This invention relates generally to heating, ventilation, and air conditioning (HVAC) systems, and particularly to those in which fluids might collect as condensation as a result of the cooling process. This invention particularly relates to chemicals that may be used to clean, disinfect, and/or sanitize HVAC fluids and to methods of manufacturing those chemicals in a form to be used in an HVAC fluid conditioning system.
According to one aspect of our invention, a conditioning unit or system is installed in an HVAC unit to dispense an appropriate amount of chlorine or other conditioning chemical into the fluid stream to condition the fluid to prevent growth of harmful pollutants.
More particularly, a chlorine or other chemical dispenser may be installed in an HVAC condensation line, pan, or pump. The dispenser may, for instance, dispense a chlorine (or other chemical) tablet, rod, or liquid into contact with the AC condensation water to eliminate algae and/or other harmful pollutants. By eliminating the growth of harmful contaminants, the invention can provide a robust, reliable, and cost-effective solution for preventing clogged pipes and water back-ups due to contaminant growth in the HVAC system. Other water treatment or purification processes or systems could also be used, such as an ultra-violet (UV) light treatment process, for example.
According to one embodiment, a chlorine tablet or rod dispenser can be installed in the AC condensation line of an HVAC system. Tablets or rod(s) may be inserted into a receptacle of the dispenser and can feed into the condensation line, pan, or pump. The receptacle may have an inside diameter of less than 1 inch. Condensation water running through the condensation line can pass by the tablet or rod and be conditioned with chlorine or other chemical agents or treatment processes to kill contaminants and prevent the further growth of algae and/or other harmful contaminants. Various possible embodiments of such a system are illustrated in the attached drawings and other such embodiments will be readily apparent to those of ordinary skill in the art based on this disclosure.
According to one embodiment of the present inventive concepts, the chemical agent can be provided in the form of a rod that may be readily inserted into and dispensed from the HVAC conditioning unit. The rod preferably has a length that is longer than its width to keep it properly aligned in the conditioning unit. Among other benefits, this configuration can help keep the rod from tipping over or laying sideways in the receptacle (or dispenser channel). In one such embodiment, the diameter of the rod may be less than about 1 inch, and the length of the rod may be approximately about 3 inches.
In one embodiment, the chemical agent is chlorine mixed with a binding agent such as calcium, borax, animal fat, magnesium stearate, or any other binding agent(s). The binding agent acts to hold the chlorine together in the form of a rod. The rod may be formed by pressing the chlorine mixed with the binding agent through a special die. A releasing agent, such as magnesium stearate (which can also act as a binding agent) or other releasing agent, may be used to help the rods eject from the press properly without sticking to the tooling.
Of course, other types of fungicides may be used instead of, or in conjunction with, chlorine. Salt or a salt compound, bromine, or other chemicals, could also be used as the chemical agent in addition to, or instead of, chlorine.
It should be noted that the HVAC fluid conditioning system could be used in conjunction with a P or S trap plumbing system, for example, to keep chlorine gas or other noxious fumes from entering into the structure being air conditioned. The trap system can, for instance, be installed upstream of the dispenser or be formed as part of the chemical treatment (conditioning) system to provide water to trap the chlorine or other fumes rather than permit them to enter the ambient air. Such a system will preferably prevent the HVAC system from sucking up the chlorine or other harmful gases and spreading them to the structure being air conditioned.
Numerous other potential embodiments are also contemplated as being within the scope of the present invention and will be readily apparent to those of skill in the art based on the information provided. For instance, other delivery systems are also contemplated and may replace the tablet or rod dispenser. A chlorine or other chemical dripping system, for example, could be used to supply the treatment chemicals to the liquid. Alternatively, a UV light treatment system could be provided to treat the HVAC fluid with UV light to remove the pollutants.
A method for making a chemical cleaning rod is also contemplated. According to one method, a cleaning agent, such as chlorine (or other fungicide) is mixed with an appropriate amount of binding agent to form chemical bars. One or more chemical bars are then placed into a press having press molds. A releasing agent (such as magnesium stearate) may be provided to each of the bars or the press molds in order to cause the chemical rods to readily release from the press molds after forming. The press molds may, for instance, include opposing half molds, each having an opening with a semi-circular cross-section. Opposing molds are pressed together with one of the bars placed therebetween to produce a chemical rod. The chemical rod may then be cut into smaller desired lengths to provide chemical cleaning rods of the desired dimensions to be used in the HVAC conditioning unit.
Various further aspects, embodiments, and configurations of this invention are possible without departing from the principles disclosed herein. This invention is therefore not limited to any of the particular aspects, embodiments, or configurations described herein.
The foregoing and additional objects, features, and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments, made with reference to the accompanying drawings, in which:
Various features, benefits, and configurations incorporating principles of the inventive concepts in illustrative embodiments are shown in the accompanying drawings. Additional features, benefits, and configurations will be readily apparent to those of ordinary skill in the art based on this disclosure, and all such features, benefits, and configurations are considered within the scope of the present invention. Various embodiments will now be described in further detail in connection with the accompanying drawings.
Referring to
More particularly, a fluid conditioning system 100 such as a chlorine or other chemical dispenser (or UV light treatment system) may be installed in an HVAC condensation line 120. The fluid conditioning system 100 may, for instance dispense a chlorine tablet 110 or other chemical tablet or rod into contact with the AC condensation water (or other conditioning fluid) 112 to eliminate algae and/or other harmful pollutants. By eliminating growth of harmful contaminants, the invention can provide a robust, reliable, and cost-effective solution for preventing clogged pipes and water back-ups due to contaminant growth in the HVAC system (not shown).
According to one embodiment, an HVAC fluid conditioning system 100 can be a chemical dispenser installed in the AC condensation line 120 of an HVAC system (not shown). Tablets 110 may be inserted into a container/receptacle 105 of the dispenser 100 and can feed into the condensation line 120. Condensation water 112 running through the condensation line 120 can pass by the tablet 110 (through holes or other openings 105A arranged in the container 105) and be conditioned with chlorine (or other chemicals or fungicides or UV light) to kill and prevent the growth of algae and/or other harmful contaminants. The conditioned condensation water 112A is then delivered back to the condensation line 120.
It should be noted that this system could be used in conjunction with a P or S trap plumbing system, for example, to keep chlorine fumes or other harmful gases from entering into the structure being air conditioned. The trap system can, for instance, be installed upstream of the dispenser or be included as part of the dispenser to provide water to trap the chlorine fumes rather than permit them to enter the ambient air. Such a system will preferably prevent the HVAC system from sucking up the chlorine gas (or other harmful gases) and spreading it to the structure being conditioned.
Of course, alternative embodiments are also possible.
Referring to
The HVAC fluid conditioning system 400 can include a housing 401 formed by connecting two sections (i.e., a top section 401A and a bottom section 401B) together, using screws 411 or some other connection mechanism. A seal 401C can be included between the top and bottom sections 401A, 401B, respectively, to prevent fluid leaks. The top section 401A can, for example, provide the tablet or rod dispenser unit 403, and the bottom section 401B can provide the S or P-type trap system 408.
The tablet or rod dispenser unit 403 can include a pipe or tube 404 that provides a receptacle with an opening 404B to receive chlorine (or other chemical) tablets or a rod 410 therein. A door or cover 404E can be provided to cover the opening 404B after the tablets or rod 410 has been inserted. The bottom end 404C of the tube 404 can include slots, holes, or other openings 404D to permit the flow of fluid 412 therethrough.
In operation, chlorine tablets or a rod 410 inserted into the opening 404B of the tablet dispenser unit 403 may drop to the bottom 404C of the tube 404. Water or other HVAC liquid 412 enters the conditioning system through the inlet connector 402. The HVAC liquid 412 passes through the trap 408 and then through the openings 404D in the bottom 404C of the tube 404 and contacts the bottom-most tablet or rod 410 in the dispenser unit 403. As the HVAC liquid passes by the rod 410 (or tablets), it dissolves the rod 410 and thereby treats the HVAC liquid 412 with chlorine (or other treatment chemicals). The treated HVAC fluid 412A is then delivered back to the HVAC system or outputted from the system through the outlet pipe connector 406.
Another pipe or tube 405 can be arranged near the inlet pipe connection 402 and over the S or P-type trap 408, with a bottom wall 405C thereof forming a part of the trap system. The bottom housing section 401B can provide a rounded portion 415 configured to direct liquid flow 412 around the wall 405C and into the dispenser unit 403. The bottom housing section 401B can also comprise a wall 408A that extends away from the housing bottom 401B to form an additional part of the trap system 408. The S or P-type trap system 408 preferably traps liquid in the bottom housing section 401B to form a liquid seal that keeps unwanted gases from escaping back through the inlet pipe connector 402 and into the HVAC system (not shown).
Depending on where the conditioning system 400 is installed, it could be pressurized from a pump or have water back up, and it is therefore important to have a watertight and airtight system that prevents leakage of fluids and gasses. Threaded caps 424 and seals 425 can therefore be included on the two tubes 404 and 405 to cover and seal openings 404A, 405A in the tops of the tubes to help provide a watertight and airtight system. The removable caps 424 further provide access to the tubes 404 and 405 for maintenance and cleaning and allow de-pressurization of the system 400. The threaded cap 424 over tube 405, for example, can be removed to permit access to, and cleaning of, the P trap 408 (in this embodiment). Additional chemicals could also be added through the top opening 405A in tube 405 to clean the trap 408 if there is ever a buildup of algae or other contaminants.
As explained above, an HVAC fluid conditioning system can prevent harmful pollutants from clogging or otherwise impairing a fluid flow through an HVAC system. A trap system can further ensure that harmful gases do not escape the HVAC fluid conditioning system and enter the structure being air conditioned. In alternative embodiments, a chemical drip system or UV light system could be used to condition the HVAC fluid.
Referring now additionally to
According to one embodiment of the present inventive concepts, the chemical agent can be provided in the form of a rod 410 that may be readily inserted into and dispensed from the HVAC conditioning unit. The rod 410 preferably has a length L that is longer than its width (or diameter) D to keep it properly aligned in the conditioning unit 400. This configuration can help keep the rod 410 from tipping over or laying sideways in the receptacle (or dispenser channel) 404 of the conditioning system 400. In one embodiment, the diameter D of the rod may be less than about 1 inch, and the length L of the rod is approximately about 3 to 5 inches.
In one embodiment, the chemical agent is chlorine mixed with a binding agent, such as calcium, borax, magnesium stearate, or animal fat. The binding agent holds the chlorine together in the form of a rod. Of course, other types of fungicides may be used instead of, or in conjunction with, the chlorine. For instance, salt or a salt compound, bromine, or other chemical, could also be used as the chemical agent either alone or mixed with other chemicals.
Referring now to
More particularly, the chemical compound may be provided to the manufacturing unit 500 in the form of rectangular rods 410a with substantially rectangular (for example, square) cross-sections. The rectangular rods 410a may be placed into the manufacturing unit 500 on top of semi-circular die or bottom molds 904 using a hydraulic and/or robotic arm 504. Three or more rods 410a may be placed into the unit 500 at one time. A releasing agent can be sprayed onto the rods 410a and/or top and bottom molds 902, 904. A press 506 then compresses the rods between the top and bottom molds 902, 904, respectively, each having openings with semi-circular cross-sections, to form a rod 410 having a substantially circular cross-section. A transparent wall (such as glass, plexiglass, or transparent plastic) or other wall or barrier 520 may be provided around the press to help contain the chemical residue from the manufacturing processes. A shuttle 508 may travel forward and back along rails 510, to eject the rods 410 from the unit 500 once they are formed.
Referring specifically to
Having described and illustrated principles of the present invention in various preferred embodiments thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles.
This application is a non-provisional of, and claims priority from, U.S. Provisional Patent Application Ser. No. 62/873,359, filed Jul. 12, 2019. This application is also a continuation-in-part of, and claims priority from, U.S. patent application Ser. No. 16/117,895, filed Aug. 30, 2018, which is a non-provisional of, and claims priority from, U.S. Provisional Patent App. Ser. No. 62/553,253, filed Sep. 1, 2017. The contents of each of these applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62873359 | Jul 2019 | US | |
62553253 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16117895 | Aug 2018 | US |
Child | 16924436 | US |