/or pore spaces in the solids, but may also indicate differences in the types of microorganisms that are favored in each medium.
Experiments were conducted to compare methanogenic activity from microorganism consortium in formation water and solid coal substrates.
In one set of samples, the formation water was sterilized by autoclaving while the solid coal remained “live” to preserve any microorganisms in the coal. In another set of samples, the coal was sterilized by autoclaving, while microorganisms in the formation water were preserved. Finally, as a comparative example, both the coal and formation water were sterilized to monitor how much, if any, came from non-biological activity. In all samples also included a nutrient amendment of minerals and metals similar to those described in Tables 1 and 2 above.
As
With the discovery that methanogenic consortia are commonly present in formation waters, a significant research effort, both laboratory and field oriented, was directed at identify methodologies for enhancing their activities in-situ. To this end, methanogenic consortia capable of rapid methanogenesis on coal from the Powder River Basin have been obtained using an enrichment procedure wherein a small volume of an active consortium is added to a “sterile” slurry bottle (in this case, autoclaved Tongue River coal and filter sterilized Tongue River formation water). The consortium is allowed to grow and metabolize, then the dilution series is repeated. This enrichment procedure appears to favor the growth of microorganisms more capable of metabolizing coal to methane.
The methanogenic rates on the far left set of activity in the initial non-enriched samples were prepared with three different coals under a myriad of conditions including unamended samples, and samples amended with chemical additives including several nutrients. Highly methanogenic consortiums appeared to develop independently of the water and coal source of the initial inoculum source or whether chemical amendments were added to the initial inoculum source.
This enrichment process generated methanogenic consortia capable of supporting methanogenesis on coal substrate at rates in great excess relative to what would be anticipated. Another surprising result was that the presence of hydrogen gas or acetate in the parental inoculum sources did not impede the development of highly methanogenic consortia including microorganisms involved in upstream hydrocarbon metabolism. Furthermore, results showed that very dilute inoculum doses are effective (up to 65,000× dilutions have been successful) and that methanogenic consortia remain capable of rapid methanogenesis well after methanogenesis subsides (data not shown).
Field Test Data for Stimulating Methanogensis
The laboratory experiments produced a number of discoveries including: 1) methanogenic consortia have been detected in formation waters of many subsurface formations; 2) highly effective methanogenic consortia can be obtained by transporting members of an active consortium from one site to another; 3) these highly effective consortia can be derived from parental samples containing “activated” methanogenic consortia independently of whether nutritional amendments, hydrogen, acetate, and combinations thereof aided the activation; and 4) phosphorous compound and yeast extract amendments alone are, in some instances, more effective nutrient stimulants for methanogenic microorganisms than more complex, multi-nutrient mixtures. It was also observed that very small inoculum doses can be effective and that highly effective methanogenic consortia can persist well after methanogenesis subsides. These laboratory findings were then tested in coal seams of the Powder River Basin.
Field Test Data
The gas well was then treated with an amendment of phosphate and filtered water for about 1.2 months (i.e., late August to early October). The amendment included the introduction of an aqueous solution of 9.5×10−5 M potassium phosphate to an underground natural gas formation at a rate of about 14,400 L/day for each day of the treatment period. Following the treatment period with the phosphorous amendment, the gas well was sealed for a period of about 2 months (i.e., early October to early December) before the measurements of gas were measured during the post-amendment period (the dwell period).
Following the treatment and dwell periods,
The graph clearly shows a jump in the natural gas product rate following the treatment and dwell periods and, in addition, shows the increase almost immediately followed the introduction of the phosphorous amendment. Thus,
Referring now to
As shown in the left two-thirds of the graph in
The post-amendment period on the righthand side of
A similar effect was seen in
Not all the field tests with live water amendments showed an increase in the natural gas production rate.
Referring now to
The gas well was then treated with an amendment of sodium acetate (acetate) mixed with live water that contained microorganisms for about 1 month. The amendment included the introduction of an aqueous solution of 0.0036 M acetic acid (derived from sodium acetate and sodium acetate trihydrate) and live water to the underground formation at a rate of about 19,200 L/day for each day of the treatment period. Following the treatment period with the acetate amendment, the gas well was sealed for a few more days (the dwell period) before the gas rate measurements resumed. Again the measurements show an increase in the rate of natural gas production following the acetate treatment. Similar results were obtained for amendments of phosphate and live water.
Comparative field tests were also run to confirm that the increase in gas production was not simply due to physical or non-biological chemical processes caused by introduction of additional water to the formation.
In response, a second filtered water treatment was performed to introduce additional filtered water to the formation for a period of about 2 weeks (late October), followed by an additional 2 month dwell period (November to January). During and after the dwell period, natural gas was not detected at a production rate above the detectable limit. Thus, an amendment of just filtered water in this field test shows no, or possibly even a negative effect on the rate of natural gas production from the formation.
Having described several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the microorganism” includes reference to one or more microorganisms and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
The present application is a continuation-in-part of U.S. patent application Ser. No. 11/399,099, filed Apr. 5, 2006, the entire contents of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1990523 | Buswell et al. | Feb 1935 | A |
2413278 | Zobell | Dec 1946 | A |
2641566 | Zobell | Jun 1953 | A |
2659659 | Schmidl | Nov 1953 | A |
2660550 | Updegraff et al. | Nov 1953 | A |
2807570 | Updegraff | Sep 1957 | A |
2907389 | Hitzman | Oct 1959 | A |
2975835 | Bond | Mar 1961 | A |
3006755 | Adams | Oct 1961 | A |
3185216 | Hitzman | May 1965 | A |
3332487 | Jones | Jul 1967 | A |
3340930 | Hitzman | Sep 1967 | A |
3437654 | Dix | Apr 1969 | A |
3637686 | Kokubo et al. | Jan 1972 | A |
3640846 | Johnson | Feb 1972 | A |
3724542 | Hamilton | Apr 1973 | A |
3800872 | Friedman | Apr 1974 | A |
3826308 | Compere-Whitney | Jul 1974 | A |
3982995 | Yen et al. | Sep 1976 | A |
4184547 | Klass et al. | Jan 1980 | A |
4300632 | Wilberger et al. | Nov 1981 | A |
4316961 | Klass et al. | Feb 1982 | A |
4329428 | Ghosh et al. | May 1982 | A |
4349633 | Worne et al. | Sep 1982 | A |
4358535 | Falkow et al. | Nov 1982 | A |
4358537 | Chynoweth | Nov 1982 | A |
4386159 | Kanai | May 1983 | A |
RE31347 | Reijonen et al. | Aug 1983 | E |
4416332 | Wiberger et al. | Nov 1983 | A |
4424064 | Klass et al. | Jan 1984 | A |
4446919 | Hitzman | May 1984 | A |
4450908 | Hitzman | May 1984 | A |
4475590 | Brown | Oct 1984 | A |
4481293 | Thomsen et al. | Nov 1984 | A |
4522261 | McInerney et al. | Jun 1985 | A |
4562156 | Isbister et al. | Dec 1985 | A |
4579562 | Tarman et al. | Apr 1986 | A |
4610302 | Clark | Sep 1986 | A |
4640767 | Zajic et al. | Feb 1987 | A |
4666605 | Minami et al. | May 1987 | A |
4678033 | Killough | Jul 1987 | A |
4743383 | Stewart et al. | May 1988 | A |
4799545 | Silver et al. | Jan 1989 | A |
4826769 | Menger | May 1989 | A |
4845034 | Menger et al. | Jul 1989 | A |
4883753 | Belaich et al. | Nov 1989 | A |
4905761 | Bryant | Mar 1990 | A |
4906575 | Silver et al. | Mar 1990 | A |
4914024 | Strandberg et al. | Apr 1990 | A |
4947932 | Silver et al. | Aug 1990 | A |
4969130 | Wason et al. | Nov 1990 | A |
4971151 | Sheehy | Nov 1990 | A |
5044435 | Sperl et al. | Sep 1991 | A |
5076927 | Hunter | Dec 1991 | A |
5081023 | Yaginuma et al. | Jan 1992 | A |
5083610 | Sheehy | Jan 1992 | A |
5083611 | Clark et al. | Jan 1992 | A |
5087558 | Webster, Jr. | Feb 1992 | A |
5100553 | Nomura et al. | Mar 1992 | A |
5155042 | Lupton et al. | Oct 1992 | A |
5163510 | Sunde | Nov 1992 | A |
5250427 | Weaver et al. | Oct 1993 | A |
5297625 | Premuzic et al. | Mar 1994 | A |
5327967 | Jenneman et al. | Jul 1994 | A |
5340376 | Cunningham | Aug 1994 | A |
5341875 | Jenneman et al. | Aug 1994 | A |
5350684 | Nakatsugawa et al. | Sep 1994 | A |
5360064 | Jenneman et al. | Nov 1994 | A |
5363913 | Jenneman et al. | Nov 1994 | A |
5368099 | Davey et al. | Nov 1994 | A |
5424195 | Volkwein | Jun 1995 | A |
5490634 | Jain et al. | Feb 1996 | A |
5492828 | Premuzic et al. | Feb 1996 | A |
5500123 | Srivastava | Mar 1996 | A |
5510033 | Ensley et al. | Apr 1996 | A |
5516971 | Hurley | May 1996 | A |
5538530 | Heaton et al. | Jul 1996 | A |
5551515 | Fodge et al. | Sep 1996 | A |
5560737 | Schuring et al. | Oct 1996 | A |
5593886 | Gaddy | Jan 1997 | A |
5593888 | Glaze et al. | Jan 1997 | A |
5597730 | Aust et al. | Jan 1997 | A |
5630942 | Steiner | May 1997 | A |
5670345 | Srivastava et al. | Sep 1997 | A |
5695641 | Cosulich et al. | Dec 1997 | A |
5723597 | Kohne | Mar 1998 | A |
5763736 | Daume | Jun 1998 | A |
5766929 | Orolin et al. | Jun 1998 | A |
5783081 | Gaddy | Jul 1998 | A |
5821111 | Grady et al. | Oct 1998 | A |
5854032 | Srivastava et al. | Dec 1998 | A |
5858766 | Premuzic et al. | Jan 1999 | A |
5885825 | Lin et al. | Mar 1999 | A |
5919696 | Ikeda et al. | Jul 1999 | A |
5928864 | Kohne | Jul 1999 | A |
5955261 | Kohne | Sep 1999 | A |
5955262 | Kourilsky et al. | Sep 1999 | A |
6090593 | Fleming et al. | Jul 2000 | A |
6143534 | Menger et al. | Nov 2000 | A |
6202051 | Woolston | Mar 2001 | B1 |
6210955 | Hayes | Apr 2001 | B1 |
6265205 | Hitchens et al. | Jul 2001 | B1 |
6348639 | Crawford et al. | Feb 2002 | B1 |
6420594 | Farone et al. | Jul 2002 | B1 |
6543535 | Converse et al. | Apr 2003 | B2 |
6758270 | Sunde et al. | Jul 2004 | B1 |
6795922 | Johnson et al. | Sep 2004 | B2 |
6859880 | Johnson et al. | Feb 2005 | B2 |
7696132 | Pfeiffer et al. | Apr 2010 | B2 |
20010045279 | Converse et al. | Nov 2001 | A1 |
20030062270 | McAlister | Apr 2003 | A1 |
20030205458 | Roychowdhury | Nov 2003 | A1 |
20030216353 | Mosher et al. | Nov 2003 | A1 |
20030232423 | Priester et al. | Dec 2003 | A1 |
20040033557 | Scott et al. | Feb 2004 | A1 |
20040035785 | Rebholz | Feb 2004 | A1 |
20040228833 | Costantino et al. | Nov 2004 | A1 |
20050053955 | Sowlay et al. | Mar 2005 | A1 |
20050269261 | Sublette | Dec 2005 | A1 |
20060223153 | Pfeiffer | Oct 2006 | A1 |
20060223159 | Pfeiffer | Oct 2006 | A1 |
20060223160 | Vanzin | Oct 2006 | A1 |
20060237097 | Lau et al. | Oct 2006 | A1 |
20060254765 | Pfeiffer et al. | Nov 2006 | A1 |
20070248531 | Debryun et al. | Oct 2007 | A1 |
20080299635 | Pfeiffer et al. | Dec 2008 | A1 |
20100190203 | Pfeiffer et al. | Jul 2010 | A1 |
20100248321 | Steaffens et al. | Sep 2010 | A1 |
20100248322 | Pfeiffer et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
4036787 | May 1992 | DE |
4115435 | Aug 1992 | DE |
19520548 | Dec 1996 | DE |
09 121868 | May 1997 | JP |
WO 7900201 | Apr 1979 | WO |
WO 8910463 | Nov 1989 | WO |
WO 9213172 | Aug 1992 | WO |
WO 0168904 | Sep 2001 | WO |
WO 0206503 | Jan 2002 | WO |
WO 0234931 | May 2002 | WO |
WO 2004071195 | Aug 2004 | WO |
WO 2005115648 | Dec 2005 | WO |
WO 2007022122 | Feb 2007 | WO |
WO 2007118094 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070295505 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11399099 | Apr 2006 | US |
Child | 11765902 | US |