Chemical glow products have been in use for decades. A common variety employs a combination of at least two chemicals which, when mixed, produce a glowing light for a limited period of time. Typically, these products produce a low level of light for up to about eight hours.
Such products are available in the form of sticks and more recently in the form of pouches. These products are available commercially from Cyalume Technologies Inc., West Springfield, Mass. 01089, under the brands Cyalume, Vis-P ad and formerly, CyPad. An example of a chemical light pad is schematically depicted in
Tightly sealed within the pouch 12 is a porous fabric 18 impregnated with one or more first chemicals for producing light. Also sealed within the pouch 12 is a thin foil packet or other frangible container 20 within which is sealed one or more second chemicals, typically in gel form for mixing with the first chemical.
The foil packet 20 may be bonded to one ply or sheet 14 with adhesive 24 while the fabric 18 may be bonded to the other sheet 14 or alternatively bonded or staked between the two sheets 14. A rigid plastic punch 26 is provided in the pouch 12. Manually pressing or bending the pouch 12 against or around the punch 26 causes the punch to pierce or rupture the foil packet 20.
Upon rupture, the second chemicals are released from the foil packet 20 and mixed with the first chemicals in the porous fabric 18. Additional mixing of the chemicals is carried out by kneading and manually pressing the light transmitting pouch 12. Once thoroughly mixed, the chemicals produce a glowing light through the pouch 12. The glowing light 10 can then be mounted to a surface by an adhesive layer 30. Layer 30 is exposed by removing a peel-away cover 32.
In the drawings:
In the various figures of the drawings, like reference numerals designate like or similar parts.
While the light 10 discussed above functions adequately, there are some applications where the light produced by the mixed chemicals is not bright enough and/or not of sufficient duration. To remedy this condition, a supplemental light source is provided within pouch 12 in accordance with this disclosure. As seen in
The first light source is the same as described above wherein a fabric 18 carries one or more first chemicals and a sealed packet 20 carries one or more second chemicals. While the packet 20 described above is typically formed with a thin opaque foil, it is contemplated to use a clear foil in this embodiment to allow for the passage of light from a second source of light through the packet 20. However, this is not always required.
It should be noted that the fabric 18 can be eliminated and the pouch 12 simply filled with one or more desired first chemicals, leaving space for the remaining separately sealed second chemical components.
As further seen in
Circuit board 54 includes control circuitry 55 of known design for producing one or more light operating modes. For example, the secondary light source 50 is commercially available from Brite Strike Technologies Inc., Plymouth, Mass., under the brand APALS. A battery 58, on-off latching button switch 60 and light emitting diode (LED) 64 are mounted on the circuit board 54 and interconnected by the control circuitry 55.
The LED 64 can be selectively switched on and off by manually depressing the flexible cover 52 onto the switch 60 through the flexible plastic pouch 12. Dimples, bumps or other surface texture 70 can be provided on the outer surface of the flexible plastic pouch 12 and aligned over the switch 60 so an operator can easily locate by feel and actuate the switch 60 by pressing on the textured surface 70. Packet 20 is also flexible and can transmit the actuating force from the outer surface of pouch 12 to the switch 60 via the cover 52.
The LED 64 can be cycled through any number of operating modes provided by circuitry 55. For example, by repetitively pressing switch 60, the LED can be turned on in a bright steady mode, then switched to a dim mode, then to a strobed mode, then back to an off mode. The circuitry 55 can be arranged to produce any desired sequence of bright and dim light intensity and combined with both steady and fast or slow strobed light functions.
In use, an operator can activate the chemical glow light function by pressing or bending or otherwise forcing the pouch 12 over or around the plastic punch 26 so as to rupture the sealed chemical packet 20 and so as to release one or more of the second chemicals into the pouch 12. The second chemicals are then mixed with the first chemicals on the porous fabric 18 or in the surrounding pouch 12 by kneading the pouch 12.
If it is desired to increase the light output (lumens) of the glowing chemical light 10 of the light assembly 40, a user can simply squeeze or press against the pouch 12 to actuate the button switch 60 and illuminate the second battery-powered LED light source in any of its selectable operating modes. The light provided by the LED 64 is generally much brighter than the light provided by the chemical light 10.
The light from the LED 64 is diffused through the first and second mixed chemicals which act as a diffuser lens to spread the projected beam of light from the LED 64 across and through the surface of the pouch 12. This dramatically increases the intensity and visibility of the light emitted by the light 40 and provides an improved glow product that can be used effectively for low light and nighttime signaling or marking a position or area.
While the useful life of the chemical glow 10 light is about 8 hours, the life of the LED light source 50 is up to 80 hours or more. Thus, if the chemical glow light 10 expires, the secondary LED light source will continue to operate for many hours more.
As seen in
The light strips 80 can be arranged in any desired pattern to provide a marker or signal in low light conditions. For example, in
It should be noted that the light strips 80 can be arranged to spell words in block letters, such as “HELP.” Alternatively, the lights 10 can be produced in different lengths so as to create a coded message. As seen in
The lights 40 can be produced in virtually any desired shape such as triangular (
While the secondary LED light source 50 has been described above for use with a two component chemical glow light, the light source 50 can also be used with other glow chemicals. For example, some glow chemicals have glow properties that require a separate light source to shine on them to initiate a glow and to charge or activate the chemicals so as to produce a glow. These types of glow chemicals are commonly used on glow-in-the-dark dials on wrist watches.
By activating these types of glow chemicals with the secondary light source 50, these chemicals can maintain a continual charge which produces a glow for many hours, up to 80 hours or more. These types of glow chemicals are available as liquids and gels and can be applied as a coating to virtually any surface and dried to a paint-like finish. One example is the coating of bicycle tire rims with a glow chemical for night riding safety.
A bicycle rider typically activates the glow coating on the tire rim with a flashlight However, the effective glow only lasts for a few minutes. As seen in
It can be appreciated that the performance of current chemical glow products can be enhanced with a secondary long life battery-powered LED light. The LED light can be provided in a pouch and surrounded by glow chemicals or spaced apart from glow chemicals to activate them. The blinking or strobed mode of the LED light 50 accentuates the visibility of the lights 40 as well as the visibility of the chemical glow lights and can increase the run time of the battery powered LED 64.
In some cases, it is desirable to further extend the life of the LED battery 58 from about 80 hours of run time to several hundred or several thousand hours of run time so that LED 64 is illuminated an equally extended amount of time. This can be achieved with the use of a rechargeable battery 58 and an external source of battery charge such as provided with a photovoltaic cell or solar panel.
For example, as seen in
While this solar powered light source 50 has direct applications for military operations, there is also a major advantage to the consumer market for all of the current uses of an extended life light source 50 with the added benefit of thousands of hours of runtime rather than hundred of hours of runtime without a solar panel battery charger.
The use of a solar panel or solar cell 210 on light source 50 is “green” or sustainable in that the current battery powered LED lighting systems disclosed above are disposable after 80 to 100 hours or so of use compared to years of use with a rechargeable light source 50. Moreover, the cost per hour of runtime can be reduced to fractions of a cent.
The use of solar panels or solar cells 210 on the light source 50 described above can be combined with a conventional light-actuated photo switch 218 wired to the microcircuitry 55. The light-actuated switch 218 can take the form of a photoresistor, a photocell, a photodiode, a phototransistor or any similar light-actuated switch or light sensor for controlling or limiting the illumination of the LED 64. The technology for light-actuated switches has improved so that their size is small and thin enough to fit onto the top of circuit board 54. The photo switch 218 can be held in place by an insulating epoxy resin.
The microcircuitry 55 can take the form of a programmable controller or microcontroller to perform the lighting functions and operations as disclosed above. Inputs to the microcircuitry 55 from the switch 60 select a particular operating mode. When a light-actuated switch 218 is used as an input to the microcircuitry 55, the LED 64 will only operate under predetermined levels of darkness which can be programmed into the microcircuitry 55. In these cases, operation of the LED 64 during daylight may not be required or may not be effective, in which case battery power is conserved for when it is later needed.
When a particular mode of operation of LED 64 is turned off by the light-actuated switch 218 due to the level of ambient light reaching a predetermined brightness, that same operating mode will be returned to operation when the level of ambient light decreases to a predetermined level of darkness. A diode 228 can be placed between the solar cell or solar panel 210 and the battery 58 to prevent battery discharge through the solar cell or solar panel 210 during periods of darkness.
The light-actuated switch 218 wired as shown in
There has been disclosed heretofore the best embodiments presently contemplated. However, it is to be understood that various changes and modifications may be made thereto without departing from the spirit of the disclosure.
This application claims the benefit and priority of U.S. provisional application No. 61/751,133 entitled “Chemical Glow Devices with LED Lighting” filed Jan. 10, 2013 and which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5980055 | Palmer | Nov 1999 | A |
6075322 | Pauly | Jun 2000 | A |
6106129 | Cranor | Aug 2000 | A |
6676269 | Dorney | Jan 2004 | B1 |
7104668 | Lee | Sep 2006 | B1 |
8508382 | Novak | Aug 2013 | B1 |
8882554 | McKinney | Nov 2014 | B2 |
20040037085 | Panzarella | Feb 2004 | A1 |
20050180126 | Steinberg | Aug 2005 | A1 |
20060098420 | Kaplan | May 2006 | A1 |
20060291210 | Lee | Dec 2006 | A1 |
20070247843 | Schrimmer | Oct 2007 | A1 |
20080094825 | Silver | Apr 2008 | A1 |
20080291658 | Cranor | Nov 2008 | A1 |
20090052172 | Sheng | Feb 2009 | A1 |
20090175024 | Cranor | Jul 2009 | A1 |
20100039243 | Tuan | Feb 2010 | A1 |
20100259922 | Johnson | Oct 2010 | A1 |
20100302759 | Hallowell | Dec 2010 | A1 |
20100302760 | Jin | Dec 2010 | A1 |
20140003026 | Friedson | Jan 2014 | A1 |
20140092579 | Jin | Apr 2014 | A1 |
20140286048 | Riello | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140192512 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61751133 | Jan 2013 | US |