Claims
- 1. A process for the synthesis of a 2′-O-methyl adenosine nucleoside phosphoramidite, comprising the steps of
a) contacting a solution of N4-acetyl-5′,3′-di-O-acetyl-2′-O-methyl cytidine with a Lewis acid under conditions suitable for formation of 2′-O-methyl adenosine nucleoside, and b) converting the 2′-O-methyl adenosine nucleoside to a 2′-O-methyl adenosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl adenosine nucleoside phosphoramidite.
- 2. A process for the synthesis of 2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) methylating 2-amino-6-chloropurine riboside by contacting said 2amino-6-chloropurine riboside with sodium hydride, dimethylformamide and methyl iodide under conditions suitable for formation of 2′-O-methyl-2-amino-6-chloropurine riboside; b) contacting said 2′-O-methyl-2-amino-6-chloropurine riboside with 1,4-diazabicyclo(2.2.2) octane and water under conditions suitable for formation of said 2′-O-methyl guanosine nucleoside in a crude form; c) purifying said 2′-O-methyl guanosine nucleoside from said crude form; and d) converting said 2′-O-methyl guanosine nucleoside to a 2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl guanosine nucleoside phosphoramidite.
- 3. A process for the synthesis of 2′-O-methyl adenosine nucleoside phosphoramidite, comprising the steps of:
a) methylating 2-amino-6-chloropurine riboside by contacting said 2-amino-6-chloropurine riboside with sodium hydride, dimethylformamide and methyl iodide under conditions suitable for formation of 2′-O-methyl-2-amino-6-chloropurine riboside; b) contacting said 2′-O-methyl-2-amino-6-chloropurine riboside with acetic anhydride, 4-dimethylaminopyridine and triethylamine under conditions suitable for formation of 3′,5′-di-O-acetyl-2′-O-methyl-6-chloro-2-aminopurine riboside; c) deaminating said 3′,5′-di-O-acetyl-2′-O-methyl-6-chloro-2-aminopurine riboside with isoamyl nitrite and tetrahydrofuran to form 3′,5′-di-O-acetyl-2′-O-methyl-6′-chloropurine; d) aminating said 3′,5′-di-O-acetyl-2′-O-methyl-6-chloropurine with ammonia to form 2′-O-methyl adenosine nucleoside in a crude form; e) purifying said 2′-O-methyl adenosine nucleoside from said crude form; and f) converting said 2′-O-methyl adenosine nucleoside to a 2′-O-methyl adenosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl adenosine nucleoside phosphoramidite.
- 4. A process for the synthesis of N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting 2,6-diaminopurine nucleoside with anhydrous pyridine and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane under conditions suitable for formation of 2,6-diamino-9-(3,5-O-tetraisopropyidisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine; b) methylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine with anhydrous DMF and methyl iodide under conditions suitable for formation of 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2′-O-methyl-beta-D-ribofuranosyl) purine; c) acylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine with anhydrous pyridine and isobutyryl chloride under conditions suitable for formation of 2,6-diamino-N2-isobutyryl-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O -methyl-beta-D-ribofuranosyl) purine; d) deaminating and desilylating said 2,6-Diamino-N2-isobutyryl-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine under conditions suitable for formation of N2-isobutyryl-2′-O-methyl guanosine nucleoside in a crude form; e) purifying said N2-isobutyryl-2′-O-methyl guanosine nucleoside from said crude form; and f) converting said N2-isobutyryl-2′-O-methyl guanosine nucleoside to a N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite.
- 5. A process for the synthesis of N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting 2,6-diaminopurine nucleoside with anhydrous pyridine and 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane (TIPSCI) under conditions suitable for formation of 2,6-diamino-9-(3′, 5′-O-tetraisopropyldisiloxan-(1,3-diyl) -beta-D-ribofuranosyl) purine; b) methylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine with anhydrous DMF and methyl iodide under conditions suitable for formation of 2,6-diamino-9-(3′,5′-O-tetraisopropyldisiloxan-(1,3-diyl)-2′-O-methyl-beta-D-ribofuranosyl) purine; c) acylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine with anhydrous pyridine and isopropylphenoxyacetyl chloride under conditions suitable for formation of 2,6-diamino-N2-isopropylphenoxyacetyl-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine; d) deaminating and desilylating said 2,6-diamino-N2-isopropylphenoxyacetyl-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine under conditions suitable for formation of N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside in a crude form; e) purifying said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside from said crude form; and f) converting said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside to a N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite.
- 6. A process for the synthesis of 2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting guanosine with N,N-dimethylformamide dibenzyl acetal under conditions suitable for formation of N1-benzyl guanosine; b) methylating said N1-benzyl guanosine by contacting said N1-benzyl guanosine with silver acetylacetonate, trimethylsulphonium hydroxide and dimethylformamide under conditions suitable for formation of N1-benzyl-2′-O-methyl guanosine in a crude form; c) purifying said N1-benzyl-2′-O-methyl guanosine from said crude form; d) removing the N1-benzyl protection from said N1-benzyl-2′-O-methyl guanosine by contacting said N1-benzyl-2′-O-methyl guanosine with sodium naphthalene under conditions suitable for formation of 2′-O-methyl guanosine nucleoside in a crude form; e) purifying said 2′-O-methyl guanosine nucleoside from said crude form; and f) converting said 2′-O-methyl guanosine nucleoside to a 2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl guanosine nucleoside phosphoramidite.
- 7. A process for the synthesis of 2′-O-methyl adenosine nucleoside phosphoramidite, comprising the steps of:
a) methylating adenosine by contacting said adenosine with dimethylformamide, silver acetylacetonate and trimethylsulphonium hydroxide under conditions suitable for formation of 2′-O-methyl adenosine nucleoside in a crude form; b) purifying said 2′-O-methyl adenosine nucleoside from said crude form; and c) converting said 2′-O-methyl adenosine nucleoside to a 2′-O-methyl adenosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl adenosine nucleoside phosphoramidite.
- 8. A process for the synthesis of 2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting guanosine with N,N-dimethylformamide dibenzyl acetal under conditions suitable for formation of N1-benzyl guanosine; b) methylating said N1-benzyl guanosine by contacting said N1-benzyl guanosine with magnesium acetylacetonate, trimethylsulphonium hydroxide and dimethylformamide under conditions suitable for formation of N1-benzyl-2′-O-methyl guanosine in a crude form; c) purifying said N1-benzyl-2′-O-methyl guanosine from said crude form; d) removing the N1-benzyl protection from said N1-benzyl-2′-O-methyl guanosine by contacting said N1-benzyl-2′-O-methyl guanosine with sodium naphthalene under conditions suitable for formation of 2′-O-methyl guanosine nucleoside in a crude form; e) purifying said 2′-O-methyl guanosine nucleoside from said crude form; and f) converting said 2′-O-methyl guanosine nucleoside to a 2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl guanosine nucleoside phosphoramidite.
- 9. A process for the synthesis of 2′-O-methyl adenosine nucleoside phosphoramidite, comprising the steps of:
a) methylating adenosine by contacting said adenosine with dimethylformamide, magnesium acetylacetonate and trimethylsulphonium hydroxide under conditions suitable for formation of 2′-O-methyl adenosine nucleoside in a crude form; b) purifying said 2′-O-methyl adenosine nucleoside from said crude form; and c) converting said 2′-O-methyl adenosine nucleoside to a 2′-O-methyl adenosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl adenosine nucleoside phosphoramidite.
- 10. A process for the synthesis of 2′-O-methyl adenosine nucleoside phosphoramidite, comprising the steps of:
a) methylating adenosine by contacting said adenosine with dimethylformamide, strontium acetylacetonate and trimethylsulphonium hydroxide under conditions suitable for formation of 2′-O-methyl adenosine nucleoside in a crude form; b) purifying said 2′-O-methyl adenosine nucleoside from said crude form; and c) converting said 2′-O-methyl adenosine nucleoside to a 2′-O-methyl adenosine nucleoside phosphoramidite under conditions suitable for formation of said 2′-O-methyl adenosine nucleoside phosphoramidite.
- 11. A process for the synthesis of N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting 2,6-diaminopurine nucleoside with anhydrous pyridine and TIPSCI under conditions suitable for formation of 2,6-diamino-9-(3′,5′-O -tetraisopropyldisiloxan-(1,3-diyl)-.beta.-D-ribofuranosyl) purine; b) methylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3′,5′-O -tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine with anhydrous DMF and methyl iodide under conditions suitable for formation of 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine; c) acylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine with anhydrous pyridine and isobutyryl chloride under conditions suitable for formation of 2,6-diamino-N2-isobutyryl-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O -methyl-beta-D-ribofuranosyl) purine; d) deaminating and desilylating said 2,6-diamino-N2-isobutyryl-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2′-O-methyl-beta-D-ribofuranosyl) purine under conditions suitable for formation of N2-isobutyryl-2′-O-methyl guanosine nucleoside in a crude form; e) purifying said N2-isobutyryl-2′-O-methyl guanosine nucleoside from said crude form; and f) converting said N2-isobutyryl-2′-O-methyl guanosine nucleoside to a N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said N2-isobutyryl-2′-O-methyl guanosine nucleoside phosphoramidite.
- 12. A process for the synthesis of N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite, comprising the steps of:
a) contacting 2,6-diaminopurine nucleoside with anhydrous pyridine and TIPSCI under conditions suitable for formation of 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine; b) methylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino-9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-beta-D-ribofuranosyl) purine with anhydrous DMF and methyl iodide under conditions suitable for formation of 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine; c) acylating said 2,6-diamino-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine by contacting said 2,6-diamino9-(3,5-O -tetraisopropyldisiloxan-(1,3-diyl)-2′-O-methyl-beta-D-ribofuranosyl) purine with anhydrous pyridine and isopropylphenoxyacetyl chloride under conditions suitable for formation of 2,6-Diamino-N2-isopropylphenoxyacetyl-9-(3′,5′-O -tetraisopropyldisiloxan-(1,3-diyl)-2′-O-methyl-beta-D-ribofuranosyl) purine; d) deaminating and desilylating said 2,6-diamino-N2-isopropylphenoxyacetyl-9-(3,5-O-tetraisopropyldisiloxan-(1,3-diyl)-2-O-methyl-beta-D-ribofuranosyl) purine under conditions suitable for formation of N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside in a crude form; e) purifying said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside from said crude form; and f) converting said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside to a N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite under conditions suitable for formation of said N2-isopropylphenoxyacetyl-2′-O-methyl guanosine nucleoside phosphoramidite.
Parent Case Info
[0001] This patent application is a continuation of Beigelman et al., U.S. Ser. No. 09/586,345, filed Jun. 2, 2000, which is a continuation Beigelman et al., U.S. Ser. No. 09/361,484, filed Jul. 26, 1999, and this application is also a continuation-in-part of Beigelman et al., U.S. Ser. No. 08/600,429 filed Feb. 13,1996. These applications are hereby incorporated by reference herein in their entirety including the drawings.
Continuations (3)
|
Number |
Date |
Country |
Parent |
09586345 |
Jun 2000 |
US |
Child |
10431739 |
May 2003 |
US |
Parent |
09361484 |
Jul 1999 |
US |
Child |
09586345 |
Jun 2000 |
US |
Parent |
08600429 |
Feb 1996 |
US |
Child |
09586345 |
Jun 2000 |
US |