Chemical foaming system for floor cleaning machine

Information

  • Patent Grant
  • 6276613
  • Patent Number
    6,276,613
  • Date Filed
    Tuesday, February 22, 2000
    25 years ago
  • Date Issued
    Tuesday, August 21, 2001
    23 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Scherbel; David A.
    • Nguyen; Dinh Q.
    Agents
    • Senniger, Powers, Leavitt & Roedel
Abstract
A chemical foaming system for use in a floor cleaning machine has a foam generator and a delivery system upstream of the foam generator in communication with a source of pressurized fluid and a source of liquid cleaning solution. The delivery system delivers pressurized fluid and liquid cleaning solution to the foam generator. A dispensing system is disposed downstream of the foam generator for dispensing foam generated by the foam generator onto the floor being cleaned. The foam generator has a pair of independent foaming chambers in generally parallel flow relationship intermediate the delivery system and the dispensing system whereby a portion of pressurized fluid and liquid cleaning solution delivered to the foam generator by the delivery system flows into one of the foaming chambers. The remaining portion of the pressurized fluid and liquid cleaning solution delivered to the foam generator flows into the other foaming chamber. Each foaming chamber is adapted for generating a foam therein for dispensing onto the floor by the dispensing system.
Description




BACKGROUND OF THE INVENTION




This invention relates to a chemical foaming system, and more particularly to such a foaming system incorporated into a floor cleaning machine.




In one type of conventional floor cleaning machines, and more particularly a bonnet-type carpet cleaning machine, a cleaning chemical is applied to a bonnet of the machine and the bonnet is worked over the carpet to clean the carpet. The intent is for the soiling in the carpet to transfer to the bonnet. One disadvantage associated with this type of cleaning machine is that the bonnet instead tends to smear the soiling over the carpet. In a conventional rotary brush carpet cleaning machine, cleaning chemical is metered onto the carpet and worked into the carpet with a rotating nylon brush. The intent of this type of cleaning machine is to work the cleaning chemical into the carpet and capture the dirt within the chemical. This type of machine has also proven to be disadvantageous because it tends to leave wet spots on the carpet.




To this end, it is known to meter a dry foam onto the carpet instead of a liquid. Dry foam does not instantly revert back into a liquid, allowing any excess foam to be spread over the carpeting by the rotating brush and inhibiting the leaving of wet spots in the carpet. However, existing machines designed to employ dry foam cleaning technology are large and complex, requiring a substantial amount of labor and skill to operate.




SUMMARY OF THE INVENTION




Among the several objects of this invention are the provision of a chemical foaming system which generates a dry foam; the provision of such a system which minimizes foam production delay; the provision of such a system which can be used in combination with a carpet cleaning machine; and the provision of a carpet cleaning machine incorporating such a chemical foaming system which is relatively lightweight and easy to operate.




In general, a chemical foaming system for use in a floor cleaning machine comprises a foam generator and a delivery system upstream of the foam generator in communication with a source of pressurized fluid and a source of liquid cleaning solution. The delivery system delivers pressurized fluid and liquid cleaning solution to the foam generator. A dispensing system is disposed downstream of the foam generator for dispensing foam generated by the foam generator onto the floor being cleaned. The foam generator comprises a pair of independent foaming chambers in generally parallel flow relationship intermediate the delivery system and the dispensing system whereby a portion of pressurized fluid and liquid cleaning solution delivered to the foam generator by the delivery system flows into one of the foaming chambers. The remaining portion of the pressurized fluid and liquid cleaning solution delivered to the foam generator flows into the other foaming chamber. Each foaming chamber is adapted for generating a foam therein for dispensing onto the floor by the dispensing system.




In another embodiment, a chemical foaming system of the present invention for use in a floor cleaning machine comprises a source of pressurized fluid, a solution tank containing a liquid cleaning solution, and a foam generator in fluid communication with the source of pressurized fluid and with the solution tank for receiving pressurized fluid from the source of pressurized fluid and liquid cleaning solution from the solution tank and generating a foam therefrom to be dispensed onto a floor being cleaned. A fluid line provides fluid communication between the source of pressurized fluid and the foam generator for conveying pressurized fluid to the foam generator. A restriction in the fluid line upstream of the foam generator has an orifice sized to restrict the flow of pressurized fluid through the fluid line, thereby increasing the flow velocity of pressurized fluid downstream of the restriction for delivery to the foam generator.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective of a floor cleaning machine of the present invention incorporating a chemical foaming system;





FIG. 2

is a side schematic of the floor cleaning machine of

FIG. 1

showing internal components of the machine;





FIG. 3

is a perspective of the floor cleaning machine of

FIG. 1

rotated to show the bottom of the cleaning machine;





FIG. 4

is an exploded perspective of the floor cleaning machine of

FIG. 1

;





FIG. 5

is an exploded perspective of a portion of the floor cleaning machine of

FIG. 1

showing a chassis and various internal components of the cleaning machine;





FIG. 6

is an exploded perspective of another portion of the floor cleaning machine of

FIG. 1

showing a control assembly of the cleaning machine;





FIG. 7

is an exploded perspective of yet another portion of the floor cleaning machine of

FIG. 1

showing an access panel and chemical foaming system of the present invention and flow arrows indicating the direction of flow of the system;





FIG. 8

is an exploded view of a portion of the chemical foaming system of

FIG. 7

including flow arrows indicating the direction of flow of the system;





FIG. 9

is a schematic illustration of the chemical foaming system of the present invention including flow arrows indicating the direction of flow of the system; and





FIG. 10

is a schematic wiring diagram of the floor cleaning machine of FIG.


1


.











Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




With reference to the various drawings and particularly to

FIGS. 1 and 2

, a floor cleaning machine used particularly for cleaning carpets is generally indicated at


21


. The cleaning machine includes a housing, generally indicated at


23


, comprising a main portion


25


, a handle portion


27


and a rear access panel


29


. The main portion


25


of the housing


23


is mounted on a generally rectangular chassis


31


and is shaped to partially define a solution tank for containing a liquid cleaning solution, such as a mixture of water and a concentrated cleaning chemical, to be applied to the carpet. As an example, the tank of the illustrated embodiment is constructed of polyethylene and is sized for containing up to about five gallons of cleaning solution. The main portion


25


includes a closure


32


for the tank to permit access to the tank for pouring the solution into the tank.




The handle portion


27


of the housing


23


is constructed of the same material as the main portion


25


of the housing and is pivotally connected to the main portion by a rod


33


extending generally laterally through the handle portion and main portion of the housing to permit access to components within the housing for servicing and maintenance. The handle portion is releasably secured to the main portion of the housing against pivoting movement during operation of the machine


21


by latching mechanisms


41


(FIGS.


2


and


3


). A cord rack


37


is mounted on the handle portion


27


of the housing


23


and is oriented for wrapping an electrical cord


203


around the rack to store the cord onboard the cleaning machine


21


when the machine is not in use. A control assembly (indicated generally at


39


in

FIG. 2

) is mounted on the handle portion


27


of the housing


23


for controlling operation of the cleaning machine


21


. The rear access panel


29


is constructed of steel and is secured to the main portion


25


of the housing


23


by suitable fasteners


42


(FIG.


4


).




With reference to

FIGS. 4 and 5

, a brush motor


43


is generally centrally mounted on the chassis


31


within the main portion


25


of the housing


23


. The motor


43


is drivingly connected to a spindle


45


for driving rotation of the spindle about a longitudinal vertical axis of the spindle. The spindle


45


extends down through the chassis


31


for releasably mounting an annular brush


47


including a brush plate


49


and nylon bristles


51


beneath the chassis for conjoint rotation with the spindle about the longitudinal axis of the spindle. Front and rear axles


53


,


55


are mounted on the chassis


31


and are operatively linked by a connecting link


57


extending longitudinally between the axles. Wheels


59


are mounted on the axles


53


,


55


. In the preferred embodiment, the axles


53


,


55


are mounted on the chassis


31


such that the annular brush


47


is slightly canted relative to the chassis. More particularly, the brush


47


is canted about ΒΌ inches from front to back and {fraction (1/16)} inches from side-to-side. Canting the brush


47


in this manner provides a degree of self-propulsion to the cleaning machine


21


and allows foam generated by the machine to pass a sufficient distance under the brush to inhibit the foam from being pushed aside by the leading edge of the annular brush. A generally comb-like pile lifting brush


63


is attached to and extends down from the rear of the chassis


31


for lifting the carpet after the brush has passed over a portion of the carpet being cleaned.




Now referring to

FIGS. 7-9

, a chemical foaming system of the present invention for delivering the cleaning solution to the carpet in the form of a dry foam is generally indicated at


101


. The foaming system


101


is disposed in the housing


23


rearward of the brush motor


43


and is generally secured to the rear access panel


29


of the housing


23


. The foaming system


101


includes a delivery system (generally indicated as


102


in

FIG. 9

) for conveying pressurized fluid, such as air, and liquid cleaning solution, a foam generator (generally indicated as


109


) that receives the pressurized air and cleaning solution and generates a foam therefrom, and a dispensing system (generally indicated as


110


in

FIG. 9

) generally comprising a dispensing line


145


and a diffuser


111


mounted on the chassis


31


near the front of the chassis for directing foam produced by the foam generator onto the carpet forward of the brush


47


. The delivery system


102


includes a fluid delivery system, generally indicated at


107


, for delivering pressurized fluid to the foam generator


109


and a solution delivery system, generally indicated at


105


, for delivering cleaning solution to the foam generator. The fluid delivery system is in fluid communication with an air compressor


103


defining a source of pressurized fluid. A particularly preferred air compressor


103


is manufactured by Thomas Ind. of Sheboygan, Wis. under model designation #639CE44.




A connection line


113


is connected to the air compressor


103


and has a T-connector


115


at its end downstream from the compressor for directing a portion of pressurized air from the compressor to the solution delivery system


105


and the remaining portion of pressurized air to the fluid delivery system


107


. The solution delivery system


105


includes a fluid line


117


connected to the T-connector


115


for receiving pressurized air from the air compressor


103


and directing the pressurized air to a solution tank (indicated as


104


in

FIG. 9

) containing chemical cleaning solution to pressurize the tank. A solenoid valve


119


in the fluid line


117


between the T-connector


115


and the solution tank


104


is operable between an open position in which pressurized air is permitted to flow to the solution tank and a closed position in which pressurized air is substantially blocked against flowing to the solution tank. One preferred solenoid valve


119


is a two-way solenoid valve commercially available from KIP, Inc. of Farmington, Conn. under model designation #351118.




A solution delivery line


121


is connected to the tank


104


for carrying solution forced from the tank to the foam generator


109


. A solenoid valve


123


disposed in the solution delivery line


121


is operable between an open position in which solution is permitted to flow out of the solution tank


104


and a closed position in which solution is blocked against flowing out of the tank. One preferred solenoid valve


123


is available from KIP, Inc. under model designation #351166. Another solenoid valve


206


(FIG.


9


), or shunt valve, is opened when the cleaning machine


21


is turned off after operation to vent pressure from the system


101


. A metering orifice


125


in the solution delivery line


121


restricts the flow of solution through the delivery line to meter the flow of cleaning solution to the foam generator


109


when the solenoid valve is in its open position. In the illustrated embodiment, the metering orifice


125


has a diameter of about 0.098 inches. A drain valve


124


in the solution delivery line


121


between the valve


123


and metering orifice


125


allows for draining of the solution tank


104


for servicing and maintenance. A relief valve


127


is also connected to the air compressor


103


to exhaust pressurized air from the foaming system


101


when the pressure exceeds a predetermined pressure limit. For example, the relief valve


127


of the illustrated embodiment exhausts pressurized air from the system


101


when the pressure exceeds about 12 psi.




The pressurized fluid delivery system


107


includes a fluid line


129


connected to the T-connector


115


and extending directly to the foam generator


109


to permit pressurized air from the compressor


103


to bypass the solution delivery system


105


. The solution delivery line


121


leading from the solution tank


104


connects to the fluid line


129


slightly upstream from the foam generator


109


so that cleaning solution from the solution tank mixes with the pressurized air in the fluid line slightly upstream from the foam generator


109


. A charge orifice


131


is disposed in the fluid line


129


generally adjacent the T-connector


115


to restrict the flow of pressurized air through the fluid line. Restricting the air flow in this manner causes an increase in the air pressure upstream from the charge orifice


131


, resulting in an increased pressure within the solution tank


104


to force fluid from the tank. Thus, it will be seen that providing the charge orifice regulates the flow of solution from the solution tank by regulating the pressure in the tank. Restricting the air flow also increases the flow velocity of air flowing through the fluid line


129


downstream of the charge orifice


131


to the foam generator


109


, thereby speeding up foam generation upon initiation of foam production. As an example, the charge orifice of the illustrated embodiment has a diameter of about 0.107 inches.




Referring particularly to

FIG. 8

, the foam generator


109


includes a pair of tubes


133


in generally parallel spaced relationship with each other. A T-connector


135


having opposing elbows


137


(broadly, inlet lines) connected thereto connects the fluid line


129


to the tubes


133


to direct a portion of the cleaning solution and pressurized air mixture entering the foam generator


109


to each of the tubes such that the tubes are in generally parallel flow relationship with each other. Each tube


133


is filled with a foaming media capable of producing foam caused by shearing action, entrainment or a combination of both. In the preferred embodiment, the tubes


133


are filled with glass beads


139


. The lengths and diameters of the tubes


133


, as well as the diameters of the glass beads


139


, are sized so as to maintain the operating pressure of the foaming system


101


within a desired level by inhibiting the increase of fluid pressure upstream of the foam generator


109


. As an example, the operating pressure in the solution tank


104


of the foaming system


101


is about 10 psi. As shown in

FIG. 7

, the tubes


133


of the illustrated embodiment are arranged in an inclined orientation and preferably positioned upright so that cleaning liquid delivered to the tubes flows generally evenly down into the tubes. However, it is understood that the tubes


133


may be horizontal, or at some inclination other than that shown in the drawings without departing from the scope of the invention.




The bead diameter and tube length also affect the quality of the foam generated in the tubes


133


. More particularly, using larger beads allows for easier passage of the foam through the tubes


133


since there are fewer contact, or blocking, points between beads


139


in the tube. However, the larger beads


139


also result in larger foam bubbles. By using sufficiently long tubes


133


filled with the larger beads


139


, large foam bubbles formed near the upstream end of the tubes will impact other beads while flowing through the tubes. This impact breaks down the large bubbles into more desirable smaller bubbles prior to reaching the downstream ends of the tubes


133


. Smaller bubbles are more favorable for producing a thicker foam. As an example, the tubes


133


of the illustrated embodiment are each about 3.625 inches long and have an inner diameter of approximately 1 inch. The beads


139


are soda lime glass beads having diameters of about 4 mm. The total weight of the beads


139


in each tube is approximately 69.7 grams.




A second T-connector


141


(

FIG. 8

) and opposing elbows


143


(broadly, outlet lines) are connected to the downstream ends of the tubes


133


to combine the streams of foam produced in the tubes and to direct a single stream of foam into the dispensing line


145


leading from the T-connector to the foam diffuser


111


where foam is exhausted from the cleaning machine


21


. Dividing the flow of mixture into two separate tubes


133


and then recombining the resulting foam exiting the tubes substantially reduces and inhibits back pressure from being generated in the foam generator


109


each time foam generation is initiated by the operator. More particularly, if only one tube is used, foam generated in the tube upon initiation of foaming inhibits the flow of air through the tube, causing the pressure in the system upstream of the tube to increase. If this pressure exceeds the pressure in the solution tank, the flow of solution from the tank to the fluid line


129


is substantially inhibited, thereby reducing the effectiveness of the foam generator


109


and causing a delay in the cleaning process while the excess pressure is relieved.




In the present invention, where at least two tubes


133


are used in parallel, the air and cleaning solution mixture flowing into the foam generator


109


is divided between the tubes. If foam generated in one of the tubes


133


thickens to the extent that air flow through the tube causes pressure to increase upstream of the tube, the increased pressure causes more air to flow into the other tube to relieve pressure rather than increase the pressure in the system upstream of the foam generator. This allows the foaming system


101


to more rapidly reach a balanced or steady operating state, thereby reducing or eliminating the risk of delay in the cleaning process.




As shown in

FIG. 2

, a transparent portion


146


of the dispensing line


145


carrying the foam from the T-connector


141


downstream of the tubes


133


extends outward through an opening in the rear access panel


29


and then back into the housing


23


through a second opening in the panel prior to extending to the diffuser


111


to permit visual verification by the operator that foam is being generated by the foaming system


101


. In the preferred embodiment, the dispensing line


145


is sized to inhibit any voids or space unoccupied by foam. The end length of the diffuser


111


is sized according to the desired span of foam beneath the cleaning machine


21


. A screed (not shown) is preferably attached to the underside of the chassis


31


intermediate the diffuser


111


and the brush


47


and extends down from the chassis but above the carpet to level down the foam deposited on the carpet to a desired thickness prior to the brush traveling over the carpet.




Referring to

FIGS. 6 and 10

, the control assembly


39


comprises a control panel


201


, the electrical cord


203


, a brush control lever


205


and a foam control switch


207


. The electrical cord


203


is secured to the control panel


201


and is electrically connected to the air compressor


103


, the solenoid valves


119


,


123


and the brush motor


43


. The brush control lever


205


is pivotally attached to the control panel


201


for pivoting movement by the operator relative to the handle portion


27


of the housing


23


between a cleaning position in which the lever is generally adjacent the handle


35


and a non-cleaning position in which the lever is spaced from the handle. In the cleaning position of the brush control lever


205


, electrical current is permitted to flow to the brush motor


43


to operate the brush motor. A coil spring


209


mounted on the brush control lever


205


biases the lever to its non-cleaning position.




The foam control switch


207


is mounted on the control panel


201


and is electrically connected to the solenoid valves


119


,


123


and air compressor


103


for controlling operation of the chemical foaming system


101


. The switch


207


is preferably a three position switch movable between an on position in which foam is produced and dispensed onto the floor, a standby position in which foam production is halted but the pressure in the solution tank


104


is maintained and the cleaning machine


21


is still operable, and an off position in which pressure in the foaming system


101


is vented through the shunt valve


206


and the machine is inoperable. In the on position of the foam control switch


207


, the solenoid valves


119


,


123


are moved to their open positions to permit the flow of pressurized air into the tank


104


and to permit the flow of solution from the tank to the foam generator


109


. In the standby position, the solenoid valves


119


,


123


are both moved to their closed positions. This prevents pressurized air from flowing into the tank


104


and further prevents solution from flowing out of the tank, thereby preserving the pressure within the solution tank so that foam generation can be resumed generally immediately upon moving the switch


207


back to its on position.




In operation, the electrical cord


203


is plugged into an electrical outlet and the foam control switch


207


is moved to the on position (e.g., the solenoid valves


119


,


123


are both in the open position) while the brush control lever


205


is in its non-cleaning position. Electrical current flows to the air compressor


103


to generate pressurized air in the chemical foaming system


101


. The pressurized air is directed through the fluid line


113


leading from the air compressor


103


to the T-connector


115


. As pressurized air flows ftrough the charge orifice


131


in the fluid line


129


, air pressure behind (e.g., upstream of) the orifice increases, thereby pressurizing the solution tank


104


to a pressure sufficient to force cleaning solution from the tank through the delivery line


121


. The flow velocity of air flowing through the fluid line


129


increases after passing through the charge orifice to reduce the amount of time it takes for foam production to start. Cleaning solution forced from the solution tank


104


flows through the metering orifice


125


and valve


123


in the delivery line


121


and is directed into the fluid line


129


for admixture with the pressurized air slightly upstream of the foam generator


109


.




The mixture of pressurized air and cleaning solution flows into the T-connector


135


upstream of the bead-filled tubes


133


and is diverted into the tubes. As the mixture flows past the beads


139


in the tubes


133


, foam bubbles are generated through shearing action, entrainment or both. As the foam in the tubes


133


thickens the pressure in the system upstream of the tubes tends to increase. If the pressure in one tube


133


increases to a pressure greater than that in the other tube, more air will be forced into the less pressurized tube until the pressure is balanced. This reduces the possibility that pressure in the fluid line


129


upstream of the tubes


133


will become greater than the pressure in the solution tank


104


and inhibit solution from flowing out of the tank. The foam flows from the downstream ends of the tubes


133


and combines within the T-connector


141


downstream of the tubes to form a single stream of foam directed through the dispensing line


145


. As foam flows through the dispensing line


145


, the operator visually confirms that foam production is occurring by viewing the foam flowing through the transparent section


146


of the diffuser line that extends outward of the rear access panel


29


of the housing


23


.




After confirming foam production, the operator pulls up on the brush control lever


205


to pull the lever to its cleaning position adjacent the handle


35


. The brush motor


43


is operated upon receiving a signal from the brush control lever


205


to rotate the annular brush


47


beneath the chassis


31


. The cleaning machine


21


is then moved forward, with the foam being dispensed from the diffuser


111


at the front of the chassis


31


. As the cleaning machine


21


moves forward, the screed levels the foam to a desired thickness and the brush


47


moves over the foam to work the foam into the carpet, thereby cleaning the carpet. Finally, the pile lifting brush


63


moves over the cleaned portion of the carpet to lift pile that has been matted down by the brush


47


.




When the cleaning machine


21


is to be turned around, or stopped momentarily for adjusting the electrical cord


203


or tending to other matters, foam production should be halted to prevent excessive foam from being dispensed onto the carpet. To this end, the foam control switch


207


is moved to its standby position. In reaction, the solenoid valves


119


,


123


are both moved to their closed positions, thereby sealing the solution tank against delivering solution to the foam generator


109


while also maintaining the pressure within the tank. When the turn is completed or cleaning is otherwise to be continued, the foam control switch


205


is moved back to the on position to open the solenoid valves


119


,


123


. Because the pressure was maintained within the solution tank in the standby position of the foam control switch


205


, foam production is restarted quickly after moving the switch back to the on position.




In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained. Placing a charge orifice


131


in the fluid line


129


adjacent the T-connector


115


causes back pressure behind the orifice to build in the solution tank


104


to a pressure sufficient to force solution from the tank. This allows the air compressor


103


to be used for both foam generation (via the fluid line


129


) and for forcing solution from the tank


104


. By using two bead filled tubes


133


for generating foam, a substantial increase in pressure in one of the tubes caused by the foam in the tube inhibiting flow therethrough, is relieved by allowing a greater volume of air to flow to the other tube. This inhibits the increased pressure from backing up within the fluid line


129


and inhibiting the flow of solution from the tank


104


through the solution delivery line


121


and into the fluid line, assuring little delay in foam production each time the foam control switch


205


is moved to its on position.




As various changes could be made in the above methods without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.



Claims
  • 1. A chemical foaming system for use in a floor cleaning machine, the foaming system comprising:a foam generator, a delivery system upstream of the foam generator in communication with a source of pressurized fluid and a source of liquid cleaning solution, the delivery system delivering pressurized fluid and liquid cleaning solution to the foam generator; and a dispensing system downstream of the foam generator for dispensing foam generated by the foam generator onto the floor being cleaned; the foam generator comprising a pair of independent foaming chambers in generally parallel flow relationship intermediate the delivery system and the dispensing system whereby a portion of pressurized fluid and liquid cleaning solution delivered to the foam generator by the delivery system flows into one of the foaming chambers and the remaining portion of the pressurized fluid and liquid cleaning solution delivered to the foam generator flows into the other foaming chamber, each foaming chamber being adapted for generating a foam therein for dispensing onto the floor by the dispensing system, each foaming chamber having an upstream end in fluid communication with the delivery system for receiving a respective portion of the pressurized fluid and a downstream end in fluid communication with the dispensing system for exhausting foam generated within the chamber, the upstream ends of the foaming chambers being in fluid communication with each other substantially downstream of the source of pressurized fluid whereby an increase of fluid pressure in one of said foaming chambers causes a decreased portion of the pressurized fluid to flow to the one foaming chamber and an increased portion of pressurized fluid to flow to the other foaming chamber without substantially increasing the fluid pressure of pressurized fluid in the delivery system.
  • 2. A chemical foaming system as set forth in claim 1 wherein the foaming chambers are each defined by a tube, the tube being filled with a foaming media for facilitating formation of the foam by at least one of shear action and entrainment as the pressurized fluid and chemical cleaning liquid flow through the tube.
  • 3. A chemical foaming system as set forth in claim 2 wherein the foaming media is glass beads.
  • 4. A chemical foaming system as set forth in claim 3 wherein the beads are sized in cross-section to be at least about 4 mm.
  • 5. A chemical foaming system as set forth in claim 1 wherein the delivery system comprises a fluid line for carrying pressurized fluid and liquid cleaning solution, a pair of inlet lines in fluid communication with the fluid line, each inlet line being in fluid communication with a respective upstream end of one of the foaming chambers for directing a portion of the pressurized fluid and liquid cleaning solution in the fluid line to the respective foaming chamber, the inlet lines being in fluid communication with each other downstream of the fluid line to provide fluid communication between the upstream ends of the foaming chambers.
  • 6. A chemical foaming system as set forth in claim 1 wherein the dispensing system comprises a dispensing line and a pair of outlet lines, each outlet line being in fluid communication with a respective downstream end of one of the foaming chambers for receiving foam exhausted from the foaming chambers and further being in fluid communication with the dispensing line whereby foam exhausted from the foaming chambers combines in the dispensing line for dispensing onto the floor being cleaned.
  • 7. A chemical foaming system for use in a floor cleaning machine, the foaming system comprising:a source of pressurized fluid; a solution tank containing a liquid cleaning solution; a foam generator in fluid communication with the source of pressurized fluid and with the solution tank for receiving pressurized fluid from the source of pressurized fluid and liquid cleaning solution from the solution tank and generating a foam therefrom to be dispensed onto a floor being cleaned; a first fluid line providing fluid communication between the source of pressurized fluid and the foam generator for conveying pressurized fluid to the foam generator; a second fluid line in fluid communication with the source of pressurized fluid and the solution tank for directing a portion of pressurized fluid from the source of pressurized fluid to the solution tank to pressurize the solution tank, thereby forcing liquid cleaning solution from the tank, the remaining portion of pressurized fluid from the source of pressurized fluid being directed to flow through the first fluid line; and a restriction in the first fluid line upstream of the foam generator, the restriction having an orifice sized to restrict the flow of pressurized fluid through the first fluid line, thereby increasing the flow velocity of pressurized fluid downstream of the restriction for delivery to the foam generator, the first and second fluid lines being in fluid communication with each other upstream of the restriction such that the restriction in the first fluid line effects an increase in fluid pressure of the portion of pressurized fluid directed to the solution tank to pressurize the solution tank.
  • 8. A chemical foaming system as set forth in claim 7 further comprising a solution delivery line leading from the solution tank for carrying cleaning solution forced from the tank, the solution delivery line being in fluid communication with the foam generator to provide fluid communication between the solution tank and the foam generator.
  • 9. A chemical foaming system as set forth in claim 8 wherein the first fluid line and the solution delivery line are connected together substantially upstream of the foam generator such that pressurized fluid flowing through the first fluid line and cleaning solution flowing through the solution delivery line combine at the connection for flow to the foam generator.
  • 10. A chemical foaming system as set forth in claim 8 further comprising a restriction in the solution delivery line upstream of the foam generator, the restriction having an orifice for metering the volume of chemical solution flowing to the foam generator.
  • 11. A chemical foaming system for use in a floor cleaning machine, the foaming system comprising:a foam generator, a delivery system upstream of the foam generator in communication with a source of pressurized fluid and a source of liquid cleaning solution, the delivery system delivering pressurized fluid and liquid cleaning solution to the foam generator; and a dispensing system downstream of the foam generator for dispensing foam generated by the foam generator onto the floor being cleaned; the foam generator comprising a pair of independent foaming chambers in generally parallel flow relationship intermediate the delivery system and the dispensing system whereby a portion of pressurized fluid and liquid cleaning solution delivered to the foam generator by the delivery system flows into one of the foaming chambers and the remaining portion of the pressurized fluid and liquid cleaning solution delivered to the foam generator flows into the other foaming chamber, each foaming chamber being adapted for generating a foam therein for dispensing onto the floor by the dispensing system; the delivery system comprising a fluid line for carrying substantially all of the pressurized fluid and liquid cleaning solution to be delivered to the foaming chambers, a pair of inlet lines in fluid communication with the fluid line, each inlet line being in fluid communication with a respective upstream end of one of the foaming chambers for directing a portion of the pressurized fluid and liquid cleaning solution in the fluid line to the respective foaming chamber.
  • 12. A chemical foaming system as set forth in claim 11 wherein the inlet lines are in fluid communication with each other downstream of the fluid line to provide fluid communication between the upstream ends of the foaming chambers.
REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/121,176 filed Feb. 22, 1999 and incorporated herein by reference.

US Referenced Citations (20)
Number Name Date Kind
2212598 Hagist Aug 1940
2384458 Dubay Sep 1945
2868584 Faust Jan 1959
2960710 McKeegan Nov 1960
3212762 Carroll et al. Oct 1965
3392418 Schowalter Jul 1968
3676889 Edlin Jul 1972
3940826 Phillips et al. Mar 1976
4000536 Nayfa et al. Jan 1977
4061001 von der Eltz et al. Dec 1977
4107075 Kramer Aug 1978
4167798 Klügl et al. Sep 1979
4167799 Webb Sep 1979
4429432 Copeland et al. Feb 1984
4667364 Meili May 1987
4780243 Edgley et al. Oct 1988
4974618 Nysted Dec 1990
5133107 MacDonald Jul 1992
5813086 Ueno et al. Sep 1998
5853814 Murphy Dec 1998
Provisional Applications (1)
Number Date Country
60/121176 Feb 1999 US