This application claims the priority benefit of Taiwan application serial no. 100146215, filed on Dec. 14, 2011. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
1. Technical Field
The disclosure relates to a liquid phase deposition apparatus, and particularly to a chemical bath deposition (CBD) apparatus.
2. Related Art
CBD is a liquid phase deposition process widely used in many industries at present. The most common CBD is conducted in a chemical tank. However, the volume of the chemical tank is quite large, and thus large amount of chemical plating solution must be used, leading to a decreased solution utilization, which not only causes a high deposition cost, but also incurs a major problem of wastewater treatment. Another CBD is to locate a substrate to be deposited in a crucible with a surface facing upward, and then pour a solution into the crucible to cover the substrate to be deposited, so as to perform the deposition. However, in the deposition process, the plating solution is also deposited on the crucible, which not only lowers the plating solution utilization, but also increases the process time because the crucible is required to be cleaned after deposition. For example, for the fabrication cost of a Cu(InGa)Se2 (CIGS) solar cell, a buffer layer plays a very important role. In case that a CdS buffer layer with a thickness of 50 nm is fabricated through a traditional CBD, the cost thereof accounts for 20% (excluding a substrate) of the cost of the cell, and thus the fabrication cost of the cell can be greatly lowered if the disadvantage can be effectively alleviated. In addition, in the traditional CBD, accompanying the cluster-cluster growth mechanism, ions in the solution form solid particles in the solution first, and then are adhered to the solid substrate, so that the formed film is opaque, uneven, and poor in adhesion. Therefore, if nucleated particles on the substrate can be removed effectively, the cell efficiency can be effectively improved.
A CBD apparatus is introduced herein, by which the process can be simplified, the energy can be saved, the volume of wastewater can be reduced, the film quality can be improved, and the apparatus cost can be lowered.
The disclosure provides a CBD apparatus, which includes a first cap, a second cap, and a solution input/output device. The second cap is arranged corresponding to the first cap so as to form a deposition space. The solution input/output device is disposed in the first cap, so as to feed a solution into/out of the deposition space. The position of the solution input/output device is fixed, or the solution input/output device is movable in the deposition space.
Several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
For simplicity, in the embodiments below, the same elements are represented by the same numerals. In addition, sizes or shapes of the elements in the drawings are exemplary, and are not entirely scaled according to actual sizes or shapes of the elements.
Referring to
The second cap 15 is arranged corresponding to the first cap 11, to form a deposition space 20. The first cap 11 can avoid the change in composition of a plating solution caused by escape of a volatile material in the plating solution, so as to maintain the quality of a deposited film. In an embodiment, a material of the first cap 11 may include a high heat-preservation material, a corrosion resistant material, and those having low surface energy or all of the above properties. The first cap 11 may be a substrate made of an inorganic material, a conductive material, a polymer, or a composite material. The inorganic material is, for example, glass, quartz, ceramic, or alumina. The conductive material includes a metal or an alloy, for example, aluminum alloy, titanium, or molybdenum. The polymer is, for example, polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), or polypropylene (PP). It should be noted that PTFE is acid and alkaline resistant, and has a low surface energy, and particles in the solution are difficult to nucleate thereon, so that the first cap 11 is made of PTFE, and a surface thereof can be easily cleaned after a deposited film is formed.
In addition, the first cap 11 may further provide a downward pressure on the second cap 15, by which the influence caused by a plating solution effluent in the deposition process to the quality of a deposited film can be effectively avoided. A weight of the first cap 11 is, for example, but not limited to, about 2 kg or higher.
The second cap 15 is a substrate to be deposited, and has a function of loading the plating solution. The second cap 15 may be substrate made of an inorganic material, a conductive material, semiconductive material, a polymer, or a composite material. The inorganic material is, for example, glass, quartz, or ceramic. The conductive material includes a metal, for example, an aluminum alloy, titanium, molybdenum, or stainless steel. The semiconductive material is, for example, silicon, CIGS, cadmium telluride, or other semiconductive materials having photoelectric conversion function. The polymer is, for example, polyimide (PI) or PTFE. In another embodiment, referring to
Further referring to
In the embodiments shown in
The height h1, h2, or h3 of the deposition space 20 is, for example, 5 mm to 70 mm; however, the disclosure is not limited thereto, and the height can be adjusted according to practical requirement.
Referring to
Referring to
Moreover, as the solution input/output device 12 is disposed on the extension portion 11b of the first cap 11, if an adequate distance exists between the body portion 11a of the first cap 11 and the solution input/output device 12, another substrate 22 to be deposited may be disposed on the body portion 11a of the first cap 11, so that the substrate to be deposited, that is, the second cap 15, and the another substrate to be deposited on the body portion 11a of the first cap 11 are deposited simultaneously by full filling the deposition space 20 with the plating solution.
The solution input/output device 12 can provide a wetting solution, a plating solution, or a cleaning solution to the deposition space 20. The wetting solution is passed through the solution input/output device 12 to wet a surface of the substrate before the plating solution is introduced, so as to achieve the purpose of avoiding a decreased deposition coverage caused by the generation of micro-bubbles in subsequent injection of the plating solution, and the wetting action may be wetting the surface of the substrate first with a mist spayed by a mist nozzle. The cleaning solution can be used to remove impurities, for example, a KCN solution is used to remove CuSe series of compounds in a CIGS absorption layer, or solutions such as bromine in water may also be used to etch the substrate or remove a defect. In addition, the solution input/output device 12 may further have an ultrasonic vibration cleaning effect.
In addition to the substrate cleaning effect, the solution input/output device 12 further provide a route for solution input/output, pressure balancing, and gas input/output. Moreover, after the surface of the substrate is cleaned, air, argon, or nitrogen may be introduced in the deposition space by the solution input/output device 12, to remove moisture on the surface of the substrate to be deposited.
A material of the solution input/output device 12 includes teflon, a metal, or a combination thereof, for example, aluminum, or stainless steel coated with teflon.
Referring to
Furthermore, referring to
In an embodiment, the pipe 25a is used to supply deionized water, the air pipe 25c is used to supply air, and the pipe 25a and the pipe 25c may be connected to an external pump, so as to adjust the pressure of deionized water and gas supplied via the outlet/inlet 24, thereby achieving a cleaning purpose.
In addition, referring to
Referring to
The CBD apparatus 10A, 10B, or 10C may further include a mixing device 16, which is disposed below the second cap 15. The mixing device 16 may include a heating unit and a shaking unit, for providing a heat source and mixing the solution. The heating unit can provide the heat source required in deposition, which may be a common heater, for example, resistance heating or infrared heating is employed. The heating unit may also be a material able to provide a heat source, for example, a material such as stainless steel or a copper block having a high thermal conductivity is immersed in a hot liquid, and then removed and used as a heat source after the temperature is stable. The heating unit in the mixing device 16 can be adjusted in a deposition process, so as to control a deposition rate. The deposition rate is generally proportional to the temperature; however, an excessively high temperature can result in massive homogeneous nucleation, which deteriorates the quality of a deposited film, and thus the deposition temperature is generally controlled to be in the range of 40-90° C., for example, about 70° C.
Furthermore, besides that the temperature can be controlled by the heating unit in the mixing device 16 in the CBD apparatus 10A, 10B, or 10C, when the material of the second cap 15 is conductive material such as stainless steel or titanium plate, a voltage can be directly applied to the second cap 15 by using the conductive property thereof, and then the level of the applied voltage is controlled, to achieve the purpose of controlling the temperature of the solution in the deposition space 20.
In addition, if the mixing device 16 is made of a magnetic material, a magnet may be positioned in the first cap 11. When the first cap 11 is positioned above the mixing device 16, a magnetic force of the first cap 11 attracts the lower mixing device 16, so as to provide a pressure, thereby enhancing the tightness between the first cap 11 and the second cap 15, and avoiding the problem of leakage of the solution.
The CBD apparatus 10A, 10B, or 10C may further include a tilt device 17, or further include a tilt stand 18. The tilt stand 18 can tilts the tilt device 17, and maintains the tilt device at a specific angle. The tilt device 17 is disposed below the second cap 15, for tilting the CBD apparatus 10A, 10B, or 10C, so as to pool the solution in the deposition space 20, and especially discharge the remaining plating solution, cleaning solution, or wetting solution via the feeding inlet 21 in the first cap 11 after a deposited film is formed.
More particularly, referring to
A method of using the CBD apparatus of the disclosure is described below with reference to an example in which a CdS film is deposited.
Deposition is carried out with a substrate to be deposited and having an area of about 100 cm2, and 20 ml of a plating solution containing 0.0015 M cadmium sulfate, 1 M aqueous ammonia, and 0.0075 M thiourea, in which an average height of the solution is about 2 mm, and a deposition temperature is controlled to be 70° C.
Referring to
In the deposition process, after the second cap 15 is positioned above the mixing device 16, the first cap 11 and the spacer 14 are positioned on the second cap 15, and the spacer 14 is inserted in the first cap 11 by means of the groove 19 at the edge of the first cap 11. In this embodiment, the material of the first cap 11 is PTFE, which is acid and alkaline resistant and can be easily cleaned after deposition. An O-ring of perfluorinated rubber material is used as the spacer 14, and the size of the O-ring is that a perimeter is about 100 mm, and a thickness is about 2 mm. It is found through experiment that no degradation problem occurs even when the O-ring experiences 300 times of deposition.
Besides the above functions, the first cap 11 further provide a downward pressure on the second cap 15, by which the influence caused by a plating solution effluent in the deposition process to the quality of a deposited film can be effectively avoided. The weight of the first cap 11 in the experiment is about 2 kg, and in the presence of the downward pressure provided by the first cap 11, there is no concern about leakage of the plating solution in the deposition experiment.
After the first cap 11 and the spacer 14 are covered on the second cap 15, materials is fed through the feeding inlet 21, in which the diameter of the feeding inlet 21 is about 3-5 mm. Before deposition, the deposition space 20 may be first cleaned or wetted by the solution input/output device 12. In the deposition process, the mixing device 16 is adjusted to control the deposition speed. The deposition temperature is, for example, controlled to be in the range of 40-90° C., and the deposition temperature in the experiment is 70° C.
In the deposition process, deposition parameters may be controlled to obtain a specific film thickness. After deposition, the plating solution can be discharged by the solution input/output device 12 through the feeding inlet 21, or discharged via the opening 13. In discharge of the solution, a degree of tilt of the deposition apparatus can be controlled by the tilt stand 18 in the tilt device 17, to facilitate the discharge of the solution. The cleaning process has a significant effect on the quality of a deposited film, which can remove homogenously nucleated particles attached to a surface in the deposition process. The solution input/output device 12 may clean the surface when being fixedly disposed as shown in
Table 1 shows electrical performances of a film that is deposited through CBD and uncleaned. Table 2 shows electrical performances of a film that is cleaned after being deposited by using the CBD apparatus of the disclosure. The results of Table 1 and Table 2 show that the electrical performances of the cleaned deposited film are superior to those of the uncleaned deposited film.
To sum up, in the disclosure, the chemical bath process can be effectively improved and simplified through the special cap design. Because the deposition apparatus of the disclosure is simple, and a crucible is not needed to be used, the cost of crucible is saved, and the volume of waste liquid generated is reduced. Furthermore, in the disclosure, the quality of a chip after deposition can be greatly improved through the special chip cleaning design, so that the disclosure can be widely used in chemical bath deposition of a semiconductor compound film, for example, the fabrication of a buffer layer of a solar cell.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
100146215 | Dec 2011 | TW | national |