Chemical composition of hydrogels for use as articulating surfaces

Abstract
The present invention provides a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups and where the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2. The present invention also provides a method of repairing an articulating surface in a body using the inventive composition. The inventive hydrogel composition is created by blending two or more polymers to achieve the desired ratio of functional groups, reacting at least one polymer with a reagent that results in the formation of alcohol, acid, and/or amide functional groups of the desired ratio, and/or polymerizing at least one monomer to achieve the desired ratio of functional groups.
Description
FIELD OF THE INVENTION

The present invention relates generally to hydrogel compositions having a specified ratio of alcohol, acid, and amide functional groups contained in the hydrogel composition and specifically, to a device made of the inventive composition to be used as an implant at an articulating surface and for spinal disc repair and/or replacement.


BACKGROUND

Hydrogels are water-swellable or water-swollen materials whose structure is typically defined by a crosslinked or interpenetrating network of hydrophilic homopolymers or copolymers. The hydrophilic homopolymers or copolymers can be water-soluble in free form, but in a hydrogel they may be rendered insoluble generally due to the presence of covalent, ionic, or physical crosslinks. In the case of physical crosslinking, the linkages can take the form of entanglements, crystallites, or hydrogen-bonded structures. The crosslinks in a hydrogel provide structure and physical integrity to the polymeric network.


Hydrogels can be classified as amorphous, semicrystalline, hydrogen-bonded structures, supermolecular structures, or hydrocolloidal aggregates. Numerous parameters affect the physical properties of a hydrogel, including porosity, pore size, nature of gel polymer, molecular weight of gel polymer, and crosslinking density. The crosslinking density influences the hydrogel's macroscopic properties, such as volumetric equilibrium swelling ratio, compressive modulus, or mesh size. Pore size and shape, pore density, and other factors can impact the surface properties, optical properties, and mechanical properties of a hydrogel.


Over the past three to four decades, hydrogels have shown promise for biomedical and pharmaceutical applications, mainly due to their high water content and rubbery or pliable nature, which can mimic natural tissue. Biocompatible hydrogels can be engineered to be either degradable or resistant to degradation. An additional advantage of hydrogels, which has only recently been appreciated, is that they may provide desirable protection of drugs, peptides, and proteins from the potentially harsh environment in the vicinity of a release site.


However, typical hydrogels lack the required mechanical and frictional properties to be useful as articulating and weight-bearing mediums. Biostable hydrogels are often based on alcohol functional polymers such as hydroxymethylmethacrylates, polyvinyl alcohol, etc. These materials are known to readily absorb and release water. However, they do not have the same frictional properties as that of articular cartilage. Particularly, the degree of bound water in these types of synthetic materials is far less than that for natural cartilage.


Therefore, there is a need to develop hydrogel materials that mimic the frictional properties of natural articulating surfaces.


SUMMARY OF THE INVENTION

The present invention provides a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups. The ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2.


The present invention also provides a method of repairing an articulating surface in a body. The inventive method comprises creating a hydrogel composition containing at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In one embodiment, the inventive hydrogel composition is created by blending two or more polymers to achieve the desired ratio of functional groups. In another embodiment, the inventive hydrogel composition is created by reacting at least one polymer with a reagent that results in the formation of alcohol, acid, and/or amide functional groups of the desired ratio. The method further comprises forming the composition into a hydrogel article of the approximate dimensions of the articulating surface to be repaired and replacing the damaged articulating surface with the hydrogel article.







DETAILED DESCRIPTION

The present invention provides a hydrogel composition having functional groups including alcohol groups, acid groups, and amide groups, that mimic the ratio of the functional groups found in synovial fluid components. Synovial fluid is a thick, stringy fluid found in the cavities of synovial joints and reduces friction between the articular cartilage and other tissues in joints to lubricate and cushion them during movement. Examples of synovial joints include ball and socket joints such as the shoulder and hip joints. The synovial fluid is composed primarily of glycosaminoglycans (GAG). The primary GAG component in synovial fluid is hyaluronate, comprising about 95%, with other sulphated GAGs making up the remainder. The components of synovial fluid exhibit the following ratios of functional alcohol groups to functional acid groups to functional amide groups, respectively: hyaluronate—4:1:1; chondroitin sulfate—3:2:1; keratin sulfate—4:1:1; and dermatan sulfate—3:2:1. According to the invention, by approximating the ratio of functional groups found in synovial fluid components, a hydrogel will exhibit properties similar to the synovial fluid components, in particular the frictional properties.


The present invention provides a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and/or amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.


Examples of acid functional groups include sulfuric, sulfurous, carboxylic, sulfonamide, phosphoric, and phosphorous groups, and combinations thereof. In certain embodiments, the acid functional group has a pKa less than 9. In certain embodiments, the acid functional group is in the form of a salt and may be at least partially neutralized. In some embodiments, the salt is formed with a cationic species such as sodium, potassium, calcium, dimethyl ammonium, or lithium.


Alcohol functional groups can be denoted as R—OH and examples include phenol, allyl alcohol, vinyl alcohol, and siloxol, and combinations thereof.


Amide functional groups can be denoted RCONR2 and examples of amide functional groups include primary, secondary, and tertiary amides such as acrylamide, phthalimide, carboxamide, 2-ethyl-oxazoline, benzylphthalimide, benzamide, and acetamide.


In one embodiment, the inventive composition is a blend of two or more polymers that collectively provide the ratio of functional alcohol groups to functional acid groups to functional amide groups. For instance, an amide group can come from polyacrylamide wherein each repeat unit represents 1 mole of amide group, an acid group can come from polyacrylic acid wherein each repeat unit represents 1 mole of amide group, and an alcohol group can come from polyvinyl alcohol wherein each repeat unit represents 1 mole of alcohol group. In some embodiments, at least one polymer of the inventive composition is formed of polyvinyl alcohol (PVA) or methacrylate. In one embodiment, PVA is blended with polyacrylic acid.


In some embodiments of the present invention, the blend of two or more polymers may include a hydrophilic polymer, such as PVA, and a second polymer that is a copolymer. In one embodiment, the second copolymer has hydrophobic recurring units and hydrophilic recurring units. For example, the second polymer may be polyethylene-co-vinyl alcohol. As non-limiting examples, other suitable polymers include diol-terminated polyhexamethylene phthalate and polystyrene-co-allyl alcohol. In all embodiments, the relative amount of the polymers in the blend is determined by the overall resulting ratio of functional groups present.


In one embodiment, the desired ratio of functional groups in the inventive composition is achieved by polymerization of monomers. In one embodiment, monomers may be combined and polymerized to form co- or terpolymers with the resulting composition exhibiting the required ratio of alcohol, acid, and amide functional groups. An example of a copolymer is polyethylene-co-vinyl alcohol, also known as “EVAL”, “PEVAL” or “EVOH.” Other examples of copolymers that may be suitable include polyethylene-co-acrylic acid and polyethylene-co-methacrylic acid.


In one embodiment, the desired ratio of functional groups in the inventive composition is achieved by reacting one or more polymers with a reactant that is capable of modifying the amount of alcohol functional groups, acid functional groups, and/or amide functional groups on the polymer. In one embodiment, reacting a polymer with a reactant results in the formation of a copolymer or terpolymer. An example of the formation of a terpolymer would include the polymerization of vinyl acetate with methacrylic acid and acrylamide followed by post hydrolysis to give polyvinyl alcohol-co-methacrylic acid-co-acrylamide. In another example, the terpolymer could be produced by the polymerization of vinyl pivilate with methyl methacrylate and acrylamide followed by post hydrolysis to give the polyvinyl alcohol-co-methacrylic acid-co-acrylamide polymer. In one embodiment, the reacting of one or more polymers results in one or more polymers having the desired ratio of functional groups.


In one embodiment, the inventive composition exhibiting the desired ratio of alcohol, acid, and amide functional groups is achieved by at least one of blending of one or more polymers, polymerization of one or more monomers, or reacting of one or more polymers with a reactant.


Polymeric materials that may be used to make the inventive composition include water-swellable materials and hydrogels and typically include a hydrophilic polymer. In one embodiment, the hydrophilic polymer may be polyvinyl alcohol (PVA), or derivatives thereof. By way of illustration only, other hydrophilic polymers that may be suitable include polyhydroxyethyl methacrylate, polyvinyl pyrrolidone, polyacrylamide, polyacrylic acid, hydrolyzed polyacrylonitrile, polyethyleneimine, ethoxylated polyethyleneimine, polyallylamine, or polyglycols as well as blends or mixtures of any of these hydrophilic polymers. Further examples of suitable materials to be used in the inventive composition can be found in U.S. patent application Ser. No. 11/614,389, incorporated by reference herein in its entirety.


The inventive composition may also include additional polymers, fibers, particles, peptides and proteins, such as collagen, or conventional additives such as plasticizers, components for inhibiting or reducing crack formation or propagation, components for inhibiting or reducing creep, or particulates or other additives for imparting radiopacity to the article. By way of example only, an additive for imparting radiopacity can include metal oxides, metal phosphates, and metal sulfates such as barium sulfate, barium titanate, zirconium oxide, ytterbium fluoride, barium phosphate, and ytterbium oxide. Biopolymers may also be used in certain embodiments. Suitable biopolymers include anionic biopolymers such as hyaluronic acid, cationic biopolymers such as chitosan, amphipathic polymers such as collagen, gelatin and fibrin, and neutral biopolymers such as dextran and agarose. Optionally, a radiation sensitive material such as a photoinitiator may be added to facilitate crosslinking of the inventive composition. Other optional additives include biocompatible preservatives, surfactants, colorants and/or other additives conventionally added to polymer mixtures.


Optionally, the polymeric materials, the hydrogel material, or articles of the present invention may be subjected to one or more crosslinking steps. Crosslinking may be carried out after forming the inventive composition, after shaping the inventive composition into an article, or at any other suitable point during processing.


A variety of conventional approaches may be used to crosslink the inventive composition, including, physical crosslinking (e.g., freeze thaw method), photoinitiation, irradiation and chemical crosslinking. Covalent crosslinking is a process by which individual polymer chains are irreversibly linked together and can be the result of either irradiation or chemical bonding using reagents. Reversible physical bonding forces or interactions may also occur in the polymers of the inventive composition, either alone or in combination with chemical crosslinking.


The present invention also provides a method of repairing an articulating surface in a body, in whole or in part, using a hydrogel composition containing at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel ranges from about 16:1 to about 3:2. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups in the composition ranges from about 4:1 to about 3:2. In one embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups in the composition ranges from about 16:1:1 to about 3:2:1. In another embodiment, the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups in the composition ranges from about 4:1:1 to about 3:2:1.


In one embodiment, the inventive composition is shaped into an article having the approximate dimensions of the articulating surface to be repaired, including a small damaged portion of the articulating surface or the entire articulating surface. The damaged articulating surface, in whole or in part, is then replaced with the shaped article by methods known to one skilled in the art, for instance, an orthopedic surgeon. Shaping of the article can be accomplished by various processing methods known to one skilled in the art. Processing methods to obtain a resulting article of desired shape or size may include solution casting, injection molding, or compression molding. In general, these methods may be used before or after crosslinking, as well as before or after the article is hydrated, in the case of water-swellable materials.


The article formed from the inventive composition can be used in a variety of applications, including minimally invasive surgical procedures, as known in the field. By way of example, the inventive composition can be used to provide artificial articular cartilage. In one embodiment, the composition of the present invention is used to form an artificial meniscus or articular bearing components. In another embodiment, the composition of the present invention is used to form implants employed in temporomandibular joints, in proximal interphalangeal joints, in metacarpophalangeal joints, in metatarsalphalanx joints, or in hip capsule joint repairs. In various other embodiments, the article may be a knee component replacement implant or a tibial repair implant.


The composition of the present invention can also be used to replace or rehabilitate the nucleus pulposus of an intervertebral disc. Degenerative disc disease in the lumbar spine is marked by a dehydration of the intervertebral disc and loss of biomechanical function of the spinal unit. The inventive composition can be employed in a spinal disc prosthesis used to replace a part or all of a natural human spinal disc.


In some embodiments, the article is thermoplastic. In one embodiment where a water-swellable material is used in the inventive composition, the water-swellable material may be in the form of a lyogel, which is a term generally used to described the physical state of a hydrogel material or article before the solvent used to prepare the hydrogel material is replaced with water. The thermoplastic lyogel can be melted and re-solidified without losing its water-swellable properties. The thermoplastic quality of the water-swellable article as a lyogel allows for easy processability. Upon melting, the lyogel becomes flowable and can therefore be extruded, injected, shaped, or molded.


In some embodiments, the inventive composition can be manually handled in a heated, flowable state without special precautions. Melt-processability allows the inventive composition to be manipulated so that in situ delivery and shaping can be accomplished. The heating can be accomplished with any conventional heat source that would permit the inventive composition to be heated to a temperature at which it can flow. An example of a suitable means for heating is a hot gun. The in situ delivery can be accomplished with any suitable device, such as a delivery tube or a needle. In some embodiments, the means for heating and means for delivery can be combined into one physical device. Therefore, the thermoplastic inventive composition may be directly injected into the body of a patient, to allow for in situ formation and/or hydration of the hydrogel material. Such a technique may have practical application in several minimally invasive surgical procedures, as known to one skilled in the art.


In embodiments where the inventive composition contains a hydrogel, the hydrogel may be used to release therapeutic drugs or other active agents. Hydrogels can be suitably employed in vivo to provide elution of a protein, drug, or other pharmacological agent impregnated in the hydrogel or provided on the surface of the hydrogel.


Various embodiments of the present invention are set out in the following examples.


Example 1
Blending to Achieve Desired Ratio of Alcohol, Acid, and Amide Functional Groups

An inventive composition can be derived by blending polyacrylamide, polyacrylic acid, and polyvinyl alcohol. The mixture of all three polymers may also come from blending a homopolymer with that of a copolymer as in the case of polyvinyl alcohol with polyacrylamide-co-acrylic acid. The relative quantities of each polymer to be used in the synthesis of the inventive composition requiring 100 grams of polymer is shown in Table 1.









TABLE 1







Blending of polymers to form the inventive composition










Molar Ratio





Alcohol-to-Acid-to-
Poly(vinyl
Poly(acrylic


Amide
alcohol), g
acid), g
Poly(acrylamide), g













16:1:0
90.71
9.29
0.00


 3:2:0
47.81
52.19
0.00


16:1:1
83.10
8.51
8.39


 3:2:1
38.02
41.51
20.47









Example 2
Blending to Achieve Required Ratio of Acid and Alcohol Functional Groups

27.28 g polyvinyl alcohol and 31 ml of DMSO blended with 12 ml of polyacrylic acid partial sodium salt (0.3 weight percent sodium, MW ˜240,000, 25 weight percent in water) was added to a Haake twin screw rheometer. The materials were mixed at 120° C. for five minutes. The polyvinyl alcohol, as used, was >99% hydrolyzed with an average molecular weight of 250,000 and was obtained from Vam & Poval Co., Ltd. (Japan). The DMSO was used as received from Sigma-Aldrich and contained ≦0.4% water. The polyacrylic acid was used as received from Sigma-Aldrich (catalog number 192058). The resulting material was plastic and could be injection molded using a Battenfeld BA CD 100.


Example 3
Blending of Monomers Prior to Polymerization to Achieve Required Ratio of Functional Groups

An inventive composition can be derived by blending the monomers of polyacrylamide, polyacrylic acid, and polyvinyl alcohol. In this example, the monomers vinyl acetate, acrylic acid, and acrylamide are blended. The relative quantities of each monomer to be used in the synthesis of the inventive composition requiring 100 grams of polymer is shown in Table 2. The synthesis can be done by solution, emulsion, suspension, or other polymerization techniques to form a co- or ter-polymer. Polyvinyl alcohol is derived from polyvinyl acetate. After polymerization, a hydrolysis step is required to convert the vinyl acetate into the vinyl alcohol. The hydrolysis is typically done in an alcoholic base mixture such as methanol with sodium hydroxide.









TABLE 2







Blending of monomers to form the inventive composition










Molar Ratio





Alcohol-to-Acid-to-


Amide
vinyl acetate, g
acrylic acid, g
acrylamide, g













16:1:0
95.02
4.97
0.00


 3:2:0
64.18
35.82
0.00


16:1:1
90.59
4.74
4.67


 3:2:1
54.54
30.44
15.01









The invention is further set forth in the claims listed below. This invention may take on various modifications and alterations without departing from the scope thereof. In describing embodiments of the invention, specific terminology is used for the sake of clarity. The invention, however, is not intended to be limited to the specific terms so selected, and it is to be understood that each term so selected includes all technical equivalents that operate similarly.

Claims
  • 1. A hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2, in which the functional alcohol groups are from polyvinyl alcohol.
  • 2. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2.
  • 3. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1.
  • 4. The composition of claim 1 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.
  • 5. The composition of claim 1 wherein the at least one polymer comprises a blend of two or more polymers that collectively provide the ratio of functional alcohol groups to functional acid groups to functional amide groups.
  • 6. The composition of claim 1 wherein the hydrogel composition is formed by at least one of blending two or more polymers, polymerizing at least one monomer, or reacting at least one polymer.
  • 7. The composition of claim 1 wherein the acid functional group is selected from the group consisting of sulfuric, sulfurous, carboxylic, sulfonamide, phosphoric, and phosphorous, and combinations thereof.
  • 8. The composition of claim 1 wherein the acid functional group has a pKa less than 9.
  • 9. The composition of claim 1 wherein the acid functional group is in the form of a salt and is at least partially neutralized.
  • 10. The composition of claim 9 wherein the salt is formed with a cationic species and includes sodium, potassium, calcium, dimethyl ammonium, or lithium.
  • 11. The composition of claim 1 wherein the amide functional group is selected from the group consisting of acrylamide, pyrrolidone, phthalimide, carboxamide, 2-ethyl-oxazoline, benzylphthalimide, benzamide, and acetamide, and combinations thereof.
  • 12. A method of repairing an articulating surface in a body with a hydrogel composition comprising at least one polymer with functional groups including alcohol groups, acid groups, and amide groups, wherein the ratio of the functional alcohol groups to functional acid groups in the hydrogel composition ranges from about 16:1 to about 3:2, in which the functional alcohol groups are from polyvinyl alcohol , the method comprising: creating the hydrogel composition in a step comprising blending two or more polymers, reacting at least one polymer with a reagent, or polymerizing at least one monomer to provide the hydrogel composition;forming the hydrogel composition into a hydrogel article of the approximate dimensions of the articulating surface to be repaired; andreplacing the damaged articulating surface with the hydrogel article.
  • 13. The method of claim 12 wherein the ratio of the functional alcohol groups to the functional acid groups ranges from about 4:1 to about 3:2.
  • 14. The method of claim 12 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 16:1:1 to about 3:2:1.
  • 15. The method of claim 12 wherein the ratio of the functional alcohol groups to the functional acid groups to the functional amide groups ranges from about 4:1:1 to about 3:2:1.
  • 16. The composition of claim 3, in which the functional alcohol groups are from the polyvinyl alcohol, the functional acid groups are from polyacrylic acid, and the functional amide groups are from polyacrylamide.
  • 17. The method of claim 14, in which the hydrogel composition is created by combining polyvinyl alcohol, polyacrylamide and polyacrylic acid, and wherein the functional alcohol groups are from the polyvinyl alcohol, the functional acid groups are from polyacrylic acid, and the functional amide groups are from polyacrylamide.
  • 18. The hydrogel composition of claim 1 wherein said composition mimics the frictional properties of human synovial fluid components.
  • 19. The method of claim 12 wherein said hydrogel composition mimics the frictional properties of human synovial fluid components.
US Referenced Citations (200)
Number Name Date Kind
3200178 Kanji Aug 1965 A
3862265 Steinkamp Jan 1975 A
3875302 Inoue Apr 1975 A
4036788 Steckler Jul 1977 A
4058491 Steckler Nov 1977 A
4060678 Steckler Nov 1977 A
4071508 Steckler Jan 1978 A
4279795 Yamashita Jul 1981 A
4300820 Shah Nov 1981 A
4379874 Stoy Apr 1983 A
4451599 Odorzynski May 1984 A
4451630 Atkinson May 1984 A
4464438 Lu Aug 1984 A
4472542 Nambu Sep 1984 A
4640941 Park Feb 1987 A
4656216 Muller et al. Apr 1987 A
4663358 Hyon May 1987 A
4664857 Nambu May 1987 A
4699146 Sieverding Oct 1987 A
4734097 Tanabe Mar 1988 A
4771089 Ofstead Sep 1988 A
4772287 Ray Sep 1988 A
4808353 Nambu Feb 1989 A
4842597 Brook Jun 1989 A
4851168 Graiver Jul 1989 A
4859719 Ofstead Aug 1989 A
4871490 Rosiak Oct 1989 A
4874562 Hyon Oct 1989 A
4915974 D'Amelia Apr 1990 A
4956122 Watts et al. Sep 1990 A
4966924 Hyon Oct 1990 A
4988761 Ikada Jan 1991 A
5028648 Famili Jul 1991 A
5047055 Bao Sep 1991 A
5053455 Kroggel Oct 1991 A
5106876 Kawamura Apr 1992 A
5118779 Szycher Jun 1992 A
5122565 George Jun 1992 A
5157093 Harisiades Oct 1992 A
5189097 LaFleur Feb 1993 A
5192326 Bao Mar 1993 A
5244799 Anderson Sep 1993 A
5276079 Duan et al. Jan 1994 A
5288503 Wood Feb 1994 A
5306311 Stone Apr 1994 A
5311223 Vanderlaan May 1994 A
5315478 Cadwell May 1994 A
5334634 Bastiolo Aug 1994 A
5336551 Graiver et al. Aug 1994 A
5358525 Fox Oct 1994 A
5360830 Bastiolo Nov 1994 A
5362803 LaFleur Nov 1994 A
5364547 Babb et al. Nov 1994 A
5407055 Tanaka Apr 1995 A
5409966 Duan et al. Apr 1995 A
5410016 Hubbell Apr 1995 A
5458643 Oka Oct 1995 A
5527271 Shah Jun 1996 A
5540033 Fox et al. Jul 1996 A
5552096 Auda Sep 1996 A
5576072 Hostettler et al. Nov 1996 A
5580938 Gutweiller Dec 1996 A
5624463 Stone Apr 1997 A
5632774 Babian May 1997 A
5674295 Ray Oct 1997 A
5681300 Ahr Oct 1997 A
5705296 Kamauchi et al. Jan 1998 A
5709854 Griffith-Cima Jan 1998 A
5711960 Shikinami Jan 1998 A
5716404 Vacanti Feb 1998 A
5723331 Tubo et al. Mar 1998 A
5834029 Bellamkonda Nov 1998 A
5879713 Roth et al. Mar 1999 A
5891826 Tsaur et al. Apr 1999 A
5941909 Purkait Aug 1999 A
5976186 Bao Nov 1999 A
5981826 Ku Nov 1999 A
6015576 See Jan 2000 A
6017577 Hostettler Jan 2000 A
6040493 Cooke Mar 2000 A
6080488 Hostettler Jun 2000 A
6117449 See Sep 2000 A
6120904 Hostettler Sep 2000 A
6121341 Sawhney Sep 2000 A
6129761 Hubbell Oct 2000 A
6132468 Mansmann Oct 2000 A
6139963 Fujii Oct 2000 A
6146686 Leitao Nov 2000 A
6156345 Chudzik Dec 2000 A
6156572 Bettamkonda Dec 2000 A
6162456 Dunbar Dec 2000 A
6180132 Huang Jan 2001 B1
6180606 Chen et al. Jan 2001 B1
6184197 Heinzman et al. Feb 2001 B1
6187048 Mitner Feb 2001 B1
6207185 See Mar 2001 B1
6211296 Frate Apr 2001 B1
6224893 Langer May 2001 B1
6231605 Ku May 2001 B1
6232406 Stoy May 2001 B1
6238691 Huang May 2001 B1
6268405 Yao Jul 2001 B1
6271278 Park Aug 2001 B1
6280475 Bao Aug 2001 B1
6306424 Vyakamam Oct 2001 B1
6365149 Vyakamam Apr 2002 B2
6371984 Van Dyke Apr 2002 B1
6372283 Shim Apr 2002 B1
6375634 Carroll Apr 2002 B1
6387325 Keusch May 2002 B1
6402784 Wardlaw Jun 2002 B1
6443988 Felt Sep 2002 B2
6509098 Merrill Jan 2003 B1
6531147 Sawhney Mar 2003 B2
6533817 Norton Mar 2003 B1
6583219 Won et al. Jun 2003 B2
6602952 Bentley et al. Aug 2003 B1
6608117 Gvozdic Aug 2003 B1
6620196 Trieu Sep 2003 B1
6626945 Simon Sep 2003 B2
6629997 Mansmann Oct 2003 B2
6630457 Aeschlimann Oct 2003 B1
6632246 Simon Oct 2003 B1
6645517 West Nov 2003 B2
6692738 MacLaughlin Feb 2004 B2
6706690 Reich Mar 2004 B2
6709668 Won Mar 2004 B2
6710104 Haraguchi Mar 2004 B2
6710126 Hirt Mar 2004 B1
6723781 Frate Apr 2004 B1
6730298 Griffith-Cima May 2004 B2
6733533 Lozier May 2004 B1
6780840 DeVore Aug 2004 B1
6783546 Zucherman Aug 2004 B2
6783721 Higham Aug 2004 B2
6803420 Cleary Oct 2004 B2
6852772 Muratoglu Feb 2005 B2
6855743 Gvozdic Feb 2005 B1
6861067 McGhee Mar 2005 B2
7235592 Muratoglu Jun 2007 B2
7531000 Hodorek May 2009 B2
20010026810 McGhee Oct 2001 A1
20010032019 Van Dyke Oct 2001 A1
20010049417 Frate Dec 2001 A1
20010053897 Frate Dec 2001 A1
20020022884 Mansmann Feb 2002 A1
20020026244 Trieu Feb 2002 A1
20020029083 Zucherman Mar 2002 A1
20020049498 Yuksel Apr 2002 A1
20020131952 Hennink et al. Sep 2002 A1
20020151979 Lambrecht Oct 2002 A1
20020173855 Mansmann Nov 2002 A1
20020193531 Stoy Dec 2002 A1
20030008396 Ku Jan 2003 A1
20030065389 Petersen Apr 2003 A1
20030080465 Higham May 2003 A1
20030099709 Shah et al. May 2003 A1
20030130427 Cleary Jul 2003 A1
20030152528 Singh et al. Aug 2003 A1
20030170308 Cleary Sep 2003 A1
20030195628 Bao Oct 2003 A1
20030232895 Omidian Dec 2003 A1
20030236323 Ratner Dec 2003 A1
20040002764 Gainor Jan 2004 A1
20040005423 Dalton et al. Jan 2004 A1
20040030392 Lambrecht Feb 2004 A1
20040039447 Simon Feb 2004 A1
20040092653 Ruberti May 2004 A1
20040096509 Hutchens May 2004 A1
20040116641 Mather Jun 2004 A1
20040121951 Rhee Jun 2004 A1
20040127618 Ulmer Jul 2004 A1
20040127992 Sehman Jul 2004 A1
20040131582 Grinstaff Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040143329 Ku Jul 2004 A1
20040147673 Calabro Jul 2004 A1
20040153163 Posner Aug 2004 A1
20040161444 Song Aug 2004 A1
20040171740 Ruberti Sep 2004 A1
20040199250 Fell Oct 2004 A1
20040220296 Lowman Nov 2004 A1
20040242770 Feldstein Dec 2004 A1
20040244978 Shaapour Dec 2004 A1
20050004560 Cox Jan 2005 A1
20050027069 Rhee Feb 2005 A1
20050048103 Cleary Mar 2005 A1
20050049365 Cleary Mar 2005 A1
20050075454 Plochocka et al. Apr 2005 A1
20050095296 Lowman May 2005 A1
20050107561 Lee et al. May 2005 A1
20050197441 Shibutani Sep 2005 A1
20060078587 Leong Apr 2006 A1
20060141002 Liu et al. Jun 2006 A1
20060188487 Thomas Aug 2006 A1
20070004861 Cai Jan 2007 A1
20070202323 Kleiner et al. Aug 2007 A1
20070293651 Tada Dec 2007 A1
20080090145 Hiwara Apr 2008 A1
20090053318 Tan et al. Feb 2009 A1
Foreign Referenced Citations (77)
Number Date Country
0256293 Feb 1988 EP
0290616 Nov 1988 EP
0365108 Apr 1990 EP
0505634 Sep 1992 EP
0696210 Feb 1996 EP
0738762 Apr 1996 EP
0784987 Jul 1997 EP
0835143 Apr 1998 EP
0845480 Jun 1998 EP
0927053 Jul 1999 EP
1079224 Feb 2001 EP
1174463 Jan 2002 EP
1593400 Nov 2005 EP
1595899 Nov 2005 EP
2786400 Jun 2000 FR
2 866 571 Aug 2005 FR
2865939 Aug 2005 FR
2866571 Aug 2005 FR
2338958 Jan 2000 GB
01178545 Jul 1989 JP
01305959 Dec 1989 JP
03141957 Jun 1991 JP
04303444 Oct 1992 JP
09124730 May 1997 JP
09124731 May 1997 JP
10036524 Feb 1998 JP
10036534 Feb 1998 JP
10043286 Feb 1998 JP
10306534 Feb 1998 JP
9015082 Dec 1990 WO
WO 9413235 Jun 1994 WO
9417851 Aug 1994 WO
WO9502616 Jan 1995 WO
9526699 Oct 1995 WO
9640304 Apr 1998 WO
9817215 Apr 1998 WO
9853768 Dec 1998 WO
9903454 Jan 1999 WO
9913923 Mar 1999 WO
9907320 Dec 1999 WO
WO 9967320 Dec 1999 WO
0117574 Mar 2001 WO
WO 0119283 Mar 2001 WO
0177197 Oct 2001 WO
WO 0204570 Jan 2002 WO
0213871 Feb 2002 WO
02060501 Aug 2002 WO
02087642 Nov 2002 WO
02087645 Nov 2002 WO
03008007 Jan 2003 WO
03074099 Sep 2003 WO
WO03082359 Oct 2003 WO
2004007651 Jan 2004 WO
2004029174 Apr 2004 WO
2004031253 Apr 2004 WO
2004047690 Jun 2004 WO
2004055057 Jul 2004 WO
2004060427 Jul 2004 WO
2004063388 Jul 2004 WO
2004064693 Aug 2004 WO
2004066704 Aug 2004 WO
2004069296 Aug 2004 WO
2004069296 Aug 2004 WO
2004072138 Aug 2004 WO
2004093786 Nov 2004 WO
2005004943 Jan 2005 WO
2005035726 Apr 2005 WO
WO2005030382 Apr 2005 WO
WO 2005030832 Apr 2005 WO
2006021054 Mar 2006 WO
2006091706 Aug 2006 WO
WO2007067697 Jun 2007 WO
2007015208 Aug 2007 WO
WO 2008144514 Nov 2008 WO
WO2009020793 Feb 2009 WO
WO2009032430 Mar 2009 WO
WO2009088654 May 2010 WO
Related Publications (1)
Number Date Country
20090175919 A1 Jul 2009 US