In the resource recovery industry, a production system is used in a wellbore in order to draw fluid from a formation surrounding the wellbore and deliver that fluid to a surface location. The fluid from the formation generally includes various chemicals that will deposit on any of the tubulars, screens, pumps, and any other components it comes into contact with as it travels to the surface, thereby forming compositional material such as scale, paraffin, and asphaltenes on these components. Such build-up of compositional material can create a significant restriction in the production string, eventually inhibiting the flow of fluid from the formation. Therefore, there is a desire to be able to prevent build-up in a production system.
In one aspect, a method of preventing production of a compositional material in a production string is disclosed. The method includes disposing an inhibitor strip in a fluid inflow device of the production string and receiving a fluid at the fluid inflow device from a formation at the inhibitor strip, wherein a chemical inhibitor of the inhibitor strip interacts with a chemical in the fluid to reduce the production of the compositional material in the production string.
In another aspect, a production string is disclosed. The production string includes a fluid inflow device and an inhibitor strip disposed in contact with the fluid inflow device, the inhibitor strip including a chemical inhibitor therein to interact with chemicals in a fluid flowing through the fluid inflow device to reduce the production of a compositional material in the production string.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The fluid 125 includes therein various chemicals which are responsible for a growth of scale on various surfaces of the production system that come into contact with the fluid 125. These chemicals precipitate from the fluid 125 due to changes in pressure and temperature as the fluid flows through the production system and settles on the various surfaces and/or components. This precipitated material, or compositional material, refers to scale, paraffin, and/or asphaltene and can result in reduced flow channels in the production string, destruction of the pump 128, as well as difficulties in downstream refining.
Over time, the chemical inhibitor in or on the inhibitor strips becomes depleted due to the interactions with the chemicals in the fluid. At a selected time, the inhibitor strips can be recharged by flowing a fluid chemical inhibitor into the wellbore and into contact with the inhibitor strips.
Set forth below are some embodiments of the foregoing disclosure:
Embodiment 1. A method of preventing production of a compositional material in a production string. The method includes disposing an inhibitor strip in a fluid inflow device of the production string; and receiving a fluid at the fluid inflow device from a formation at the inhibitor strip, wherein a chemical inhibitor of the inhibitor strip interacts with a chemical in the fluid to reduce the production of the compositional material in the production string.
Embodiment 2. The method of any prior embodiment, wherein the fluid inflow device includes a base pipe and a screen forming an annular region around the base pipe, further comprising disposing the inhibitor strip in a channel between the base pipe and the screen.
Embodiment 3. The method of any prior embodiment, wherein the screen and the base pipe form one or more drainage channels, further comprising disposing the inhibitor strip in the one or more drainage channels.
Embodiment 4. The method of any prior embodiment, wherein the inhibitor strip is elongated along a longitudinal axis of the base pipe.
Embodiment 5. The method of any prior embodiment, wherein disposing the inhibitor strip further comprising placing a plurality of inhibitor strips circumferentially around an axial section of the base pipe.
Embodiment 6. The method of any prior embodiment, wherein the inhibitor strip includes a base material that is one of: (i) coated with the chemical inhibitor; and (ii) impregnated with the chemical inhibitor.
Embodiment 7. The method of any prior embodiment, further comprising recharging the inhibitor strip with the chemical inhibitor at its location in the wellbore.
Embodiment 8. The method of any prior embodiment, wherein the compositional material includes at least one of scale, paraffin and asphaltene.
Embodiment 9. A production string. The production string includes a fluid inflow device and an inhibitor strip disposed in contact with the fluid inflow device, the inhibitor strip including a chemical inhibitor therein to interact with chemicals in a fluid flowing through the fluid inflow device to reduce the production of a compositional material in the production string.
Embodiment 10. The production string of any prior embodiment, further comprising a base pipe of the fluid inflow device, and a screen forming an annular region around the base pipe; wherein the inhibitor strip is disposed within the annular region.
Embodiment 11. The production string of any prior embodiment, further comprising one or more drainage channels between the base pipe and the screen, wherein the inhibitor strip is disposed within the one or more drainage channels.
Embodiment 12. The production string of any prior embodiment, wherein the inhibitor strip is elongated along a longitudinal axis of the base pipe.
Embodiment 13. The production string of any prior embodiment, wherein the inhibitor strip further comprises a plurality of inhibitor strips disposed circumferentially around an axial section of the base pipe.
Embodiment 14. The production string of any prior embodiment, wherein the inhibitor strip includes a base material that is one of: (i) coated with the chemical inhibitor; and (ii) impregnated with the chemical inhibitor.
Embodiment 15. The production string of any prior embodiment, wherein the inhibitor strip is capable of being recharged with additional chemical inhibitor when deployed in a wellbore.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).
The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited.