1. Field of the Invention
This invention relates generally to connectors or couplings for joining together the ends of two hoses, tubes or the like. This invention relates in particular to a connector which is of the quick connect/disconnect type, is used as part of a system for supplying air to a person in a contaminated environment, and prevents chemical and biological contaminants in the environment from entering into the air supply as the coupling between hoses is formed.
2. Description of the Related Art
Clean air supplies are needed by persons working in contaminated environments as well as by military personnel in situations where biological or chemical weapons are employed. Some contaminants are so toxic that even introduction of minute amounts of the contaminant into a person's air supply can be debilitating or lethal.
Couplings between air supply hoses often need to be made within a contaminated environment. Under these conditions, contaminants on the surfaces of the connector can be introduced into the air stream as the coupling is formed. Preventing such introduction is a difficult problem.
U.S. Pat. No. 4,949,745 (hereinafter “the '745 patent”), incorporated herein by reference, describes a clean air connector. The clean air connector of the '745 patent includes hard surfaces 126, 128, 130 and 132 (see FIG. 4 of the '745 patent) that are exposed to contaminants when the supply end of the connector and the receiver end of the connector are in an uncoupled position. In the '745 patent hard surfaces 126, 128, 130 and 132 come into contact to physically capture the contaminants present on the mating portions of the these surfaces. Although the surfaces are in contact, motion between the surfaces which can release contamination, e.g., rocking of the surfaces against one another, can still take place. The surfaces coming together are two hard surfaces such that a proper seal is not created and contaminants can still escape into the air supply. In addition, the clean air connector of the '745 patent is designed to operate at low pressure (approximately 2-4 PSI). When the clean air connector of the '745 patent is used with higher pressure, the clean air connector has a relatively high engagement force.
The present invention is directed to a connector for carrying a fluid having a coupled state and an uncoupled state. The connector includes first and second subassemblies. The first and second subassemblies are engaged in the coupled state and disconnected in the uncoupled state. The connector further includes first and second removable caps that cover contaminable surfaces exposed to the surroundings in the uncoupled state. The first and second caps are removed in the coupled state. The connector further includes a fluid path through the first and second subassemblies that is sealed from the surroundings in the coupled state. The connector also includes an isolating structure that isolates the contaminable surfaces from the fluid path in the coupled state.
In one embodiment, the connector includes first and second elastomer face seals formed on the first and second subassemblies, respectively. In another embodiment, the first and second elastomer face seals are exposed to the surrounding environment when the connector is in the uncoupled state. In another embodiment, the first and second elastomer face seals are compressible. In another embodiment, the first elastomer face seal is in contact with the second elastomer face seal when the connector is in its coupled state. In another embodiment, the connector further includes means for passing fluid over a portion of the first and second elastomer face seals and out of the connector during engagement of the first and second subassemblies.
In one embodiment, the connector further includes an antimicrobial compound formed on internal passages of the connector.
In one embodiment, the connector further includes an aperture to vent to the atmosphere during engagement of the first and second subassemblies.
In one embodiment, the contaminable surfaces are isolated between a pair of O-rings when the connector is in its coupled state.
In one embodiment, the first subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The first subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the first subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together.
In one embodiment, the second subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The second subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the second subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together, said transferring to the unsealed state occurring after the means for isolating has isolated the contaminable surfaces from the fluid path.
In accordance with another aspect of the invention, the invention is directed to a connector for carrying a fluid having a coupled state and an uncoupled state. The connector includes first and second subassemblies. The first and second subassemblies are engaged in the coupled state and disconnected in the uncoupled state. First and second elastomer face seals are formed on the first and second subassemblies, respectively. The first and second elastomer face seals are exposed to the surrounding environment when the connector is in the uncoupled state. The first and second elastomer face seals are compressible. The connector further includes a fluid path through the first and second subassemblies that is sealed from the surroundings in the coupled state. The connector further includes an isolating structure that isolates the elastomer face seals from the fluid path in the coupled state.
In one embodiment, the first elastomer face seal is in contact with the second elastomer face seal when the connector is in its coupled state.
In one embodiment, the connector further includes means for passing fluid over a portion of the first and second elastomer face seals and out of the connector during engagement of the first and second subassemblies.
In one embodiment, the connector further includes an antimicrobial compound formed on internal passages of the connector.
In one embodiment, the connector further includes an aperture to vent to the atmosphere during engagement of the first and second subassemblies.
In one embodiment, the contaminable surfaces are isolated between a pair of O-rings when the connector is in its coupled state.
In one embodiment, the first subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The first subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the first subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together.
In one embodiment, the second subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The second subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the second, subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together, said transferring to the unsealed state occurring after the means for isolating has isolated the contaminable surfaces from the fluid path.
In accordance with another aspect of the invention, the invention is directed to a connector for carrying a fluid having a coupled state and an uncoupled state. The connector includes first and second subassemblies. The first and second subassemblies are engaged in the coupled state and disconnected in the uncoupled state and the first and second subassemblies have contaminable surfaces in the uncoupled state. The connector further includes a fluid path through the first and second subassemblies that is sealed from the surroundings in the coupled state. The connector further includes an isolating structure that isolates the contaminable surfaces from the fluid path in the coupled state. The connector further includes an antimicrobial compound formed on internal passages of the connector.
In one embodiment, the connector further includes an aperture to vent to the atmosphere during engagement of the first and second subassemblies.
In one embodiment, the contaminable surfaces are isolated between a pair of O-rings when the connector is in its coupled state.
In one embodiment, the first subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The first subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the first subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together.
In one embodiment, the second subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The second subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the second subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together, said transferring to the unsealed state occurring after the means for isolating has isolated the contaminable surfaces from the fluid path.
In accordance with another aspect of the invention, the invention is directed to a connector for carrying a fluid having a coupled state and an uncoupled state that includes first and second subassemblies. The first and second subassemblies are engaged in the coupled state and disconnected in the uncoupled state. The first and second subassemblies have contaminable surfaces in the uncoupled state. The connector further includes an aperture to vent to the atmosphere during engagement of the first and second subassemblies. The connector further includes a fluid path through the first and second subassemblies that is sealed from the surroundings in the coupled state. The connector further includes an isolating structure that isolates the contaminated surfaces from the fluid path in the coupled state.
In one embodiment, the contaminable surfaces are isolated between a pair of O-rings when the connector is in its coupled state.
In one embodiment, the first subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The first subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the first subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together.
In one embodiment, the second subassembly has a sealed state in which fluid cannot pass through the subassembly and an unsealed state in which fluid can pass through the subassembly. The second subassembly is in its sealed state when the connector is in its uncoupled state and is in its unsealed state when the connector is in its coupled state. The connector includes means for transferring the second subassembly from its sealed to its unsealed state as the first and second subassemblies are coupled together, said transferring to the unsealed state occurring after the means for isolating has isolated the contaminable surfaces from the fluid path.
In accordance with another aspect of the invention, the invention is directed to a method for coupling a first subassembly and a second subassembly of a connector. The method includes removing first and second removable caps from the first and second subassemblies. The first and second removable caps cover contaminable surfaces of the first and second subassemblies, respectively. The method further includes engaging the first and second subassemblies. The method further includes forming a fluid path through the first and second subassemblies and isolating the contaminable surfaces from the fluid path.
In one embodiment, the method further includes treating internal passages of the first and second subassemblies with an antimicrobial compound.
In one embodiment, the first and second subassemblies include first and second elastomer face seals. In another embodiment, the method further includes compressing the first and second elastomer face seals during engagement of the first and second subassemblies.
In one embodiment, the method further includes passing a fluid over a portion of the contaminated surfaces as the couplers are engaged.
In one embodiment, the method further includes venting to the atmosphere during the engagement of the first and second subassemblies.
In one embodiment, the method further includes sealing the second subassembly during engagement and opening the second subassembly only after the contaminated surfaces have been isolated.
In accordance with another aspect of the invention, the invention is directed to a method for coupling a first subassembly and a second subassembly of a connector. The method includes engaging the first and second subassemblies having first and second elastomer face seals, respectively. The elastomer face seals are contaminable surfaces. The method further includes forming a fluid path through the first and second subassemblies and isolating the contaminable surfaces from the fluid path.
In one embodiment, the method further includes compressing the first and second elastomer face seals during engagement of the first and second subassemblies.
In one embodiment, the method further includes treating internal passages of the first and second subassemblies with an antimicrobial compound.
In one embodiment, the method further includes passing a fluid over a portion of the contaminated surfaces as the couplers are engaged.
In one embodiment, the method further includes venting to the atmosphere during the engagement of the first and second subassemblies.
In one embodiment, the method further includes sealing the second subassembly during engagement and opening the second subassembly only after the elastomer face seals and contaminated surfaces have been isolated.
In accordance with another aspect of the invention, the invention is directed to a method for coupling a first subassembly and a second subassembly of a connector. The method includes treating internal passages of the first and second subassemblies with an antimicrobial compound, engaging the first and second subassemblies, forming a fluid path through the first and second subassemblies, and isolating the contaminable surfaces from the fluid path.
In one embodiment, the method further includes passing a fluid over a portion of the contaminated surfaces as the couplers are engaged.
In one embodiment, the method further includes venting to the atmosphere during the engagement of the first and second subassemblies.
In one embodiment, the method further includes sealing the second subassembly during engagement and opening the second subassembly only after the elastomer face seals and contaminated surfaces have been isolated
In accordance with another aspect of the invention, the invention is directed to a method for coupling a first subassembly and a second subassembly of a connector. The method includes engaging the first and second subassemblies, venting to the atmosphere during the engagement of the first and second subassemblies, forming a fluid path through the first and second subassemblies, and isolating the contaminable surfaces from the fluid path.
In one embodiment, the method further includes passing a fluid over a portion of the contaminated surfaces as the couplers are engaged.
In one embodiment, the method further includes sealing the second subassembly during engagement and opening the second subassembly only after the elastomer face seals and contaminated surfaces have been isolated.
The foregoing and other objects, features and advantages of the invention will be apparent from the more particular description of preferred aspects of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The present invention as described below is applicable to the clean air connector of U.S. Pat. No. 4,949,745 (the '745 patent), incorporated herein by reference. The details of the connection of the clean air connector of the '745 patent are therefore not repeated below. The clean air connector of the present invention provides certain improvements over the clean air connector of the '745 patent.
When the connector 10 is in the uncoupled position as shown in
The remaining figures illustrate in detail the connection sequence for connecting the connector subassemblies 13, 14.
All surfaces that come in contact with the gas, or liquid are coated or impregnated with an antimicrobial compound. The antimicrobial compound kills any microorganisms that may be on the surfaces of the connector 10. Hard surfaces such as aluminum are coated with the antimicrobial compound, while the elastomer face seals are impregnated with the antimicrobial compound.
In accordance with the invention, prior to use of the connector, each subassembly of the connector is protected by a plastic cap to minimize exposure of the connector to contamination in the surrounding environment. Each subassembly utilizes an elastomer face seal. The elastomer face seals expel some of the contaminants that are on the elastomer face seal as the elastomer compresses during engagement, and the remaining contaminants are trapped between the two elastomer face seals. The internal passages and the elastomer seals of the connector are treated with an antimicrobial compound. As a result of these contamination control procedures, the connector can be assembled in a contaminated environment without introducing contamination into the fluid stream passing through the connector. The connector can operate at a high pressure by venting to the atmosphere.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.