Chemical process for the preparation of an amido-phenoxybenzoic acid compound

Information

  • Patent Grant
  • 7973178
  • Patent Number
    7,973,178
  • Date Filed
    Monday, November 27, 2006
    18 years ago
  • Date Issued
    Tuesday, July 5, 2011
    13 years ago
Abstract
A process for making a compound of formula (I),
Description

This invention relates to an improved chemical process for making compounds which are useful in the treatment or prevention of a disease or medical condition mediated through glucokinase (GLK or GK), leading to a decreased glucose threshold for insulin secretion. Such compounds are predicted to lower blood glucose by increasing hepatic glucose uptake. Such compounds may have utility in the treatment of Type 2 diabetes and obesity. The invention is also related to intermediates useful in the improved chemical process.


In our applications (WO2005/080359, WO2005/080360, WO 2005/121110 (PCT/GB2005/002166), WO 2006/040529 (PCT/GB2005/003890) and WO 2006/040528 (PCT/GB2005/003888)) we have described compounds which are useful as GLK activators, which are of general chemical formula (A).




embedded image



wherein for example

  • R1 is hydroxymethyl, methoxymethyl or methyl;
  • X is methyl or ethyl;
  • R2 is selected from —C(O)NR4R5, —SO2NR4R5, —S(O)pR4 and HET-2;
  • HET-1 is an optionally substituted 5- or 6-membered, C-linked heteroaryl ring containing a nitrogen atom in the 2-position;
  • HET-2 is an optionally substituted 4-, 5- or 6-membered, C- or N-linked heterocyclyl ring containing 1, 2, 3 or 4 heteroatoms;
  • R3 is selected from halo, fluoromethyl, difluoromethyl, trifluoromethyl, methyl, methoxy and cyano;
  • R4 is selected from hydrogen, (1-4C)alkyl [optionally substituted], (3-6C)cycloalkyl (optionally substituted) and HET-2;
  • R5 is hydrogen or (1-4C)alkyl;
  • or R4 and R5 together with the nitrogen atom to which they are attached may form a heterocyclyl ring system;
  • m is 0 or 1;
  • n is 0, 1 or 2;
  • provided that when m is 0, then n is 1 or 2; or a salt, pro-drug or solvate thereof.


The compounds of formula (A) are N-heterocyclyl-aryl amides, wherein the aryl ring is 3,5-disubstituted by a substituted alkyl ether and an aryloxy substituent. These compounds have for example been synthesised using reaction sequences such as those illustrated in Schemes 1 and 2 below:




embedded image



where X is as defined in Formula (A), P is methyl or a protecting group such as a trialkylsilyl group.




embedded image


The starting material for both of these synthetic routes is methyl(3,5-dihydroxy)benzoate. The order of attaching the various substituents around the phenyl ring has varied, but in both routes illustrated, it has been necessary to use protecting groups (benzyl in Schemes 1 and 2) during the synthetic sequence in order to differentiate between the two hydroxy groups in the starting material. This inevitably introduces extra synthetic steps with the consequent implications for increased cost per unit weight of final product and increased waste and environmental impact, if the product were to be manufactured on significant scale.


Concurrently, compounds with a similar general formula have been published (WO 2004/076420). A route used to these compounds is illustrated in Scheme 3.




embedded image


However, as shown above, a methoxymethyl protecting group is still utilised in this route.


In order for such compounds to be useful commercially, there is a need to develop one or more short, efficient synthetic routes. In our co-pending PCT application PCT/GB2005/003882 we have described routes to the above compounds starting from dihalophenyl derivatives, which were exemplified, inter alia, according to the scheme below:




embedded image


A key intermediate in this process is the benzoic acid derivative (B). Use of this intermediate provides rapid access to a number of heterocyclic amide analogues (such as compound (C)) by formation of the heterocyclic amide bond (illustrated above by the heterocycle being methylpyrazole).


Synthesis of intermediates of analogous structure to (B), where the methylsulfonyl group has been replaced by an amide, provides further challenges. For example, the conversion of the nitrile group to the carboxylic acid group of (B) using reagents such as sodium hydroxide may cause at least partial hydrolysis of the amide R1R2N—CO— as shown below:




embedded image


Although the conversion of the nitrile to the desired carboxylic acid derivative, such as (B), may work to some useful degree, it would be advantageous to develop routes to compounds analogous to compound (B) which can tolerate the presence of sensitive substituents such as amides, to give high yields of the required carboxy intermediate, on a significant scale, for further elaboration to the final product (D) (wherein HET-1 is an optionally substituted 5- or 6-membered, C-linked heteroaryl ring containing a nitrogen atom in the 2-position):




embedded image


According to a first aspect of the invention, there is provided a process for making a compound of formula (I),




embedded image



said process comprising either:

  • a) hydrolysis of an ester of formula (II) (wherein R is (1-4C)alkyl);




embedded image



or

  • b) reaction of a halo derivative of formula (III) (wherein Hal represents a halogen) with a compound of formula (IV);




embedded image



wherein in compounds of formula (I) to (IV), R1 and R2 are independently selected from hydrogen and (1-6C)alkyl, or R1 and R2 together with the nitrogen to which they are attached form a 4- to 7-membered heterocyclic ring, said ring optionally containing 1 further heteroatom selected from O, N and S; and

  • P1 is hydrogen or a hydroxy protecting group.


In one aspect of the invention, the compound of formula (I) is made by process a).


In another aspect of the invention, the compound of formula (I) is made by process b).


Suitable conditions for process a) are hydrolysis under mild basic conditions such as the use of sodium hydroxide in tetrahydrofuran. Further suitable conditions include sodium hydroxide in water/methanol at room temperature (Tetrahedron Letters, 46(25), 4311-4313; 2005, and Angewandte Chemie, International Edition, 44(1), 72-75; 2004); and lithium hydroxide in THF/water/methanol at room temperature (Journal of the American Chemical Society, 127(15), 5540-5551; 2005).


Suitable conditions for process b) are those known to be suitable for Ullman reactions. For example see K Kunz, U Scholz, D Ganzer, Synlett, 2003, 2428-2439, G Mann, C Incarvito, A L Rheingold & J Hartwig, J. Am. Chem. Soc., 1999, 121, 3224-3225 and A Aranyos, D W Old, A Kiyomori, J P Wolfe, J P Sadighi & S L Buckwald, J. Am. Chem. Soc., 1999, 121, 4369-4378.


Generally, suitable conditions for process b) are use of a high boiling solvent (for example toluene, 1,4-dioxane or DMSO or, for example benzonitrile, dimethylformamide, N-methylpyrrolidone (NMP) or N,N-dimethylpropyleneurea (DMPU)); using a copper or palladium catalyst (for example copper, copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (II) chloride, copper (II) bromide, copper (II) iodide, copper (II) oxide, palladium (II) acetate or bisdibenzylideneacetone palladium (0), or for example copper (I) oxide); a ligand for the catalyst (for example 1,10-phenanthronine, neocuprine, a 1,3-diketone (such as 2,2,6,6-tetramethylheptane-3,5-dione), racemic-2-(di-t-butylphsophino)-1,1′-binaphthyl, 2-(di-t-butylphosphino)biphenyl or 1,1′-bis(di-t-butylphosphino)ferrocene; or for example a ligand selected from 8-quinolinol, 1,10-phenanthraline, salicaldioxime, 2,2,6,6-tetramethylheptane-3,5-dione and N,N-dimethylglycine, in particular selected from 2,2,6,6-tetramethylheptane-3,5-dione and N,N-dimethylglycine); and a base (for example inorganic bases such as potassium carbonate, cesium carbonate and organic bases such as sodium tert-butoxide) to deprotonate the phenol.


For example process b) may be conducted in NMP or benzonitrile, using copper (I) iodide or copper (I) oxide as catalyst, 2,2,6,6-tetramethylheptane-3,5-dione (or N,N-dimethylglycine, but particularly 2,2,6,6-tetramethylheptane-3,5-dione (TMHD)) as ligand and cesium carbonate as base. It is advantageous to use cesium carbonate with a high surface area and carry out the reaction with vigorous stirring. In another aspect, process b) is carried out in NMP, with copper (I) iodide, TMHD and cesium carbonate.


Therefore in another aspect of the invention there is provided a process for making a compound of formula (I),




embedded image



said process comprising

  • reaction of a halo derivative of formula (III) (wherein Hal represents a halogen) with a compound of formula (IV);




embedded image



in the presence of a catalyst, a ligand for said catalyst and a base,


wherein in compounds of formula (I) to (IV), R1 and R2 are independently selected from hydrogen and (1-6C)alkyl, or R1 and R2 together with the nitrogen to which they are attached form a 4- to 7-membered heterocyclic ring, said ring optionally containing 1 further heteroatom selected from O, N and S; and

  • P1 is hydrogen or a hydroxy protecting group.


In one aspect, P1 is a hydroxy protecting group.


Suitable values for hydroxy protecting groups P1 are any of those known in the art for protecting primary alcohols (see for example “Protective groups in Organic Chemistry” 3nd Edition, T W Greene and PGM Wuts, 1999).


Further suitable values for hydroxy protecting groups P1 are t-butyl, benzyl, trityl (triphenylmethyl) and tetrahydropyran-2-yl; such that the preferred side chains on compounds of formula (I)-(III) are:




embedded image


A further suitable protecting group is an allyl ether.


In one aspect, tert-butyl ether:




embedded image



is a preferred protecting group.


In another aspect, P1 is hydrogen.


These protecting groups may be removed at a convenient moment in the subsequent synthetic sequence by methods known in the art. For example, a benzyl group may be removed by hydrogenation. A trityl group or a tert-butyl group may be removed by treatment with acid. Suitable acids or acidic conditions for removal of a tert-butyl group are, for example, treatment with hydrochloric acid in methanol, or treatment with amberlyst resin, or treatment with formic acid.


Compounds of formula (II) may be made as illustrated in Scheme 5 (wherein P1 is tert-butyl).




embedded image


It should be noted that the route illustrated in Scheme 5, although using the same dihydroxymethylbenzoate starting material as the route shown in Scheme 2, advantageously requires fewer steps and fewer protecting groups.


Compounds of formula (III) may be made as illustrated in Scheme 6 (wherein P1 is tert-butyl).




embedded image


Compounds of formula (VI) and (VII) or analogous compounds with other protecting groups can be made by methods known in the art from the commercially available propanediol starting materials, such as:




embedded image


Compounds of formula (IV) and (V) are either commercially available or can be made from commercially available material by processes known in the art. See also for example our patent applications WO2005/080359 and WO2005/080360.


In this specification the generic term “alkyl” includes both straight-chain and branched-chain alkyl groups. However references to individual alkyl groups such as “propyl” are specific for the straight chain version only and references to individual branched-chain alkyl groups such as t-butyl are specific for the branched chain version only. For example, “(1-4C)alkyl” includes methyl, ethyl, propyl, isopropyl and t-butyl. An analogous convention applies to other generic terms.


Suitable examples of rings formed by —NR1R2 include morpholino, piperidinyl, piperazinyl, pyrrolidinyl and azetidinyl. A particular ring formed by —NR1R2 is azetidinyl.


Further suitable examples of rings formed by —NR1R2 include homopiperazinyl, homo-morpholino, homo-thiomorpholino (and versions thereof wherein the sulfur is oxidised to an SO or S(O)2 group) and homo-piperidinyl.


Examples of (1-4C)alkyl include methyl, ethyl, propyl, isopropyl, butyl and tert-butyl.


In a further aspect of the invention, there is provided a compound of formula (I) as hereinbefore defined.


In a further aspect of the invention, there is provided a compound of formula (II) as hereinbefore defined.


Suitable and particular values for R1, R2 and P1 in compounds of formula (I) and (II) have been given hereinbefore.


Particular compounds of formula (I) include:

  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-hydroxy-1-methylethoxy]benzoic acid;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-benzyloxy-1-methylethoxy]benzoic acid;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-triphenylmethoxy-1-methylethoxy]benzoic acid;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tetrahydropyran-2-yloxy-1-methylethoxy]benzoic acid.


Particular compounds of formula (II) include

  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-hydroxy-1-methylethoxy]benzoic acid methyl ester;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid methyl ester;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-benzyloxy-1-methylethoxy]benzoic acid methyl ester;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-triphenylmethoxy-1-methylethoxy]benzoic acid methyl ester;
  • 3-[4-(azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tetrahydropyran-2-yloxy-1-methylethoxy]benzoic acid methyl ester.


A particular compound of formula (III) is 3-bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid.


A particular compound of formula (IV) is 4-(azetidin-1-ylcarbonyl)phenol.


The compounds of formula (I) made by the process of the invention may be reacted to form compounds which are useful as activators of glucokinase (GLK). This activity may be demonstrated by test methods known in the art, for example those given in our patent applications WO 03/015774, WO2005/080359 and WO2005/080360. See also Brocklehurst et al, Diabetes 2004, 53, 535-541.


Compounds of formula (I) may be further elaborated to make compounds of formula (D) as defined hereinbefore. Processes to carry out this conversion are illustrated in Scheme 4 and in the accompanying examples. Suitably, the carboxylic acid of formula (I) may be coupled with a heterocylic amine derivative by using an appropriate coupling reaction, such as a carbodiimide coupling reaction performed with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC) in the presence of dimethylaminopyridine (4-DMAP) in a suitable solvent such as DCM, chloroform or DMF at room temperature; or alternatively with carbonyldiimidazole (CDI) in a suitable solvent such as THF at room temperature; or alternatively using 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) in a suitable solvent such as acetonitrile, for example at 0° C. to room temperature; or by a reaction in which the carboxylic group is activated to an acid chloride by reaction with a suitable reagent, such as oxalyl chloride or 1-chloro-N,N,2-trimethyl-prop-1-en-1-amine in the presence of a suitable solvent such as DCM, and where necessary catalytic amount of DMF. The acid chloride can then be reacted with a compound of formula (VIII) (as defined hereinafter) in the presence of a base, such as triethylamine or pyridine, in a suitable solvent such as DCM or pyridine at a temperature between 0° C. and 80° C.


In a further feature of the invention, there is provided a process for forming a compound of formula (D)




embedded image



comprising making a compound of formula (I),




embedded image



by either step a):

  • a) hydrolysis of an ester of formula (II) (wherein R is (1-4C)alkyl);




embedded image



or step b):

  • b) reaction of a halo derivative of formula (III) (wherein Hal represents a halogen) with a compound of formula (IV);




embedded image



and then

  • c) reacting the compound of formula (I) with a compound of formula (VIII) to give the compound of formula (D):




embedded image



wherein R1 and R2 are independently selected from hydrogen and (1-6C)alkyl, or R1 and R1 together with the nitrogen to which they are attached form a 4- to 7-membered heterocyclic ring, said ring optionally containing 1 further heteroatom selected from O, N and S;

  • P1 is hydroxy or a hydroxy protecting group;
  • HET-1 is an optionally substituted 5- or 6-membered, C-linked heteroaryl ring containing a nitrogen atom in the 2-position.


Suitable conditions for steps a) and b) are as hereinbefore described. Suitably step c) is carried out using coupling conditions as hereinbefore described, such as CDI or CDMT. Optionally, when P1 is a hydroxy protecting group, the compound of formula (D) may be deprotected to give the corresponding compound wherein P1 is hydrogen.


For the avoidance of doubt, reference to the group HET-1 containing a nitrogen in the 2-position, is intended to refer to the 2-position relative to the amide nitrogen atom to which the group is attached.


Suitable examples of HET-1 as a 5- or 6-membered, C-linked heteroaryl ring as hereinbefore defined, include thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyrazinyl, pyridazinyl, pyrazolyl, imidazolyl, pyrimidinyl, oxazolyl, isoxazolyl, oxadiazolyl and triazolyl.


HET-1 may optionally be substituted with 1 or 2 substituents independently selected from (1-4C)alkyl, halo, hydroxy(1-4C)alkyl, (1-4C)alkoxy(1-4C)alkyl, (1-4C)alkylS(O)p(1-4C)alkyl, amino(1-4C)alkyl, (1-4C)alkylamino(1-4C)alkyl and di(1-4C)alkylamino(1-4C)alkyl. Preferably HET-1 is optionally substituted by 1 or 2 halo or (1-4C)alkyl substituents, particularly (1-4C)alkyl.


A preferred value for HET-1 is N-methylpyrazolyl.


In another aspect of the invention, there is provided

  • i) reaction of a compound of formula (IX) with a compound of formula (X) to give a compound of formula (XI);
  • ii) reaction of the compound of formula (XI) with a compound of formula (XII) to give a compound of formula (XIII); and optionally
  • iii) reaction of the compound of formula (XIII) to give a compound of formula (XIV).




embedded image


Suitable conditions for step i) are those given for step b) hereinbefore. Suitable conditions for step ii) are those given for step c) hereinbefore. Suitable conditions for step iii) are those described previously for deprotecting P1 as a hydroxy protecting group to give a compound wherein P1 is hydrogen. Further suitable conditions for the each step of the above aspect may be found in the accompanying examples.


In a further aspect of the invention there is provided a compound of formula (I) obtained by the process of the invention. In another aspect of the invention there is provided a compound of formula (I) obtainable by the process of the invention.


It will be appreciated that methods for, for example purification, of the compounds in the Examples below are illustrative and alternatives may be used where the skilled person would deem them appropriate.


The invention will now be illustrated by the following Examples, in which, unless otherwise stated:

    • (i) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids such as drying agents by filtration;
    • (ii) operations were carried out at room temperature, that is in the range 18-25° C. and under an atmosphere of an inert gas such as argon or nitrogen;
    • (iii) yields are given for illustration only and are not necessarily the maximum attainable;
    • (iv) the structures of the end-products were confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques; proton magnetic resonance chemical shift values were measured on the delta scale and peak multiplicities are shown as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad; q, quartet, quin, quintet;
    • (v) intermediates were not generally fully characterised and purity was assessed by thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), infra-red (IR) or NMR analysis.


ABBREVIATIONS



  • DCM dichloromethane

  • DMSO dimethyl sulphoxide

  • DMF dimethylformamide

  • HPLC high pressure liquid chromatography

  • LCMS liquid chromatography/mass spectroscopy

  • NMR nuclear magnetic resonance spectroscopy

  • CDCl3 deuterochloroform

  • MTBE methyltert-butyl ether

  • THF tetrahydrofuran

  • NMP N-methylpyrrolidone

  • TFA trifluoroacetic acid

  • EtOAc ethyl acetate

  • CD3OD perdeuteromethanol

  • MeOH methanol

  • RT room temperature








EXAMPLE 1
4-(Azetidin-1-ylcarbonyl)phenol



embedded image


1,1-Carbonyldiimidazole (95.57 mmol; 16.57 g) was charged to a 250 mL round bottomed flask purged with nitrogen, acetonitrile (72 mL) was added, to form a mobile white slurry. 4-Hydroxybenzoic acid (86.88 mol; 12.00 g) was added in portions over 30 minutes to give clear yellow solution, which then became a slurry after approximately 15 minutes. The slurry was heated to 50° C. and azetidine (104.25 mol; 5.95 g) in acetonitrile (10 mL) was added drop wise over 10 minutes. Further azetidine (17.38 mmol; 992.08 mg) was added in acetonitrile (12 mL) and the reaction mixture was heated to 50° C. for a further hour. The precipitated product (10 g, 65% yield) was isolated by filtration and washed with acetonitrile (15 mL) and then dried in a vacuum oven at 40° C.



1H NMR (400 MHz, d6-DMSO) 9.96 (s, 1H), 7.48 (d, 2H), 6.78 (d, 2H), 4.28 (s, 2H), 4.0 (s, 2H), 2.23 (quintet, 2H)


3-Bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzonitrile



embedded image


All glassware was oven dried and cooled under nitrogen—inertion was maintained throughout experiment.


To a stirred suspension of sodium bis(trimethylsilyl)amide (74.25 mmol; 14.33 g) in DMF (150 mL) at 23° C. was added (S)-tert-butoxy-2-propanol (74.25 mmoles, 9.82 g) over 15 minutes. A slight exotherm was observed (cold water cooling bath applied). A solution of 3-bromo-5-fluorobenzonitrile (49.50 mmol, 10.0 g) in DMF (40 mL) was added over 15 minutes with cold water bath still present. An exotherm (3° C.) was observed and the mixture turned from yellow to brown. DMF (10 mL) was added and the mixture stirred at ambient temperature for 1 hour. The reaction was quenched by addition of aqueous HCl (2M, 100 mL), maintaining temperature below 25° C. The mixture was diluted with water (200 mL) and extracted with 2:1 EtOAc/MTBE (3×200 mL). The organic layers were combined, washed with water (3×200 mL) and dried over MgSO4, and the solvent removed in vacuo affording the title compound as an orange oil (17.4 g). Further drying in vacuo at 23° C. gave the title product (15.5 g, ˜100%).



1H NMR: (400 MHz, CDCl3) δ 7.38-7.35 (m, 1H), 7.34-7.31 (m, 1H), 7.18-7.14 (m, 1H), 4.51-4.41 (m, 1H), 3.53 (dd, 1H), 3.42 (dd, 1H), 1.31 (d, 3H), 1.17 (s, 9H).


3-Bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid



embedded image


To a stirred solution of 3-bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzonitrile (1.00 equiv, 42.60 mmoles, 13.30 g) in ethanol (135 mL) and water (13.30 mL) was added sodium hydroxide liquor (46/48% w/w, 5213.0 mmol, 12.10 mL, 18.27 g). The resultant yellow solution was heated to reflux for 1 hour and the solvent removed in vacuo to give a wet orange solid. The mixture was partitioned between water (150 mL) and MTBE (100 mL). The coloured upper organic phase contained two layers and was separated from the lower aqueous phase. Note: high solubility of the product sodium salt in the organic phase; only minor loss to the aqueous layer. The organic layers were concentrated to give a gummy orange solid (approx 18 g). The residue was partitioned between aqueous HCl (1M, 200 mL) and MTBE (150 mL). The Layers were separated and the aqueous phase further extracted with MTBE (100 mL). The organic phases were combined, washed with saturated brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo to give an orange gum (12.85 g), which solidified on standing.


The recovered solid (11.7 g) was stirred in iso-hexane (60 mL) at 23° C. for 35 minutes, isolated by buchner filtration, displacement washed with iso-hexane (2×10 mL) and dried at ambient temperature under nitrogen to give a pale yellow, free flowing solid (8.60 g, 61% yield). The mother liquors were concentrated in vacuo and stirred with iso-hexane (5 mL) for 2 hours. The product was collected by filtration, displacement washed with iso-hexane (2×5 mL) and dried at ambient temperature under nitrogen to give a pale yellow, free flowing solid (1.60 g, 11% yield).



1H NMR: (400 MHz, CD3OD) δH 7.68 (s, 1H), 7.55 (s, 1H), 7.35 (s, 1H), 4.58-4.48 (m, 1H), 3.55 (dd, 1H), 3.47 (dd, 1H), 1.30 (d, 3H), 1.18 (s, 9H).


3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid



embedded image


An oven dried, screw capped reaction tube, cooled and purged under nitrogen, containing 3-bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid (1.8 mmol, 581.3 mg), 4-(azetidin-1-ylcarbonyl)phenol (2.6 mmol, 471.9 mg), cesium carbonate (2.6 mmol, 856.3 mg), copper(I) iodide (163.3 μmol; 31.1 mg), 2,2,6,6-tetramethyl-3,5-heptanedione (702.0 mmol, 146.7 μL) and NMP (5.8 mL) was flushed with nitrogen and sealed. The resultant brown suspension was stirred and heated at 112° C. for 16 hours. The reaction mixture was further heated at 120° C. for 6.5 hours and cooled to ambient temperature. Water was added (10 mL) to dissolve inorganic species and the reaction mixture stirred with MTBE/EtOAc (1:1, 10 mL) for 5 minutes and separated. The aqueous layer was acidified with HCl (2M, 8.8 mmol, 4.4 mL), stirred with MTBE/EtOAc (1:1, 20 mL) for 5 minutes and the layers separated. The organic layer was further washed with aqueous HCl (2M, 8.8 mmol, 4.4 mL) and the layers separated. The organic phase was washed with saturated brine (10 mL), dried over MgSO4, filtered and concentrated in vacuo to give a red gum (767 mg). The residue was purified by column chromatography using EtOAc/DCM/MeOH (10:10:1) to give the title compound as a pale pink solid (493 mg, 66% yield).



1H NMR: (400 MHz, CD3OD) δH 7.67 (d, 2H), 7.41 (m, 1H), 7.19 (m, 1H), 7.06 (d, 2H), 6.87 (t, 1H), 4.56-4.45 (m, 1H), 4.41 (t, 2H), 4.19 (t, 2H), 3.55 (dd, 1H), 3.47 (dd, 1H), 2.37 (quintet, 2H), 1.29 (d, 3H), 1.17 (s, 9H).


EXAMPLE 2
3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]-N-(1-methyl-1H-pyrazol-3-yl)benzamide



embedded image


3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid (853.8 μmol, 365.0 mg) was added portionwise over 30 minutes to a colourless, stirred solution of 1,1′-carbonyldiimidazole (11.1 μmol, 180.3 mg) in acetonitrile (3.5 mL) in an oven dried tube under a nitrogen atmosphere at 25° C. The resultant pink solution was stirred at 25° C. for 35 minutes. The reaction solution was then heated to 50° C., 1-methyl-3-aminopyrazole (1.3 mmol, 130 μL) was added in a single portion and the mixture stirred overnight at temperature. The solvent was removed in vacuo to give a red oil (700 mg). The residue was partioned between MTBE (10 mL) and saturated sodium hydrogen carbonate solution (6 mL). A red oily interface was present. EtOAc (5 mL) was added and the two phase mixture was stirred for 5 minutes and the interface disappeared. The organic phase was further washed with saturated sodium hydrogen carbonate solution (5 mL), water (5 mL), saturated brine (10 mL), and was then dried over MgSO4, filtered and concentrated in vacuo to give a pale yellow/brown foam (385 mg, 89% yield).



1H NMR: (400 MHz, CD3OD) δH 7.68 (d, 2H), 7.48 (d, 1H), 7.34 (s, 1H), 7.17 (s, 1H), 7.08 (d, 2H), 6.84 (t, 1H), 6.57 (d, 1H), 4.63-4.49 (m, 1H), 4.41 (t, 2H), 4.19 (t, 2H), 3.81 (s, 3H), 3.56 (dd, 1H), 3.48 (dd, 1H), 2.36 (quintet, 2H), 1.30 (d, 3H), 1.17 (s, 9H).


3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-hydroxy-1-methylethoxy]-N-(1-methyl-1H-pyrazol-3-yl)benzamide



embedded image


3-[4-(Azetidine-1-carbonyl)-phenoxy]-5-((S)-2-tert-butoxy-1-methyl-ethoxy)-N-(1-methyl-1H-pyrazol-3-yl)-benzamide (101.3 μmol; 51.3 mg) was charged to a small screw capped reaction tube. DCM (500.0 μL) was added the reaction mixture followed by TFA (506.3 μmol; 38.3 μL; 57.7 mg), the reaction mixture was stirred at ambient temperature for 18 hours. HPLC analysis showed no reaction after this time. The reaction mixture was heated to 40° C., extra TFA (506.3 μmol; 38.3 μL; 57.7 mg) was added to the reaction tube and the mixture was held at 40° C. for 18 hours. Water (1 mL) was added to the reaction tube followed by sodium hydroxide (2M) (1.0 mmol; 506.3 μL; 526.6 mg). MTBE (4 mL) was added and the mixture was stirred for 5 minutes. An oily gum had formed which was dissolved by addition of EtOAc (2 mL). The two layers were separated and the upper organic layer was retained, the aqueous was extracted again with EtOAc (2×5 mL). The combined organic layers were washed with saturated brine (5 mL), dried over MgSO4, filtered and concentrated in vacuo to give a colourless oil (35 mg, 75.7% yield).



1H NMR: (400 MHz, CD3OD) δH 7.64 (d, 2H), 7.45 (d, 1H), 7.32 (s, 1H), 7.15 (s, 1H), 7.04 (d, 2H), 6.83 (s, 1H), 6.56 (d, 1H), 4.53 (sextet, 1H), 4.37 (t, 2H), 4.15 (t, 2H), 3.77 (s, 3H), 3.64 (d, 2H), 2.32 (quintet, 2H), 1.26 (d, 3H).


EXAMPLE 3
3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]-N-(1-methyl-1H-pyrazol-3-yl)benzamide



embedded image


3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid (6.18 mmol, 2.64 g) and acetonitrile (18.5 mL) were charged to a vessel. The contents were stirred and cooled to 0° C. 2-Chloro-4,6-dimethoxy-1,3,5-triazine (6.78 mmol, 1.19 g) was added to the slurry followed by an addition of N-methylmorpholine (8.11 mmol, 0.82 g), added over 20 minutes. The reaction was held for approximately 1 hour at 0° C. and allowed to warm up to ambient. N-methylaminopyrazole (6.79 mmol, 0.66 g) was added over 20 minutes and the reaction held at ambient temperature until the reaction was complete. Water (7 mL) was added to the reaction mixture and the acetonitrile removed by distillation at reduced pressure. Ethyl acetate (32 mL), water (7 mL) and sodium bicarbonate solution (10% by weight, 26 mL) were added to the resultant slurry. The bi-phasic liquor was separated and the ethyl acetate phase sequentially washed with further sodium bicarbonate (10% by weight, 13 mL), water (13 mL), 2M hydrochloric acid (2×13 mL), and then with water (2×13 mL). The washed organic phase was azeodistilled at reduced pressure, removing water and solvent, to give a light brown foam (2.9 g, 90% yield).



1H NMR: (400 MHz, d6-DMSO) δH 10.85 (1H, s), 7.65 (2H, d), 7.58 (1H, d), 7.45 (1H, s), 7.21 (1H, s), 7.05 (2H, d), 6.81 (1H, t), 6.54 (1H, d), 4.61 (1H, sextet), 4.30 (2H, br t), 4.02 (2H, m), 3.75 (3H, s), 3.47 (1H, dd), 3.39 (1H, dd), 2.23 (2H, quintet), 1.23 (3H, d), 1.10 (s, 9H).


EXAMPLE 4
3-[4-(Azetidin-1-ylcarbonyl)phenoxy]-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid

3-Bromo-5-[(1S)-2-tert-butoxy-1-methylethoxy]benzoic acid (9.78 g, 29.51 mmol), 4-(azetidin-1-ylcarbonyl)phenol (7.84 g, 44.70 mmol), cesium carbonate (19.23 g, 59.03 mmol) and NMP (78 mL) were mixed together in a dry reaction flask and agitated overnight under a nitrogen atmosphere. Copper (I) iodide (0.56 g, 2.95 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (2.18 g, 11.81 mmol) and an NMP line wash (20 mL) were added under a nitrogen atmosphere. The reaction mixture was heated to 125° C. for approximately 20 hours.


The reaction mixture was then cooled to 22° C., and diluted with MTBE (59 mL) and water (59 mL). Further 2,2,6,6,-tetramethylheptane-3,5-dione (5.55 g, 29.5 mmol) was added and the upper layer separated off from the reaction mixture. The lower aqueous layer was extracted with MTBE (59 mL) and 2,2,6,6,-tetramethylheptane-3,5-dione (5.55 g, 29.5 mmol) twice more.


The aqueous layer was then acidified using 2M hydrochloric acid (59 mL), and the majority of the mixture extracted into ethyl acetate (98 mL). The aqueous layer was re-extracted with a second smaller portion of ethyl acetate (19.6 mL). The ethyl acetate layers were combined and the residual NMP removed by three water washes (98 mL). Water (98 mL) was then added to the ethyl acetate solution of the product, and potassium carbonate (4.89 g, 35.42 mmol) was added. The lower aqueous phase containing the product was separated off, and the organic layer discarded. Ethyl acetate (98 mL) was added to the aqueous phase followed by 2M hydrochloric acid (37 mL). The layers were separated and the lower aqueous phase was discarded.


Water (98 mL) was added to the ethyl acetate layer, and potassium carbonate (4.89 g, 35.42 mmol) was added. The lower aqueous phase containing the product was separated off, and the organic layer discarded. Ethyl acetate (98 mL) was added to the aqueous phase followed by 2M hydrochloric acid (37 ml). The layers were separated and the lower aqueous phase was discarded.


Water (98 mL) was added to the ethyl acetate layer, and potassium carbonate (4.89 g, 35.42 mmol) was added. The lower aqueous phase containing the product was separated off, and the organic layer discarded. MTBE (98 mL) was added to the aqueous layer. The mixture was warmed to 50° C. and 2M hydrochloric acid (37 mL) was added. The layers were separated and the lower aqueous phase was discarded. The MTBE layer was washed with a small amount of water (20 mL) at 50° C., then was distilled to remove water, passed through a fine filter, cooled to 22° C. and seeded. Isohexane (147 mL) was added to the crystalline slurry. The mixture was cooled to −10° C., filtered, and washed with 1:2 MTBE: isohexane (29 mL). The isolated product was dried in the vacuum oven at 50° C. (yield at 100% strength=58.4%).

Claims
  • 1. A process for making a compound of formula (I),
  • 2. The process as claimed in claim 1, wherein the compound of formula (I) is made by process b).
  • 3. The process as claimed in claim 1, wherein P1 is t-butyl.
  • 4. The process as claimed in claim 1 wherein R1 and R2 together with the nitrogen to which they are attached form a 4-to 7-membered heterocyclic ring.
  • 5. The process as claimed in claim 4 wherein R1 and R2 together with the nitrogen to which they are attached form an azetidinyl ring.
  • 6. The process as claimed in claim 1 wherein process b) is carried out in the presence of copper(I) iodide or copper(I) oxide as catalyst.
  • 7. The process as claimed in claim 1 wherein process b) is carried out in the presence of 2,2,6,6-tetramethylheptane-3,5-dione.
  • 8. The process as claimed in claim 1 wherein process b) is carried out in NMP or benzonitrile.
  • 9. The process as claimed in claim 1, wherein the compound of formula (I) is then reacted with a compound of formula (VIII)
  • 10. The process as claimed in claim 9 comprising: i) reacting a compound of formula (IX) with a compound of formula (X) to give a compound of formula (XI);ii) reacting the compound of formula (XI) with a compound of formula (XII) to give a compound of formula (XIII); and optionallyiii) reacting the compound of formula (XIII) to give a compound of formula (XIV)
  • 11. The process as claimed in claim 10 wherein step i) is carried out in the presence of copper(I) iodide or copper(I)oxide as a catalyst.
  • 12. The process as claimed in claim 11 wherein step i) is carried out in the presence of 2,2,6,6-tetramethylheptane-3,5-dione as a ligand for the catalyst.
RELATED APPLICATIONS

The present application is a U.S. National Phase Application of International Application No. PCT/GB2006/004399 (filed Nov. 27, 2006) which claims the benefit of U.S. Provisional Application No. 60/740,042 (filed Nov. 28, 2005), both of which are hereby incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2006/004399 11/27/2006 WO 00 5/27/2008
Publishing Document Publishing Date Country Kind
WO2007/060448 5/31/2007 WO A
US Referenced Citations (60)
Number Name Date Kind
2750393 Elpern Jun 1956 A
2967194 Hauptschein Jan 1961 A
3917625 Lee et al. Nov 1975 A
3950351 Rossignol et al. Apr 1976 A
4009174 Cluzan et al. Feb 1977 A
4105785 Mauvernay et al. Aug 1978 A
4146631 Ford et al. Mar 1979 A
4434170 Dostert et al. Feb 1984 A
4474792 Erickson Oct 1984 A
4634783 Fujii et al. Jan 1987 A
4966891 Fujiu et al. Oct 1990 A
5258407 Washburn et al. Nov 1993 A
5273986 Holland et al. Dec 1993 A
5399702 Holland et al. Mar 1995 A
5466715 Washburn et al. Nov 1995 A
5510478 Sabb Apr 1996 A
5661153 Isobe et al. Aug 1997 A
5672750 Perry Sep 1997 A
5712270 Sabb Jan 1998 A
5849735 Albright et al. Dec 1998 A
6110945 Head et al. Aug 2000 A
6197798 Fink et al. Mar 2001 B1
6200995 De la Brouse-Elwood et al. Mar 2001 B1
6207693 Setoi et al. Mar 2001 B1
6214878 Bernardon et al. Apr 2001 B1
6242474 Yamasaki et al. Jun 2001 B1
6255335 Himmler et al. Jul 2001 B1
6316482 Setoi et al. Nov 2001 B1
6320050 Bizzarro et al. Nov 2001 B1
6348474 Kayakiri et al. Feb 2002 B1
6369229 Head et al. Apr 2002 B1
6376515 Zhu et al. Apr 2002 B2
6388071 Mahaney May 2002 B2
6448399 Corbett et al. Sep 2002 B1
6486349 Flitter et al. Nov 2002 B1
6528543 Bizzarro et al. Mar 2003 B1
6545155 Corbett et al. Apr 2003 B2
6610846 Bizzarro et al. Aug 2003 B1
6613942 Ling et al. Sep 2003 B1
6989402 Hangeland et al. Jan 2006 B1
7132546 Kato et al. Nov 2006 B2
7199140 Hayter et al. Apr 2007 B2
7230108 Hargreaves et al. Jun 2007 B2
7700640 Cornwall et al. Apr 2010 B2
20010027200 De la Brouse-Elwood et al. Oct 2001 A1
20020002183 Zhu et al. Jan 2002 A1
20020095044 Jagtap et al. Jul 2002 A1
20030162690 Zhu et al. Aug 2003 A1
20040014968 Bizzarro et al. Jan 2004 A1
20040077555 Ishihara et al. Apr 2004 A1
20050080106 Boyd et al. Apr 2005 A1
20050148605 Grotzfeld et al. Jul 2005 A1
20050165074 Grotzfeld et al. Jul 2005 A1
20050171171 Mehta et al. Aug 2005 A1
20050171172 Lai et al. Aug 2005 A1
20050261315 Mehta et al. Nov 2005 A1
20060004010 Habashita et al. Jan 2006 A1
20060167053 Iino et al. Jul 2006 A1
20060258728 Tani et al. Nov 2006 A1
20070078168 Caulkett Apr 2007 A1
Foreign Referenced Citations (179)
Number Date Country
2605738 Nov 2006 CA
173097 Jun 1978 CS
0316704 May 1989 EP
0353452 Feb 1990 EP
0219436 Dec 1993 EP
0619116 Oct 1994 EP
1048659 Nov 2000 EP
1132381 Sep 2001 EP
0620216 Jan 2003 EP
1336607 Aug 2003 EP
1357116 Oct 2003 EP
1400540 Mar 2004 EP
1496052 Jan 2005 EP
1600442 Nov 2005 EP
1702919 Sep 2006 EP
1526074 May 1968 FR
2088019 Jan 1972 FR
1352415 May 1974 GB
1561350 Feb 1980 GB
1588242 Apr 1981 GB
2216517 Oct 1989 GB
2331748 Jun 1999 GB
2385328 Aug 2003 GB
50105559 Aug 1975 JP
57021320 Feb 1982 JP
57075962 May 1982 JP
58069812 Apr 1983 JP
61205937 Sep 1986 JP
62158252 Jul 1987 JP
04300832 Oct 1992 JP
04300874 Oct 1992 JP
06027025 Feb 1994 JP
08143565 Jun 1996 JP
08173525 Jul 1996 JP
08301760 Nov 1996 JP
09040557 Feb 1997 JP
09202786 Aug 1997 JP
10101671 Apr 1998 JP
10101672 Apr 1998 JP
10212271 Aug 1998 JP
11029480 Feb 1999 JP
11171848 Jun 1999 JP
11222435 Aug 1999 JP
11292879 Oct 1999 JP
2000086657 Mar 2000 JP
WO 9109017 Jun 1991 WO
WO 9404525 Mar 1994 WO
WO 9412461 Jun 1994 WO
WO 9520578 Aug 1995 WO
WO 9535298 Dec 1995 WO
WO 9611902 Apr 1996 WO
WO 9619455 Jun 1996 WO
WO 9622282 Jul 1996 WO
WO 9622293 Jul 1996 WO
WO 9622294 Jul 1996 WO
WO 9622295 Jul 1996 WO
WO 9636619 Nov 1996 WO
WO 9641795 Dec 1996 WO
WO 9724355 Jul 1997 WO
WO 9736480 Oct 1997 WO
WO 9746560 Dec 1997 WO
WO 9749707 Dec 1997 WO
WO 9749708 Dec 1997 WO
WO 9824771 Jun 1998 WO
WO 9834632 Aug 1998 WO
WO 9845242 Oct 1998 WO
WO 9900359 Jan 1999 WO
WO 9900372 Jan 1999 WO
WO 9917777 Apr 1999 WO
WO 9920611 Apr 1999 WO
WO 9924415 May 1999 WO
WO 9926944 Jun 1999 WO
WO 9932477 Jul 1999 WO
WO 9938845 Aug 1999 WO
WO 9954301 Oct 1999 WO
WO 9962901 Dec 1999 WO
WO 0002850 Jan 2000 WO
WO 0026202 May 2000 WO
WO 0039118 Jul 2000 WO
WO 0046203 Aug 2000 WO
WO 0058293 Oct 2000 WO
WO 0100579 Jan 2001 WO
WO 0112621 Feb 2001 WO
WO 0116097 Mar 2001 WO
WO 0119788 Mar 2001 WO
WO 0120327 Mar 2001 WO
WO 0126652 Apr 2001 WO
WO 0132639 May 2001 WO
WO 0144216 Jun 2001 WO
WO 0164642 Sep 2001 WO
WO 0164643 Sep 2001 WO
WO 0174791 Oct 2001 WO
WO 0183465 Nov 2001 WO
WO 0183478 Nov 2001 WO
WO 0185706 Nov 2001 WO
WO 0185707 Nov 2001 WO
WO 0200633 Jan 2002 WO
WO 0208209 Jan 2002 WO
WO 0214312 Feb 2002 WO
WO 0224682 Mar 2002 WO
WO 0226718 Apr 2002 WO
WO 0226731 Apr 2002 WO
WO 0228835 Apr 2002 WO
WO 0242270 May 2002 WO
WO 0246173 Jun 2002 WO
WO 0248106 Jun 2002 WO
WO 02051831 Jul 2002 WO
WO 02064545 Aug 2002 WO
WO 02079145 Oct 2002 WO
WO 03000262 Jan 2003 WO
WO 03000267 Jan 2003 WO
WO 03015518 Feb 2003 WO
WO 03015774 Feb 2003 WO
WO 03022856 Mar 2003 WO
WO 03024222 Mar 2003 WO
WO 03026652 Apr 2003 WO
WO 03028641 Apr 2003 WO
WO 03047626 Jun 2003 WO
WO 03048152 Jun 2003 WO
WO 03051366 Jun 2003 WO
WO 03055482 Jul 2003 WO
WO 03066613 Aug 2003 WO
WO 03080585 Oct 2003 WO
WO 03082838 Oct 2003 WO
WO 03095438 Nov 2003 WO
WO 03097824 Nov 2003 WO
WO 2004002481 Jan 2004 WO
WO 2004022536 Mar 2004 WO
WO 2004031179 Apr 2004 WO
WO 2004045614 Jun 2004 WO
WO 2004046139 Jun 2004 WO
WO 2004050645 Jun 2004 WO
WO 2004052869 Jun 2004 WO
WO 2004063179 Jul 2004 WO
WO 2004063194 Jul 2004 WO
WO 2004072031 Aug 2004 WO
WO 2004072066 Aug 2004 WO
WO 2004076420 Sep 2004 WO
WO 2004081001 Sep 2004 WO
WO 2004085385 Oct 2004 WO
WO 2004085406 Oct 2004 WO
WO 2004110350 Dec 2004 WO
WO 2004110375 Dec 2004 WO
WO 2005044801 May 2005 WO
WO 2005048953 Jun 2005 WO
WO 2005049019 Jun 2005 WO
WO 2005054200 Jun 2005 WO
WO 20085054233 Jun 2005 WO
WOL 2005056530 Jun 2005 WO
WO 2005063738 Jul 2005 WO
WO 2005066145 Jul 2005 WO
WO 2005080359 Sep 2005 WO
WO 2005080360 Sep 2005 WO
WO 2005090332 Sep 2005 WO
WO 2005095417 Oct 2005 WO
WO 2005095418 Oct 2005 WO
WO 2005103021 Nov 2005 WO
WO 2005121110 Dec 2005 WO
WO 2005123132 Dec 2005 WO
WO 2006016174 Feb 2006 WO
WO 2006016178 Feb 2006 WO
WO 2006016194 Feb 2006 WO
WO 2006040527 Apr 2006 WO
WO 2006040528 Apr 2006 WO
WO 2006040529 Apr 2006 WO
WO 2006066613 Jun 2006 WO
WO 2006114180 Nov 2006 WO
WO 2006125958 Nov 2006 WO
WO 2006125972 Nov 2006 WO
WO 2007007040 Jan 2007 WO
WO 2007007041 Jan 2007 WO
WO 2007007042 Jan 2007 WO
WO 2007017649 Feb 2007 WO
WO 2007028135 Mar 2007 WO
WO 2007031739 Mar 2007 WO
WO 2007053657 May 2007 WO
WO 2008050101 May 2008 WO
WO 2008050117 May 2008 WO
WO 2008075073 Jun 2008 WO
Related Publications (1)
Number Date Country
20080300412 A1 Dec 2008 US
Provisional Applications (1)
Number Date Country
60740042 Nov 2005 US