This invention relates to chemical synthesis, and more particularly to chemical synthesis that use optically encoded beads, micro-particles, or elements.
A common form of chemical synthesis in combinatorial chemistry is known as “solid phase” chemical synthesis. This synthesis technique uses encoded beads or particles as a solid support for the synthesis of chemicals and/or chemical libraries
Existing technologies, such as bar codes, electronic microchips/transponders, radio-frequency identification (RFID), and fluorescence and other optical techniques, are often inadequate. For example, existing technologies may be too large for certain applications, may not provide enough different codes (i.e., limited multiplexing capability), or cannot withstand harsh temperature, chemical, nuclear and/or electromagnetic environments, or may otherwise be not well suited for certain types of chemical synthesis or true combinatorial chemistry.
Therefore, it would be desirable to obtain a coding element or platform that provides the capability of providing many codes (e.g., greater than 1 million codes), that can be made very small, that can withstand harsh environments, and/or can enable “true” combinatorial chemistry.
Objects of the present invention include provision of an optical identification element or platform that allows for a large number of distinct codes, can be made very small, and/or can withstand harsh environments.
According to the present invention an optical identification element having a synthesized chemical attached thereto comprises: an optical substrate; at least a portion of said substrate being made of a substantially single material and having at least one diffraction grating embedded therein, said grating having a resultant refractive variation within the substantially single material at a grating location; said grating providing an output optical signal indicative of a code when illuminated by an incident light signal propagating from outside the substrate, said output optical signal being a result of passive, non-resonant scattering from said grating when illuminated by said incident light signal; and the synthesized chemical being attached to at least a portion of said substrate.
The present invention provides an encoded optical element platform for performing large numbers of combinatorial chemistry tasks/experiments.
Also, the elements may be very small “microbeads” (or microelements or microparticles or encoded particles) for synthesis that requires small substrates (about 1–1000 microns), or larger “macroelements” for synthesis that allows for larger substrates or beads (e.g., 1–1000 mm or much larger). The elements may also be referred to as encoded particles or encoded threads. Also, the element may be embedded within or part of a larger substrate or object. A common synthesis use will be as microbeads. Also, chemicals can be synthesized on microbeads located in a glass column reaction vessel.
The beads may be chemically coated before or after synthesis, to either enhance chemical synthesis or help preserve it after synthesis is complete.
The invention may be used with any known combinatorial chemistry or biochemistry synthesis process, and are especially adaptable to synthesis processes having solid phase immobilization. The invention may be used in many areas such as drug discovery, biology, proteomics, combinatorial chemistry, assays or multiplexed experiments. Any type of chemical, or molecule chain that can be synthesized on a glass or other solid support bead may be synthesized using the present invention as the solid support. For example, genes, DNA, cDNA, RNA, proteins, particles, biological particles, cells, molecules, atoms, nucleotides, oligomers, peptides, antigen, antibodies, ligands, receptors, hydrocarbons, polymers, radioactive or non-radioactive particles.
The elements also allow for quality control of the synthesized chemical to be easily tested, providing a higher level of quality chemicals.
The foregoing and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of exemplary embodiments thereof.
Referring to
The optical identification element 8 described herein is the same as that described in Copending Patent Application Ser. No. 10/645,689, and in Copending Patent Application Ser. No. 10/645,686, both filed contemporaneously herewith, which are both incorporated herein by reference in their entirety.
In particular, the substrate 10 has an inner region 20 where the grating 12 is located. The inner region 20 may be photosensitive to allow the writing or impressing of the grating 12. The substrate 10 has an outer region 18, which does not have the grating 12 therein.
The grating 12 is a combination of one or more individual spatial periodic sinusoidal variations (or components) in the refractive index that are collocated at substantially the same location on the substrate 10 along the length of the grating region 20, each having a spatial period (or pitch) Λ. The resultant combination of these individual pitches is the grating 12, comprising spatial periods (Λ1–Λn) each representing a bit in the code. Thus, the grating 12 represents a unique optically readable code, made up of bits, where a bit corresponds to a unique pitch Λ within the grating 12. Accordingly, for a digital binary (0–1) code, the code is determined by which spatial periods (Λ1–Λn) exist (or do not exist) in a given composite grating 12. The code or bits may also be determined by additional parameters (or additional degrees of multiplexing), and other numerical bases for the code may be used, as discussed herein and/or in the aforementioned patent application.
The grating 12 may also be referred to herein as a composite or collocated grating. Also, the grating 12 may be referred to as a “hologram”, as the grating 12 transforms, translates, or filters an input optical signal to a predetermined desired optical output pattern or signal.
The substrate 10 has an outer diameter D1 and comprises silica glass (SiO2) having the appropriate chemical composition to allow the grating 12 to be disposed therein or thereon. Other materials for the optical substrate 10 may be used if desired. For example, the substrate 10 may be made of any glass, e.g., silica, phosphate glass, borosilicate glass, or other glasses, or made of glass and plastic, or solely plastic. For high temperature or harsh chemical applications, the optical substrate 10 made of a glass material is desirable. If a flexible substrate is needed, plastic, rubber or polymer-based substrate may be used. The optical substrate 10 may be any material capable of having the grating 12 disposed in the grating region 20 and that allows light to pass through it to allow the code to be optically read.
The optical substrate 10 with the grating 12 has a length L and an outer diameter D1, and the inner region 20 diameter D. The length L can range from very small “microbeads” (or microelements, micro-particles, or encoded particles), about 1–1000 microns or smaller, to larger “macrobeads” or “macroelements” for larger applications (about 1.0–1000 mm or greater). In addition, the outer dimension D1 can range from small (less than 1000 microns) to large (1.0–1000 mm and greater). Other dimensions and lengths for the substrate 10 and the grating 12 may be used.
The grating 12 may have a length Lg of about the length L of the substrate 10. Alternatively, the length Lg of the grating 12 may be shorter than the total length L of the substrate 10.
The outer region 18 is made of pure silica (SiO2) and has a refractive index n2 of about 1.458 (at a wavelength of about 1553 nm), and the inner grating region 20 of the substrate 10 has dopants, such as germanium and/or boron, to provide a refractive index n1 of about 1.453, which is less than that of outer region 18 by about 0.005. Other indices of refraction n1,n2 for the grating region 20 and the outer region 18, respectively, may be used, if desired, provided the grating 12 can be impressed in the desired grating region 20. For example. the grating region 20 may have an index ofrefraction that is larger than that of the outer region 18 or grating region 20 may have the same index of refraction as the outer region 18 if desired.
Referring to
Alternatively, the input light 24 may be a plurality of wavelengths and the output light 27 may have a plurality of wavelengths indicative of the pitches (Λ1–Λn) existing in the grating 12. Alternatively, the output light may be a combination of wavelengths and output angles. The above techniques are discussed in more detail herein and/or in the aforementioned patent application.
The detector 29 has the necessary optics, electronics, software and/or firmware to perform the functions described herein. In particular, the detector reads the optical signal 27 diffracted or reflected from the grating 12 and determines the code based on the pitches present or the optical pattern, as discussed more herein or in the aforementioned patent application. An output signal indicative of the code is provided on a line 31.
Referring to
Next, a step 808 tests to see if the chemical synthesis is complete for each bead. If not the process goes back to step 803 where the remaining beads are recombined or re-pooled and the process starts again. The loop 814 repeats a predetermined number of times N, where each time through the loop 814 another chemical is added to each of the beads. If certain beads are to have fewer chemicals than others, then certain beads will drop out of the process before others. When the step 808 concludes that one or more beads have completed their synthesis process, a step 812 logs the completion of that bead and the remainder of the beads continue until all desired chemicals have synthesized on the beads.
For example, for M=4 compounds and N=10 chemicals to add to each bead, the total number of different codes needed would be 1,048,576 or MN and if there will be only one bead with each desired chemical (i.e., no redundancy), then the number of beads X would also be MN=1,048,576.
Referring to
If it is desired to produce multiple of the same chemical on separate beads this can be done by having multiple beads with the same code, or presetting certain groups of codes to have the same chemical composition. In that case, each of these beads may go to the same bins in the same order as a group.
The present invention may be used with any known combinatorial chemistry, chemical synthesis process, or synthesizing labeled combinatorial chemistry libraries, and are especially adaptable to solid phase synthesis, for example: U.S. Pat. No. 6,417,010, “Methods and Apparatus for Synthesizing Labeled Combinatorial Chemistry Labraries”, U.S. Pat. No. 6,558,904 entitled “Method for producing structured, self-organized molecular monolayers of individual molecular species, in particular substance libraries”; U.S. Pat. No. 6,541,276 entitled “Methods for solid-phase synthesis of hydroxylamine compounds and derivatives and combinatorial libraries thereof”; U.S. Pat. No. 6,541,211 “Apparatus and method for synthesizing combinational libraries”; U.S. Pat. No. 6,528,324 entitled “Apparatus for pre-determined mass sorting of positional-encoded solid phase synthesis supports”; U.S. Pat. No. 6,506,558 entitled “Very large scale immobilized polymer synthesis”; U.S. Pat. No. 6,495,539 entitled “B-lactam-like chaperone inhibitors”; U.S. Pat. No. 6,468,740 entitled “Cyclic and substituted immobilized molecular synthesis”; U.S. Pat. No. 6,417,010 entitled “Methods and apparatus for synthesizing labeled combinatorial chemistry libraries; U.S. Pat. No. 6,410,643 entitled “Solid phase synthesis method and reagent”; U.S. Pat. No. 6,410,342 entitled “Method and apparatus for controlled photoelution”; U.S. Pat. No. 6,387,636 entitled “Method of shielding biosynthesis reactions from the ambient environment on an array”; U.S. Pat. No. 6,372,885 entitled “Solid-phase technology for the preparation of amides”; U.S. Pat. No. 6,368,874 entitled “Methods for hard-tagging an encoded synthetic library”; U.S. Pat. No. 6,362,009 entitled “Solid phase synthesis of heterocycles”; U.S. Pat. No. 6,346,423 entitled “Methods and compositions for producing biopolymeric arrays”; U.S. Pat. No. 6,329,210 entitled “Method and apparatus for high volume polymer synthesis”; U.S. Pat. No. 6,294,694 entitled “Matrix metalloproteinase inhibitors and method of using same”; U.S. Pat. No. 6,274,385 entitled “Attached tags for use in combinatorial chemistry synthesis”; U.S. Pat. No. 6,265,228 entitled “Process for preparing combinatorial amide alcohol libraries”; U.S. Pat. No. 6,251,595 entitled “Methods and devices for carrying out chemical reactions”; U.S. Pat. No. 6,127,190 entitled “Method for producing combinatorial libraries having a predetermined frequency of each species of test compound”; U.S. Pat. No. 5,929,208 entitled “Methods for electronic synthesis of polymers”; U.S. Pat. No. 5,886,186 entitled “Synthesis of substituted N-heteroaromatic compounds and methods of use thereof”; U.S. Pat. No. 5,885,837 entitled “Very large scale immobilized polymer synthesis using mechanically directed flow paths”; U.S. Pat. No. 5,859,191 entitled “Method for the site-specific modification of peptide alpha amines”; U.S. Pat. No. 5,763,263 entitled “Method and apparatus for producing position addressable combinatorial libraries”; U.S. Pat. No. 5,712,171 entitled “Method of generating a plurality of chemical compounds in a spatially arranged array”; U.S. Pat. No. 5,690,894 entitled “High density array fabrication and readout method for a fiber optic biosensor”; U.S. Pat. No. 5,545,568 entitled “Solid phase and combinatorial synthesis of compounds on a solid support”; U.S. Pat. No. 5,545,531 entitled “Methods for making a device for concurrently processing multiple biological chip assays”; U.S. Pat. No. 5,539,083 entitled “Peptide nucleic acid combinatorial libraries and improved methods of synthesis”; U.S. Pat. No. 5,384,261 entitled “Very large scale immobilized polymer synthesis using mechanically directed flow paths”; U.S. Pat. No. 5,288,514 entitled “Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support”; U.S. Pat. No. 5,264,563 entitled “Process for synthesizing oligonucleotides with random codons”; U.S. Pat. No. 5,010,175 entitled “General method for producing and selecting peptides with specific properties”; U.S. Pat. No. 6,465,192 entitled “Compounds and methods for the inhibition of protein-protein interactions”; U.S. Pat. No. 6,440,669 entitled “Methods for applying small volumes of reagents”; U.S. Pat. No. 6,406,844 entitled “Very large scale immobilized polymer synthesis”; U.S. Pat. No. 6,329,010 entitled “Method and apparatus for high volume polymer synthesis”; U.S. Pat. No. 6,316,623 entitled “Ethylenediamine compound libraries”; U.S. Pat. No. 5,780,241 entitled “Complex chemical libraries”; U.S. Pat. No. 5,712,171 entitled “Method of generating a plurality of chemical compounds in a spatially arranged array”; U.S. Pat. No. 5,593,853 entitled “Generation and screening of synthetic drug libraries”; U.S. Pat. No. 6,569,631 entitled “Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes”; U.S. Pat. No. 6,503,759 entitled “Complex combinatorial chemical libraries encoded with tags”; U.S. Pat. No. 6,492,125 entitled “Method to assess library X library interactions”; U.S. Pat. No. 6,457,807 entitled “Mass-based encoding and qualitative analysis of combinatorial libraries”; U.S. Pat. No. 6,455,263 entitled “Small molecule library screening using FACS”; U.S. Pat. No. 6,096,496 entitled “Supports incorporating vertical cavity emitting lasers and tracking apparatus for use in combinatorial synthesis”; U.S. Pat. No. 5,770,455 entitled “Methods and apparatus for synthesizing labeled combiatorial chemistrylibraries”; U.S. Pat. No. 5,751,629 entitled “Remotely programmable matrices with memories”; U.S. Pat. No. 6,537,504 “Method and apparatus for concurrent and sequential multi-step reactions for producing a plurality of different chemical compounds”; U.S. Pat. No. 6,468,806 “Potential masking systems and methods for combinatorial library synthesis”; U.S. Pat. No. 6,429,027 “Composite arrays utilizing microspheres”; U.S. Pat. No. 6,420,169 “Apparatus for forming polynucleotides or polypeptides”; U.S. Pat. No. 6,448,443 “Synthesis of combinatorial libraries of compounds reminiscent of natural products”; U.S. Pat. No. 5,840,485 “Topologically segregated, encoded solid phase libraries”.
Referring to
Referring to
Each of the individual spatial periods (Λ1–Λn) in the grating 12 is slightly different, thus producing an array of N unique diffraction conditions (or diffraction angles) discussed more hereinafter. When the element 8 is illuminated from the side, in the region of the grating 12, at an appropriate input angle, e.g., about 30 degrees, with a single input wavelength λ (monochromatic) source, the diffracted (or reflected) beams 26–36 are generated. Other input angles θi may be used if desired, depending on various design parameters as discussed herein and/or in the aforementioned patent application, and provided that a known diffraction equation (Eq. 1 below) is satisfied:
sin(θi)+sin(θo)=mλ/nΛ Eq. 1
where Eq. 1 is diffraction (or reflection or scatter) relationship between input wavelength λ, input incident angle θi, output incident angle θo, and the spatial period Λ of the grating 12. Further, m is the “order” of the reflection being observed, and n is the refractive index of the substrate 10. The value of m=1 or first order reflection is acceptable for illustrative purposes. Eq. 1 applies to light incident on outer surfaces of the substrate 10 which are parallel to the longitudinal axis of the grating (or the kB vector). Because the angles θi,θo are defined outside the substrate 10 and because the effective refractive index of the substrate 10 is substantially a common value, the value of n in Eq. 1 cancels out of this equation.
Thus, for a given input wavelength λ, grating spacing Λ, and incident angle of the input light θi, the angle θo of the reflected output light may be determined. Solving Eq. 1 for θo and plugging in m=1, gives:
θo=sin−1(λ/Λ−sin(θi)) Eq. 2
For example, for an input wavelength λ=532 nm, a grating spacing Λ=0.532 microns (or 532 nm), and an input angle of incidence θi=30 degrees, the output angle of reflection will be θo=30 degrees. Alternatively, for an input wavelength λ=632 nm, a grating spacing Λ=0.532 microns (or 532 nm), and an input angle θi of 30 degrees, the output angle of reflection θo will be at 43.47 degrees, or for an input angle θi=37 degrees, the output angle of reflection will be θo=37 degrees. Any input angle that satisfies the design requirements discussed herein and/or in the aforementioned patent application may be used.
In addition, to have sufficient optical output power and signal to noise ratio, the output light 27 should fall within an acceptable portion of the Bragg envelope (or normalized reflection efficiency envelope) curve 200, as indicated by points 204,206, also defined as a Bragg envelope angle θB, as also discussed herein and/or in the aforementioned patent application. The curve 200 may be defined as:
where K=2πδn/λ, where, δn is the local refractive index modulation amplitude of the grating and λ is the input wavelength, sinc(x)=sin(x)/x, and the vectors ki=2π cos(θi)/λ and ko=2π cos(θo)/λ are the projections of the incident light and the output (or reflected) light, respectively, onto the line 203 normal to the axial direction of the grating 12 (or the grating vector kB), D is the thickness or depth of the grating 12 as measured along the line 203 (normal to the axial direction of the grating 12). Other substrate shapes than a cylinder may be used and will exhibit a similar peaked characteristic of the Bragg envelope. We have found that a value for δn of about 10−4 in the grating region of the substrate is acceptable; however, other values may be used if desired.
Rewriting Eq. 3 gives the reflection efficiency profile of the Bragg envelope as:
where:
x=(ki−ko)D/2=(πD/λ)*(cos θi−cos θo)
Thus, when the input angle θi is equal to the output (or reflected) angle θo (i.e., θi=θo), the reflection efficiency I (Eqs. 3 & 4) is maximized, which is at the center or peak of the Bragg envelope. When θi=θo, the input light angle is referred to as the Bragg angle as is known. The efficiency decreases for other input and output angles (i.e., θi≠θo), as defined by Eqs. 3 & 4. Thus, for maximum reflection efficiency and thus output light power, for a given grating pitch Λ and input wavelength, the angle θi of the input light 24 should be set so that the angle θo of the reflected output light equals the input angle θi.
Also, as the thickness or diameter D of the grating decreases, the width of the sin(x)/x function (and thus the width of the Bragg envelope) increases and, the coefficient to or amplitude of the sinc2 (or (sin(x)/x)2 function (and thus the efficiency level across the Bragg envelope) also increases, and vice versa. Further, as the wavelength λ increases, the half-width of the Bragg envelope as well as the efficiency level across the Bragg envelope both decrease. Thus, there is a trade-off between the brightness of an individual bit and the number of bits available under the Bragg envelope. Ideally, δn should be made as large as possible to maximize the brightness, which allows D to be made smaller.
From Eq. 3 and 4, the half-angle of the Bragg envelope θB is defined as:
where η is a reflection efficiency factor which is the value for x in the sinc2(x) function where the value of sinc2(x) has decreased to a predetermined value from the maximum amplitude as indicated by points 204,206 on the curve 200.
We have found that the reflection efficiency is acceptable when η≦1.39. This value for η corresponds to when the amplitude of the reflected beam (i.e., from the sinc2(x) function of Eqs. 3 & 4) has decayed to about 50% of its peak value. In particular, when x=1.39=η, sinc2(x)=0.5. However, other values for efficiency thresholds or factor in the Bragg envelope may be used if desired.
The beams 26–36 are imaged onto the CCD camera 60 to produce the pattern of light and dark regions 120–132 representing a digital (or binary) code, where light=1 and dark=0 (or vice versa). The digital code may be generated by selectively creating individual index variations (or individual gratings) with the desired spatial periods Λ1–Λn. Other illumination, readout techniques, types of gratings, geometries, materials, etc. may be used as discussed in the aforementioned patent application.
Referring to
For the images in
Referring to
The maximum number of resolvable bits N, which is equal to the number of different grating pitches Λ (and hence the number of codes), that can be accurately read (or resolved) using side-illumination and side-reading of the grating 12 in the substrate 10, is determined by numerous factors, including: the beam width w incident on the substrate (and the corresponding substrate length L and grating length Lg), the thickness or diameter D of the grating 12, the wavelength λ of incident light, the beam divergence angle θR, and the width of the Bragg envelope θB (discussed more in the aforementioned patent application), and may be determined by the equation:
Referring to
In this case, each bit (or Λ) is defined by whether its corresponding wavelength falls within the Bragg envelope, not by its angular position within the Bragg envelope 200. As a result, it is not limited by the number of angles that can fit in the Bragg envelope 200 for a given composite grating 12, as in the embodiment discussed hereinbefore. Thus, using multiple wavelengths, the only limitation in the number of bits N is the maximum number of grating pitches Λ that can be superimposed and optically distinguished in wavelength space for the output beam.
Referring to
One way to measure the bits in wavelength space is to have the input light angle θi equal to the output light angle θo, which is kept at a constant value, and to provide an input wavelength λ that satisfies the diffraction condition (Eq. 1) for each grating pitch Λ. This will maximize the optical power of the output signal for each pitch Λ detected in the grating 12.
Referring to 11, illustration (b), the transmission wavelength spectrum of the transmitted output beam 330 (which is transmitted straight through the grating 12) will exhibit a series of notches (or dark spots) 696. Alternatively, instead of detecting the reflected output light 310, the transmitted light 330 may be detected at the detector/reader 308. It should be understood that the optical signal levels for the reflection peaks 695 and transmission notches 696 will depend on the “strength” of the grating 12, i.e., the magnitude of the index variation n in the grating 12.
In
Alternatively, the source 300 may provide a continuous broadband wavelength input signal such as that shown as a graph 316. In that case, the reflected output beam 310 signal is provided to a narrow band scanning filter 318 which scans across the desired range of wavelengths and provides a filtered output optical signal 320 to the reader 308. The filter 318 provides a sync signal on a line 322 to the reader, which is indicative of which wavelengths are being provided on the output signal 320 to the reader and may be similar to the sync signal discussed hereinbefore on the line 306 from the source 300. In this case, the source 300 does not need to provide a sync signal because the input optical signal 24 is continuous. Alternatively, instead of having the scanning filter being located in the path of the output beam 310, the scanning filter may be located in the path of the input beam 24 as indicated by the dashed box 324, which provides the sync signal on a line 323.
Alternatively, instead of the scanning filters 318,324, the reader 308 may be a known optical spectrometer (such as a known spectrum analyzer), capable of measuring the wavelength of the output light.
The desired values for the input wavelengths λ (or wavelength range) for the input signal 24 from the source 300 may be determined from the Bragg condition of Eq. 1, for a given grating spacing Λ and equal angles for the input light θi and the angle light θo. Solving Eq. 1 for λ and plugging in m=1, gives:
λ=Λ[sin(θo)+sin(θi)] Eq. 7
It is also possible to combine the angular-based code detection with the wavelength-based code detection, both discussed hereinbefore. In this case, each readout wavelength is associated with a predetermined number of bits within the Bragg envelope. Bits (or grating pitches Λ) written for different wavelengths do not show up unless the correct wavelength is used.
Accordingly, the bits (or grating pitches Λ) can be read using one wavelength and many angles, many wavelengths and one angle, or many wavelengths and many angles.
Referring to
It should be understood that there is still a trade-off discussed hereinbefore with beam divergence angle θR and the incident beam width (or length L of the substrate), but the accessible angular space is theoretically now 90 degrees. Also, for maximum efficiency, the phase shift between adjacent minimum and maximum refractive index values of the grating 12 should approach a π phase shift; however, other phase shifts may be used.
In this case, rather than having the input light 24 coming in at the conventional Bragg input angle θi, as discussed hereinbefore and indicated by a dashed line 701, the grating 12 is illuminated with the input light 24 oriented on a line 705 orthogonal to the longitudinal grating vector 703. The input beam 24 will split into two (or more) beams of equal amplitude, where the exit angle θo can be determined from Eq. 1 with the input angle θi=0 (normal to the longitudinal axis of the grating 12).
In particular, from Eq. 1, for a given grating pitch Λ1, the +/−1st order beams (m=+1 and m=−1), corresponds to output beams 700,702, respectively. For the +/−2nd order beams (m=+2 and m=−2), corresponds to output beams 704,706, respectively. The 0th order (undefracted) beam (m=0), corresponds to beam 708 and passes straight through the substrate. The output beams 700–708 project spectral spots or peaks 710–718, respectively, along a common plane, shown from the side by a line 709, which is parallel to the upper surface of the substrate 10.
For example, for a grating pitch Λ=1.0 um, and an input wavelength λ=400 nm, the exit angles θo are ˜+/−23.6 degrees (for m=+/−1), and +/−53.1 degrees (from m=+/−2), from Eq. 1. It should be understood that for certain wavelengths, certain orders (e.g., m=+/−2) may be reflected back toward the input side or otherwise not detectable at the output side of the grating 12.
Alternatively, one can use only the +/−1st order (m=+/−1) output beams for the code, in which case there would be only 2 peaks to detect, 712, 714. Alternatively, one can also use any one or more pairs from any order output beam that is capable of being detected. Alternatively, instead of using a pair of output peaks for a given order, an individual peak may be used.
Referring to
Thus, for a given pitch Λ (or bit) in a grating, a set of spectral peaks will appear at a specific location in space. Thus, each different pitch corresponds to a different elevation or output angle which corresponds to a predetermined set of spectral peaks. Accordingly, the presence or absence of a particular peak or set of spectral peaks defines the code.
In general, if the angle of the grating 12 is not properly aligned with respect to the mechanical longitudinal axis of the substrate 10, the readout angles may no longer be symmetric, leading to possible difficulties in readout. With a thin grating, the angular sensitivity to the alignment of the longitudinal axis of the substrate 10 to the input angle θi of incident radiation is reduced or eliminated. In particular, the input light can be oriented along substantially any angle θi with respect to the grating 12 without causing output signal degradation, due the large Bragg angle envelope. Also, if the incident beam 24 is normal to the substrate 10, the grating 12 can be oriented at any rotational (or azimuthal) angle without causing output signal degradation. However, in each of these cases, changing the incident angle θi will affect the output angle θo of the reflected light in a predetermined predictable way, thereby allowing for accurate output code signal detection or compensation.
Referring to
In addition, the azimuthal multiplexing can be combined with the elevation or output angle multiplexing discussed hereinbefore to provide two levels of multiplexing. Accordingly, for a thin grating, the number of bits can be multiplexed based on the number of grating pitches Λ and/or geometrically by the orientation of the grating pitches.
Furthermore, if the input light angle θi is normal to the substrate 10, the edges of the substrate 10 no longer scatter light from the incident angle into the “code angular space”, as discussed herein and/or in the aforementioned patent application.
Also, in the thin grating geometry, a continuous broadband wavelength source may be used as the optical source if desired.
Referring to
Referring to
Referring to
In the case where incident light 610 is incident along the same direction as the grating vector (Kb) 207, i.e., θi=0 degrees, the incident light sees the whole length Lg of the grating 12 and the grating provides a reflected output light angle θo=0 degrees, and the Bragg envelope 612 becomes extremely narrow, as the narrowing effect discussed above reaches a limit. In that case, the relationship between a given pitch A in the grating 12 and the wavelength of reflection λ is governed by a known “Bragg grating” relation:
λ=2 neffΛ Eq. 8
where neff is the effective index of refraction of the substrate, λ is the input (and output wavelength) and Λ is the pitch. This relation, as is known, may be derived from Eq. 1 where θi=θo=90 degrees.
In that case, the code information is readable only in the spectral wavelength of the reflected beam, similar to that discussed hereinbefore for wavelength based code reading. Accordingly, the input signal in this case may be a scanned wavelength source or a broadband wavelength source. In addition, as discussed hereinbefore for wavelength based code reading, the code information may be obtained in reflection from the reflected beam 614 or in transmission by the transmitted beam 616 that passes through the grating 12.
It should be understood that for shapes of the substrate 10 or element 8 other than a cylinder, the effect of various different shapes on the propagation of input light through the element 8, substrate 10, and/or grating 12, and the associated reflection angles, can be determined using known optical physics including Snell's Law, shown below:
nin sin θin=nout sin θout Eq. 9
where nin is the refractive index of the first (input) medium, and nout is the refractive index of the second (output) medium, and θin and θout are measured from a line 620 normal to an incident surface 622.
Referring to
If an optical waveguide is used any standard waveguide may be used, e.g., a standard telecommunication single mode optical fiber (125 micron diameter or 80 micron diameter fiber with about a 8–10 micron diameter), or a larger diameter waveguide (greater than 0.5 mm diameter), such as is describe in U.S. patent application Ser. No. 09/455,868, filed Dec. 6, 1999, entitled “Large Diameter Waveguide, Grating”. Further, any type of optical waveguide may be used for the optical substrate 10, such as, a multi-mode, birefringent, polarization maintaining, polarizing, multi-core, multi-cladding, or microsturctured optical waveguide, or a flat or planar waveguide (where the waveguide is rectangular shaped), or other waveguides.
Referring to
Referring to
The grating 12 may be impressed in the substrate 10 by any technique for writing, impressed, embedded, imprinted, or otherwise forming a diffraction grating in the volume of or on a surface of a substrate 10. Examples of some known techniques are described in U.S. Pat. Nos. 4,725,110 and 4,807,950, entitled “Method for Impressing Gratings Within Fiber Optics”, to Glenn et al; and U.S. Pat. No. 5,388,173, entitled “Method and Apparatus for Forming Aperiodic Gratings in Optical Fibers”, to Glenn, respectively, and U.S. Pat. No. 5,367,588, entitled “Method of Fabricating Bragg Gratings Using a Silica Glass Phase Grating Mask and Mask Used by Same”, to Hill, and U.S. Pat. No. 3,916,182, entitled “Periodic Dielectric Waveguide Filter”, Dabby et al, and U.S. Pat. No. 3,891,302, entitled “Method of Filtering Modes in Optical Waveguides”, to Dabby et al, which are all incorporated herein by reference to the extent necessary to understand the present invention.
Alternatively, instead of the grating 12 being impressed within the substrate material, the grating 12 may be partially or totally created by etching or otherwise altering the outer surface geometry of the substrate to create a corrugated or varying surface geometry of the substrate, such as is described in U.S. Pat. No. 3,891,302, entitled “Method of Filtering Modes in Optical Waveguides”, to Dabby et al, which is incorporated herein by reference to the extent necessary to understand the present invention, provided the resultant optical refractive profile for the desired code is created.
Further, alternatively, the grating 12 may be made by depositing dielectric layers onto the substrate, similar to the way a known thin film filter is created, so as to create the desired resultant optical refractive profile for the desired code.
The substrate 10 (and/or the element 8) may have end-view cross-sectional shapes other than circular, such as square, rectangular, elliptical, clam-shell, D-shaped, or other shapes, and may have side-view sectional shapes other than rectangular, such as circular, square, elliptical, clam-shell, D-shaped, or other shapes. Also, 3D geometries other than a cylinder may be used, such as a sphere, a cube, a pyramid or any other 3D shape. Alternatively, the substrate 10 may have a geometry that is a combination of one or more of the foregoing shapes.
The shape of the element 8 and the size of the incident beam may be made to minimize any end scatter off the end face(s) of the element 8, as is discussed herein and/or in the aforementioned patent application. Accordingly, to minimize such scatter, the incident beam 24 may be oval shaped where the narrow portion of the oval is smaller than the diameter D1, and the long portion of the oval is smaller than the length L of the element 8. Alternatively, the shape of the end faces may be rounded or other shapes or may be coated with an antireflective coating.
It should be understood that the size of any given dimension for the region 20 of the grating 12 may be less than any corresponding dimension of the substrate 10. For example, if the grating 12 has dimensions of length Lg, depth Dg, and width Wg, and the substrate 12 has different dimensions of length L, depth D, and width W, the dimensions of the grating 12 may be less than that of the substrate 12. Thus, the grating 12, may be embedded within or part of a much larger substrate 12. Also, the element 8 may be embedded or formed in or on a larger object for identification of the object.
The dimensions, geometries, materials, and material properties of the substrate 10 are selected such that the desired optical and material properties are met for a given application. The resolution and range for the optical codes are scalable by controlling these parameters as discussed herein and/or in the aforementioned patent application.
Referring to
Also, the substrate 10 may be made of a material that is less dense than certain fluid (liquids and/or gas) solutions, thereby allowing the elements 8 to float or be buoyant or partially buoyant. Also, the substrate may be made of a porous material, such as controlled pore glass (CPG) or other porous material, which may also reduce the density of the element 8 and may make the element 8 buoyant or partially-buoyant in certain fluids.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Unless otherwise specifically stated herein, the term “microbead” is used herein as a label and does not restrict any embodiment or application of the present invention to certain dimensions, materials and/or geometries.
The dimensions and/or geometries for any of the embodiments described herein are merely for illustrative purposes and, as such, any other dimensions and/or geometries may be used if desired, depending on the application, size, performance, manufacturing requirements, or other factors, in view of the teachings herein.
It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawings herein are not drawn to scale.
Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.
This application claims the benefit of U.S. Provisional Patent Applications, Ser. No. 60/410,541, filed Sep. 12, 2002, and is a continuation-in-part of U.S. patent application, Ser. No. 10/645,689, filed Aug. 20, 2003, and is a continuation-in-part of U.S. patent application, Ser. No. 10/645,686, filed Aug. 20, 2003, each of which are incorporated herein by reference in their entirety. U.S. patent application Ser. No. 10/661,234, and application Ser. No. 10/661,082, filed contemporaneously herewith, contains subject matter related to that disclosed herein, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3968476 | McMahon | Jul 1976 | A |
4011435 | Phelps | Mar 1977 | A |
4023010 | Horst et al. | May 1977 | A |
4053228 | Schiller | Oct 1977 | A |
4131337 | Moraw et al. | Dec 1978 | A |
4386274 | Altshuler | May 1983 | A |
4445229 | Tasto et al. | Apr 1984 | A |
4537504 | Baltes et al. | Aug 1985 | A |
4560881 | Briggs | Dec 1985 | A |
4562157 | Lowe et al. | Dec 1985 | A |
4647544 | Nicoli et al. | Mar 1987 | A |
4678752 | Thorne et al. | Jul 1987 | A |
4685480 | Eck | Aug 1987 | A |
4740688 | Edwards | Apr 1988 | A |
4748110 | Paul | May 1988 | A |
4767719 | Finlan | Aug 1988 | A |
4816659 | Bianco et al. | Mar 1989 | A |
4841140 | Sullivan et al. | Jun 1989 | A |
4877747 | Stewart | Oct 1989 | A |
4880752 | Keck et al. | Nov 1989 | A |
4882288 | North et al. | Nov 1989 | A |
4921805 | Gebeyehu et al. | May 1990 | A |
4931384 | Layton et al. | Jun 1990 | A |
4958376 | Leib | Sep 1990 | A |
4992385 | Godfrey | Feb 1991 | A |
5003600 | Deason | Mar 1991 | A |
RE33581 | Nicoli et al. | Apr 1991 | E |
5033826 | Kolner | Jul 1991 | A |
5067155 | Bianco et al. | Nov 1991 | A |
5081012 | Flanagan et al. | Jan 1992 | A |
5089387 | Tsay et al. | Feb 1992 | A |
5095194 | Barbanell | Mar 1992 | A |
5100238 | Nailor et al. | Mar 1992 | A |
5115121 | Bianco et al. | May 1992 | A |
5118608 | Layton et al. | Jun 1992 | A |
5138468 | Barbanell | Aug 1992 | A |
5141848 | Donovan et al. | Aug 1992 | A |
5144461 | Horan | Sep 1992 | A |
5166813 | Metz | Nov 1992 | A |
5196350 | Backman et al. | Mar 1993 | A |
5200794 | Nishiguma et al. | Apr 1993 | A |
5291006 | Hishiguma et al. | Mar 1994 | A |
5291027 | Kita et al. | Mar 1994 | A |
5300764 | Hoshino et al. | Apr 1994 | A |
5310686 | Sawyers et al. | May 1994 | A |
5349442 | Deason et al. | Sep 1994 | A |
5352582 | Lichtenwalter et al. | Oct 1994 | A |
5364797 | Olson et al. | Nov 1994 | A |
5374816 | Bianco | Dec 1994 | A |
5374818 | Bianco et al. | Dec 1994 | A |
5394234 | Bianco et al. | Feb 1995 | A |
5442433 | Hoshino et al. | Aug 1995 | A |
5448659 | Tsutsui et al. | Sep 1995 | A |
5451528 | Raymoure et al. | Sep 1995 | A |
5461475 | Lerner et al. | Oct 1995 | A |
5465176 | Bianco et al. | Nov 1995 | A |
5468649 | Shah et al. | Nov 1995 | A |
5506674 | Inoue et al. | Apr 1996 | A |
5514785 | Van Ness et al. | May 1996 | A |
5528045 | Hoffman et al. | Jun 1996 | A |
5547849 | Baer et al. | Aug 1996 | A |
5559613 | Deveaud-Pledran et al. | Sep 1996 | A |
5585639 | Dorsel et al. | Dec 1996 | A |
5607188 | Bahns et al. | Mar 1997 | A |
5621515 | Hoshino | Apr 1997 | A |
5627040 | Bierre et al. | May 1997 | A |
5627663 | Horan et al. | May 1997 | A |
5633724 | King et al. | May 1997 | A |
5663790 | Ekstrom et al. | Sep 1997 | A |
5667976 | Van Ness et al. | Sep 1997 | A |
5671308 | Inoue et al. | Sep 1997 | A |
5712912 | Tomko et al. | Jan 1998 | A |
5721435 | Troll | Feb 1998 | A |
5729365 | Sweatt | Mar 1998 | A |
5736330 | Fulton | Apr 1998 | A |
5742432 | Bianco | Apr 1998 | A |
5745615 | Atkins et al. | Apr 1998 | A |
5759778 | Li et al. | Jun 1998 | A |
5760961 | Tompkin et al. | Jun 1998 | A |
5766956 | Groger et al. | Jun 1998 | A |
5793502 | Bianco et al. | Aug 1998 | A |
5798273 | Shuler et al. | Aug 1998 | A |
5799231 | Gates et al. | Aug 1998 | A |
5801857 | Heckenkamp et al. | Sep 1998 | A |
5804384 | Muller et al. | Sep 1998 | A |
5822472 | Danielzik et al. | Oct 1998 | A |
5824478 | Muller | Oct 1998 | A |
5824557 | Burke et al. | Oct 1998 | A |
5831698 | Depp et al. | Nov 1998 | A |
5837475 | Dorsal et al. | Nov 1998 | A |
5841555 | Bianco et al. | Nov 1998 | A |
5846737 | Kang | Dec 1998 | A |
5874187 | Colvin et al. | Feb 1999 | A |
5895750 | Mushahwar et al. | Apr 1999 | A |
5922550 | Everhart et al. | Jul 1999 | A |
5925562 | Nova et al. | Jul 1999 | A |
5925878 | Challener | Jul 1999 | A |
5945679 | Dorsal et al. | Aug 1999 | A |
5981166 | Mandecki | Nov 1999 | A |
5986838 | Thomas, III | Nov 1999 | A |
5989923 | Lowe et al. | Nov 1999 | A |
5998796 | Liu et al. | Dec 1999 | A |
6001510 | Meng et al. | Dec 1999 | A |
6005691 | Grot et al. | Dec 1999 | A |
6017754 | Chestnut et al. | Jan 2000 | A |
6025129 | Nova et al. | Feb 2000 | A |
6025283 | Roberts | Feb 2000 | A |
6035082 | Murphy et al. | Mar 2000 | A |
6036807 | Brongers | Mar 2000 | A |
6043880 | Andrews et al. | Mar 2000 | A |
6046925 | Tsien et al. | Apr 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6057107 | Fulton | May 2000 | A |
6060256 | Everhart et al. | May 2000 | A |
6067167 | Atkinson et al. | May 2000 | A |
6067392 | Wakami et al. | May 2000 | A |
6078048 | Stevens et al. | Jun 2000 | A |
6087186 | Cargill et al. | Jul 2000 | A |
6096496 | Frankel | Aug 2000 | A |
6097485 | Lievan | Aug 2000 | A |
6103535 | Pilevar et al. | Aug 2000 | A |
6118127 | Liu et al. | Sep 2000 | A |
6160240 | Momma et al. | Dec 2000 | A |
6160656 | Mossberg et al. | Dec 2000 | A |
6164548 | Curiel | Dec 2000 | A |
6165592 | Berger et al. | Dec 2000 | A |
6165648 | Colvin et al. | Dec 2000 | A |
6174648 | Terao et al. | Jan 2001 | B1 |
6194563 | Cruickshank | Feb 2001 | B1 |
6214560 | Yguerabide et al. | Apr 2001 | B1 |
6218194 | Lyndin et al. | Apr 2001 | B1 |
6221579 | Everhart et al. | Apr 2001 | B1 |
6229635 | Wulf | May 2001 | B1 |
6259450 | Chiabrera et al. | Jul 2001 | B1 |
6268128 | Collins et al. | Jul 2001 | B1 |
6284459 | Nova et al. | Sep 2001 | B1 |
6292282 | Mossberg et al. | Sep 2001 | B1 |
6292319 | Thomas, III | Sep 2001 | B1 |
6301047 | Hoshino et al. | Oct 2001 | B1 |
6304263 | Chiabrera et al. | Oct 2001 | B1 |
6306587 | Royer et al. | Oct 2001 | B1 |
6309601 | Juncosa et al. | Oct 2001 | B1 |
6312961 | Seul | Nov 2001 | B1 |
6313771 | Munroe et al. | Nov 2001 | B1 |
6314220 | Mossberg et al. | Nov 2001 | B1 |
6319668 | Nova et al. | Nov 2001 | B1 |
6322932 | Colvin et al. | Nov 2001 | B1 |
RE37473 | Challener | Dec 2001 | E |
6329963 | Chiabrera et al. | Dec 2001 | B1 |
6331273 | Nova et al. | Dec 2001 | B1 |
6340588 | Nova et al. | Jan 2002 | B1 |
6352854 | Nova et al. | Mar 2002 | B1 |
6355198 | Kim et al. | Mar 2002 | B1 |
6371370 | Sadler | Apr 2002 | B2 |
6372428 | Nova et al. | Apr 2002 | B1 |
6399295 | Kaylor et al. | Jun 2002 | B1 |
6406841 | Lee et al. | Jun 2002 | B1 |
6406848 | Bridgham et al. | Jun 2002 | B1 |
6416714 | Nova et al. | Jul 2002 | B1 |
6417010 | Cargill et al. | Jul 2002 | B1 |
6428707 | Berg et al. | Aug 2002 | B1 |
6428957 | Delenstarr | Aug 2002 | B1 |
6433849 | Lowe | Aug 2002 | B1 |
6436651 | Everhart et al. | Aug 2002 | B1 |
RE37891 | Collins et al. | Oct 2002 | E |
6489606 | Kersey et al. | Dec 2002 | B1 |
6496287 | Seiberle et al. | Dec 2002 | B1 |
6506342 | Frankel | Jan 2003 | B1 |
6515753 | Maher et al. | Feb 2003 | B2 |
6522406 | Rovira et al. | Feb 2003 | B1 |
6524793 | Chandler et al. | Feb 2003 | B1 |
6533183 | Aasmul et al. | Mar 2003 | B2 |
6542673 | Holter et al. | Apr 2003 | B1 |
6560017 | Bianco | May 2003 | B1 |
6565770 | Mayer et al. | May 2003 | B1 |
6592036 | Sadler | Jul 2003 | B2 |
6594421 | Johnson et al. | Jul 2003 | B1 |
6609728 | Voerman et al. | Aug 2003 | B1 |
6613581 | Wada et al. | Sep 2003 | B1 |
6618342 | Johnson et al. | Sep 2003 | B1 |
6622916 | Bianco | Sep 2003 | B1 |
6628439 | Shiozawa et al. | Sep 2003 | B2 |
6632655 | Mehta et al. | Oct 2003 | B1 |
6635470 | Vann | Oct 2003 | B1 |
6678429 | Mossberg et al. | Jan 2004 | B2 |
6689316 | Blyth et al. | Feb 2004 | B1 |
6692031 | McGrew | Feb 2004 | B2 |
6692912 | Boles et al. | Feb 2004 | B1 |
20020022273 | Empedocles et al. | Feb 2002 | A1 |
20020090650 | Empedocles et al. | Jul 2002 | A1 |
20030032203 | Sabatini et al. | Feb 2003 | A1 |
20030129654 | Ravkin et al. | Jul 2003 | A1 |
20030138208 | Pawlak et al. | Jul 2003 | A1 |
20060057729 | Moon et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
1219979 | Jul 2002 | EP |
2372100 | Aug 2002 | GB |
WO 9636436 | Nov 1996 | WO |
0158583 | Aug 2001 | WO |
03061983 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040130761 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60410541 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10645689 | Aug 2003 | US |
Child | 10661254 | US | |
Parent | 10645686 | Aug 2003 | US |
Child | 10645689 | US |