The present disclosure relates to chemical vapor sensors.
The water heater industry has adopted certain safety measures for gas fired water heaters to avoid accidental ignition of vapors from flammable household substances spilled in the vicinity of a gas fired water heater. In the case of direct vent and power-vent water heaters, flammable vapor sensors are used to signal the water heater to shut down in the event the vapor sensor detects the presence of a potentially flammable mixture of air and vapor.
These vapor sensors are composed of polymers into which has been mixed a substantial amount of electrically conductive particles, usually carbon black, so as to make the mixture electrically conductive due to physical contact between the particles throughout the polymer-particle mixture.
The polymer-particle mixture is made into a thin layer and allowed to cure during which time cross-linking between polymer chains occurs. When this type of sensor is exposed to flammable solvent or gasoline vapor, molecules of the vapor are absorbed by the polymer which then swells to the point where the carbon particles begin to separate from each other. This separation inhibits the flow of electrons through the sensor and results in an increase in electrical resistance as measured across the sensor. See U.S. Pat. No. 2,930,015 and U.S. Pat. No. 7,138,090 for examples of sensors that span this technology.
One design issue presented by the use of this type of flammable vapor sensor is that the strength of its sensing output signal for a given concentration of sensed flammable vapor tends to diminish over time as the sensor ages. Sensor aging occurs because the polymer does not fully cure at the time of manufacture. The polymer continues to form cross-links long after the sensor has been installed in the water heater. U.S. Pat. No. 7,242,310 teaches a method to compensate for the diminished response of the sensor to flammable vapor due to aging.
The water heater industry specifies that flammable vapor sensors be operable to at least 125 F. The type of gas sensor taught in U.S. Pat. No. 3,045,198 has a response to temperatures near 125 F that is on the same order of magnitude as its response to 50% of the lower flammability limit of gasoline vapor, making it less reliable for use as a water heater safety sensor at higher temperatures.
There is an ongoing need for a chemical vapor sensor that has little or no diminished response due to aging, and with an improved relative response to vapor vs. temperature near 125 F.
In the drawings, the same reference numbers and acronyms identify elements or acts with the same or similar functionality for ease of understanding and convenience. To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.
References to “one embodiment” or “an embodiment” do not necessarily refer to the same embodiment, although they may.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
Herein, “approximately” as applied to ranges means that substantially more than half of the described elements fall within the range, although of course in any composition some (e.g. a low percentage, for example but not exclusively less than 10%-20%) of the elements may fall outside the range due to inherent limitations in design precision, manufacturing, filtering, separation, etc. The amounts that one skilled in the art would understand to “approximately” fall within or outside a range may depend upon the precision of the materials employed, the cost, the source of the materials, the manufacturing process, and many other factors.
A sensor may be formed to include an electrically resistive element having a first conductive lead and a second conductive lead. The resistive element may include a non resilient substrate, an elastomeric material, and a stratum layer of electrically conductive particles adhered to and at least partially covering the elastomeric material. A first portion of the conductive layer is electrically coupled with the first conductive lead. The second conductive lead is electrically coupled with a second portion of the conductive layer physically apart from the first portion.
Such a sensor may rapidly determine the change in an environment from one containing a relatively low, or no, concentration of flammable gasoline vapor and/or household solvents, to one containing a gasoline vapor concentration above 50% of the lower flammability limit. The sensor may include an electrically resistive element having a body, a first conductive lead, and a second conductive lead. It may further include a non-resilient substratum, an elastomeric material composed essentially of 100% silicone, and a stratum layer of palladium particles generally adhered to and at least partially covering the elastomeric material. The palladium particles may generally be less than or equal to 0.55 microns. A first portion of the stratum layer may be electrically coupled with the first conductive lead. A second conductive lead may be electrically coupled with a second portion of the stratum layer physically apart from the first portion.
One manner of constructing such a sensor includes applying a layer of an elastomeric material to a non-resilient substrate; applying an outer stratum of electrically conductive particles to the elastomeric material so that the stratum is substantially bonded thereto; and applying an additional stratum of electrically conductive particles onto the first stratum of electrically conductive particles so that the second stratum adheres to the first only by particle-particle cohesion.
A cross section of a vapor sensor is shown in
Particle-particle cohesion may be caused by Van Der Waal's attractive forces between particles. The particles (48 and 50) may be palladium and limited to diameters between 0.25 microns and 0.55 microns, of the type supplied by Alfa Aesar of Ward Hill, Mass. The electrically conductive particles may have a maximum size of about 5 microns. The particles comprising the first substratum (50) need not be the same size or material as the particles comprising the second substratum (48). For instance, the first substratum (50) may be comprised of silver particles of diameters between 600 microns and 200 microns while the second substratum (48) may be comprised of palladium particles between 0.25 microns and 0.55 microns. The electrically conductive particles may be composed of one or more members of the group palladium, platinum, platinum black, aluminum, silver, gold, tantalum, iridium, and carbon. The resilient substratum (12) is attached to a non-resilient base material (10). The layer of elastomeric material may be a flowable self-leveling silicone and the stratum of electrically conductive particles may be comprised of palladium particles of diameters between 0.25 microns and 0.55 microns. All the particles taken together form a conductive path. When the sensor is exposed to gasoline vapor, molecules of gasoline adsorb to the surface of the particles to form an electrically insulating layer between each particle,
Because the particles (48, 50) are not enclosed by the resilient layer (12), further cross-linking of the resilient layer does not cause sensor aging to the same extent in the first layer of particles (50). The second layer of particles (48) has no contact with the resilient layer (12) and therefore is almost completely unaffected by any additional cross-linking of the resilient layer.
Limiting particles (48, 50) to a diameter of less than 5 microns may substantially reduce sensitivity to increasing temperature while maintaining sensitivity to gasoline vapor.
Absorption forces which cause the adsorbate to force the particles apart and thus substantially change the resistance of the conductive path. However, due to numerous interacting properties of the particles and surface, substantial changes in resistance may not be caused by increases in temperature near 125 F. Resilient layer (12) is normally susceptible to significant thermal expansion near 125 F. This expansion causes the particles (48, 50) to separate, resulting in an increase in electrical resistance measured across the sensor, which can be mistaken for the presence of flammable vapor. In one embodiment the resilient layer and particle layers may have a negative radius of curvature less than 0.125″. A substantial reduction may be made in the amount of heat caused resistance by building the resilient layer (12) and the particle layers (48, 50) on a curved surface of negative curvature no greater than 0.125″ radius, preferably on the inside diameter of a hole no greater than 0.25″ in diameter.
Increasing temperature causes the resilient layer to expand radially inward, thereby compressing the particles (48, 50) closer together which counteracts much of the increase in resistance that would normally occur due to expansion of the resilient layer if the radius of curvature were equal to or greater than zero. See
(902) the non-resilient base, which is dark.
(904) the resilient substratum, which is the thin white band.
(906) the chemically bonded 1st substratum of 200-600 micron Ag particles.
(908) the second substratum of 0.25-0.55 micron Pd particles adhering by particle-particle adhesion.
The Pd particles are difficult to see individually at this magnification, and appear as a “powder coat” on the larger Ag particles.
This application claims priority under 35 USC 119 to USA application no. 61/208,184 filed on Feb. 23, 2009, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61208184 | Feb 2009 | US |