Electrothermal guns that use inert, safe-to-handle, propellants have been contemplated. See for example, U.S. Pat. Nos. 5,549,046; 5,072,647; 5,012,719; 4,974,487, the disclosures of which are incorporated herein by reference, which describe the use of a high pressure gas pulse to propel a projectile or projectiles out of a gun barrel. A source of gas is obtained by combusting an inert safe-to-handle propellant. The propellant is typically composed of a fuel, namely a metal hydride or metal, such as aluminum powder, and an oxidizer, namely water or a water-hydrogen peroxide mixture. Combusting a slurry of metal powder and water in a closed chamber generates high pressure gas, namely hydrogen gas, and a metal oxide aerosol. The apparatus and method for combusting such a propellant is well known, namely applying a high pulsed voltage through an electrode to produce an electrical discharge or plasma, which changes water to steam and vaporizes the metal powder in an exothermic chemical reaction, forming hydrogen gas and metal oxide particles aerosol.
Inert propellants are highly desirable since they are difficult to combust, making them safer to manufacture and handle. While the hydrogen gas component is useful for propelling a projectile or projectiles out of a barrel, the metal oxide aerosol component is undesirable, due to a tendency of the metal oxide aerosol to erode the barrel of the gun and to decrease the overall efficiency of the process. Accordingly, it would be desirable to provide a mechanism for separating the metal oxide aerosol component from the hydrogen gas component that results upon combustion of the propellant. Separation of the two combustion components would result in increased barrel life and an increase in the overall efficiency of the combustion process.
The present invention relates to an apparatus for generating high pressure gas pulse using a propellant, an electrothermal gun incorporating the pressure generating apparatus, and an apparatus and method for reducing wear thereof.
One aspect of the present invention is an apparatus for generating high pressure gas pulse. The apparatus includes a receiver having a combustion chamber for holding a propellant, which produces a gas component and a particle component when it is heated to undergo an exothermic chemical reaction, and a flow passageway positioned downstream of the combustion chamber, an ignition mechanism for igniting the propellant in the combustion chamber, and a separator for substantially separating the particle component from the gas component in the flow passageway.
The propellant can be composed of a slurry of aluminum powder and water. The exothermic chemical reaction of the slurry produces hydrogen gas and aluminum oxide particles.
The separator can include at least one gas passageway having a length sufficient to allow the gas component to stay in front of the particle component and move out of the separator, and deflecting the particle component to substantially remain inside the separator.
In one embodiment, the separator can include a plurality of spaced disks arranged in the flow passageway, with each spaced disk including at least one through hole. Specifically, the spaced disks can include at least one first disk having a central through hole and at least one second disk having a plurality of through holes positioned adjacent to the periphery thereof. The central through hole can be larger than each of the through holes formed in the second disk.
In other embodiments, the separator can include at least a first set of spirally or cyclonically curved fins to swirl and apply a centrifugal force on the gas and particle components. The separator can further include a plurality of annular pockets formed around the periphery of the flow passageway for trapping the particle component. The first set of fins can extend substantially the entire axial length of the flow passageway, and can include a shroud that extends around the outer periphery of the fins at a distal end portion thereof to form a plurality of discrete flow paths, one for each adjacent pairs of fins. Alternatively, the separator can further include a second set of spirally or cyclonically curved fins spaced from and positioned downstream of the first set of fins, and an intermediary planar member connecting the first and second sets of fins. The planar member can substantially divide the flow passageway extending between the first and second set of fins into two zones.
Another aspect of the present invention is an electrothermal gun that incorporates the apparatus for generating high pressure gas mentioned above, with a barrel connected to the receiver and communicating with the flow passageway.
Another aspect of the present invention is a method of reducing wear in the electrothermal gun mentioned above by providing a flow passageway positioned between the combustion chamber and the barrel, and separating the particle component from the gas component in the flow passageway so that a substantial portion of the particle component is stopped from being introduced into the barrel.
The particle component can be substantially separated from the gas component by providing at least one gas passageway having a length sufficient to allow the gas component to stay in front of the particle component and move out of the separator, and deflecting the particle component to remain inside the separator. Specifically, the particle component can be substantially separated from the gas component by directing the gas and particle components through undulating labyrinth flow paths to disrupt and deflect the particle component, while allowing the gas component to readily flow through the labyrinth flow paths. Alternatively, the particle component can be substantially separated from the gas component by causing the gas and particle components to swirl and apply a centrifugal force on the gas and particle components. A plurality of annular pockets can be formed around the periphery of the flow chamber to trap the particle component.
With the above as background, the invention will now be described with reference to certain preferred embodiments thereof, wherein:
The receiver 20R includes a combustion chamber 20C for receiving and combusting a propellant, and a passageway 20P extending downstream of the combustion chamber 20C for directing the combusted propellant components out of the combustion chamber 20C and into the barrel 30. In the illustrated embodiments, the barrel 30 is threaded into a distal end side 20RD of the receiver 20R, with the passageway 20P axially aligned with a bore 30B of the barrel 30, and the combustion chamber 20C is accessed from the proximal end side of the receiver 20R.
In the illustrated embodiments, the combustion chamber 20C is configured to hold or seat a sealed cartridge casing 20CC containing a propellant and an ignition mechanism comprising a plasma generator 20PG. The cartridge casing 20CC is inserted into the combustion chamber 20C from the proximal end side 20RP of the receiver 20R and immobilized with an end cap 40, which can be threaded into the proximal end side, or otherwise held in there securely. The cap 40 has a bore 40B to permit the plasma generator 20PG to access an external power source (not illustrated).
The plasma generator 20PG can be constructed as described in the U.S. patents mentioned above, the disclosures of which are incorporated herein by reference, or known plasma generator. For example, a plasma generator, as disclosed in U.S. Pat. No. 5,549,046, can be placed axially inside the cartridge casing 20CC, while extending one end out the cartridge to access a power source, such as a pulsed energy source. When a large pulsed electrical energy (in the order of several kilovolts and 100 kiloamps) is applied to the plasma generator 20PG, the large current flow produces relatively large electromagnetic forces, as well as substantial forces due to electrical arcing, which generates a plasma.
The propellant can be composed of a slurry of aluminum powder and water, for example. When the cartridge casing 20CC containing such a propellant is combusted with the plasma generator to undergo an exothermic chemical reaction, the propellant is converted to hydrogen gas, and aluminum oxide suspended in hydrogen gas. One or more projectiles (not illustrated) can be situated in the proximal end portion 30P of the barrel bore 30B, essentially blocking the passageway 20P from the ambient to allow pressure to build up behind the projectile upon combusting the propellant. Hydrogen gas, having the lightest molecule, reaches the projectile before aluminum oxide particles or vapors. In other words, the greater mobility of the lighter hydrogen molecule causes hydrogen gas to move faster than the heavier aluminum oxide particles, creating a stratified flow.
As previously mentioned, the aluminum oxide particles abrade and wear down the gun components, particularly the barrel. Barrel wear is significantly improved by separating and preventing destructive metal oxide component from reaching the barrel.
In the embodiment of
In the embodiment of
The embodiment of
Given the disclosure of the present invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the present invention. Accordingly, all modifications and equivalents attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention accordingly is to be defined as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2413324 | Hans | Dec 1946 | A |
3204696 | De Preister et al. | Sep 1965 | A |
3813854 | Hortman | Jun 1974 | A |
4281582 | Jaqua | Aug 1981 | A |
4841834 | Gruden | Jun 1989 | A |
4953440 | Moscrip | Sep 1990 | A |
4974487 | Goldstein et al. | Dec 1990 | A |
5012719 | Goldstein et al. | May 1991 | A |
5052272 | Lee | Oct 1991 | A |
5072647 | Goldstein et al. | Dec 1991 | A |
5143047 | Lee | Sep 1992 | A |
5235894 | Nitschke et al. | Aug 1993 | A |
5531811 | Kloberdanz | Jul 1996 | A |
5549046 | Widner et al. | Aug 1996 | A |
5612506 | Goldstein | Mar 1997 | A |
5904042 | Rohrbaugh | May 1999 | A |
5909001 | Goldstein | Jun 1999 | A |
5945623 | Goldstein et al. | Aug 1999 | A |
6800258 | Andersen et al. | Oct 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20060144214 A1 | Jul 2006 | US |