The present invention relates to a chemiluminescent composition for increasing the luminance of luminescent units used in fishing, events, and toys.
The previously known technology described in Japanese Examined Patent Application Publication No. 53-47798 relates to the use of a specific luminescent compound in order to attain chemiluminescence exhibiting an excellent quantum yield and the highest intensity.
The mechanism of chemiluminescence reaction of a general oxalic ester can be divided into the following three stages.
(1) oxalic ester+hydrogen peroxide→cyclic oxide (intermediate)
(2) cyclic oxide (intermediate)+luminophor→excited singlet luminophor
(3) excited singlet luminophor→luminophor+radiation ray
In theory, the luminescent compound is simply electronically excited by the transfer of chemical energy released through decomposition of the intermediate, and the luminescent compound itself is not decomposed. However, in every known example, it has been found that the luminescent compound is actually decomposed. Since hydrogen peroxide is dissolved in the same system, it is also believed that an influence is exerted by hydrogen peroxide. In order to make full use of all chemical energy, an adequate amount of luminophor must be present in consideration of the stage (2). However, this is limited by the solubility of the luminescent substance in the solvent system and the stability of the luminescent substance. In the above-described patent document, a chloro-, bromo-, or lower alkyl-substituted phenylethynyl-substituted aromatic compound has been proposed as a luminescent substance having an excellent solubility, excellent stability, and a high efficiency.
Consequently, it is believed that a high-luminance luminophor is attained in the presence of a catalyst and hydrogen peroxide in an amount adequate for the chemiluminescence reaction when the system is allowed to contain a high-concentration oxalic ester and a high-concentration luminescent compound both dissolved therein. However, it has been found that the chemiluminescence efficiency is decreased as the oxalic ester concentration is increased because luminescence is quenched by an unreacted oxalic ester. Therefore, some of the energy useful in the luminescence is lost through a process not causing radiation. Consequently, the concentration of the oxalic ester is limited and, thereby, a chemiluminescent composition having a higher luminance and a longer life cannot be provided.
As a result of market research, time periods when the most intensive light is required of event luminescence tools and luminescence toys are up to about 3 hours to 4 hours from the start of luminescence. Accordingly the present invention provides a chemiluminescent composition exhibiting a luminance which is significantly increased during the above-described time period. Furthermore, the duration of luminescence tools for fishing at night is desired to be 5 hours to 6 hours. However, as a matter of course, the luminescence time may be 6 hours or more, and the luminescence time is not limited.
Examples of oxalic esters used in the present invention include bis(2,4,5-trichloro-carbobutoxyphenyl)oxalate, bis(2,4,5-trichloro-carboisopentyloxyphenyl)oxalate, bis(6-(butylmonoglycoxycarbonyl)-2,4,5-trichlorophenyl)oxalate, and bis(2,4,5-trichloro-carbopentoxyphenyl)oxalate (hereafter abbreviated as CPPO). The present invention will be described with reference to CPPO that is widely used now.
Various types of luminescent substances have been disclosed in the above-described document and other documents. Examples of anthracene based luminescent substances include bisphenylethynylanthracene (BPEA), 2-ethyl-bisphenylethynylanthracene (2-EtBPEA), 1,8-dichloro-bisphenylethynylanthracene (1,8-dcBPEA), 2-chloro-bisethoxyphenylanthracene, diphenylanthracene, 1-chloro-bisphenylethynylanthracene (1-cBPEA), and 2-chloro-bisethoxyphenylanthracene (2-cBEPA). Examples of perylene based luminescent substances include many types, e.g., 1,6,7,12-tetraphenoxy-N,N′-bis(2,6-diisopropylphenyl)-3,4,9,10-perylenedicarboxylmide (trade name: lumogen red) and lumogen orange (trade name).
For catalysts, various types of bases, e.g., tetrabutylammonium salicylate (TBAS), sodium salicylate, and sodium benzoate, are known.
Examples of solvents include phthalic acid esters, benzyl benzoate, butyl benzoate, acetyl citrate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, and t-butanol. These solvents have mutually different solubilities for CPPO, and at least two types thereof may be combined.
The components of the chemiluminescent composition of the present invention are not limited to those described above. Examples of known chemiluminescent compositions include the following compositions.
The composition is prepared by adding and dissolving 0.16 mol of CPPO and 7.4×10−3 mol of 1-cBPEA into dibutyl phthalate.
The composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0008 mol of sodium salicylate into the resulting mixture.
A method for measuring the luminescence capacity and the luminous efficasy is shown in
The measuring apparatus is Minolta Luminance Meter (mcd/m2) and the measurement temperature is 23° C. Hereafter, the condition is the same.
A total area of A, B, C, D, E, and F (4 hours) in the above-described
The luminescence is effected by adding 0.42 ml of Composition B-1 to 0.84 ml of Composition A-1.
2/60×117100+13/60×66535+45/60×47615+38815+31250+24235=148330
148330/0.16=927063
For the known Composition A-1 and Composition B-1, the luminescence capacity V4 is 148330 mcd/m2/hour, and the luminous efficacy X is 927063 mcd/m2/hour/mol.
The purpose of the present invention is to minimize a reduction in luminous efficacy and to attain a composition exhibiting the luminance increased by 30% or more, desirably by about 50% or more as compared with the luminance of a known composition.
Therefore, the target of the total luminescence capacity V4 is 192829 mcd/m2/hour to 222495 mcd/m2/hour.
Attempt to increase the luminance by increasing the concentration of reaction substance
The reaction substance is added in such a way that the CPPO concentration of the composition reaches three times the known concentration, 0.16 mol, and accompanying that, the concentration of the luminescent substance is increased correspondingly.
A composition in which the concentrations of CPPO and the luminescent substance have been increased by using butyl benzoate that is a solvent having a good solubility for CPPO is subjected to the measurement.
A-2-1 A composition was prepared by adding and dissolving 0.16 mol of CPPO and 7.4×10−3 mol of 1-cBPEA into butyl benzoate.
A-2-2 A composition was prepared by adding and dissolving 0.19 mol of CPPO and 8.9×10−3 mol of 1-cBPEA into butyl benzoate.
A-2-3 A composition was prepared by adding and dissolving 0.24 mol of CPPO and 11.1×10−3 mol of 1-cBPEA into butyl benzoate.
A-2-4 A composition was prepared by adding and dissolving 0.32 mol of CPPO and 14.8×10−3 mol of 1-cBPEA into butyl benzoate.
A-2-5 A composition was prepared by adding and dissolving 0.40 mol of CPPO and 18.5×10−3 mol of 1-cBPEA into butyl benzoate.
A-2-6 A composition was prepared by adding and dissolving 0.48 mol of CPPO and 22.2×10−3 mol of 1-cBPEA into butyl benzoate.
The composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.001 mol of TBAS into the resulting mixture.
A composition is prepared by adding 0.42 ml of Composition
B-2 to 0.84 ml of one of Compositions A-2-1 to A-2-6, and luminescence is effected.
Discussion on the case where the concentrations of CPPO and the luminescent substance are increased by using butyl benzoate as a solvent
The largest luminescence capacity V4, 184286 mcd/m2/hour, is exhibited by A-2-2
The largest luminous efficacy X is exhibited by A-2-1
From the viewpoint of the luminous efficacy X, the luminescence is inhibited as a result of an increase in CPPO.
The above-described tendency becomes significant as the concentration is increased. The same holds true for the luminescence capacity.
As described above, for the known Composition A-1 and the Composition B-1, the luminescence capacity V4 is 148330 mcd/m2/hour, and the luminous efficacy X is 927063 mcd/m2/hour/mol. Therefore, the above-described composition does not satisfy the value 192829 mcd/m2/hour which is 30% or more of the luminescence capacity V4.
As is clear from this result, luminescence with high luminance cannot be attained by simply increasing the concentration.
Then, CPPO and the luminescent substance both in a powder state are further added to the known Composition A-1. The luminance of the composition in which an oxalic ester and a luminescent substance are present in a solid state in a solution containing dissolved oxalic ester and luminescent substance was measured under the following formulation.
A-3-1 The solution of A-1
A-3-2 A composition is prepared by adding 0.0184 g of CPPO and 0.55 mg of 1-cBPEA both in a powder state to 0.83 ml of the solution of A-1.
A-3-3 A composition is prepared by adding 0.0456 g of CPPO and 1.37 mg of 1-cBPEA both in a powder state to 0.81 ml of the solution of A-1.
A-3-4 A composition is prepared by adding 0.090 g of CPPO and 2.7 mg of 1-cBPEA both in a powder state to 0.77 ml of the solution of A-1.
A-3-5 A composition is prepared by adding 0.136 g of CPPO and 4.07 mg of 1-cBPEA both in a powder state to 0.74 ml of the solution of A-1.
A-3-6 A composition is prepared by adding 0.181 g of CPPO and 5.42 mg of 1-cBPEA both in a powder state to 0.70 ml of the solution of A-1.
A composition is prepared by adding 0.42 ml of Composition B-2 to 0.84 ml of one of Compositions A-3-1 to A-3-6, and luminescence is effected.
Discussion on the composition in which CPPO and the luminescent substance are present in a solid state in a solution containing dissolved oxalic ester and luminescent substance
Comparisons are made with the above-described high-concentration solutions A-2-2 to A-2-6.
Even when the contents of CPPO and the luminescent substance are equal to those in A-2-2 to A-2-6, the luminescence capacities are increased by 40% to 50%.
The reason the luminescence capacity of the system in which CPPO and the luminescent substance are present in a solid state is improved as compared with that of the high-concentration system is believed that the oxalic ester in the state of small crystals present in the oxalic ester solution is dispersed in the solution, the chemiluminescence reaction is effected on the surfaces of the dispersed solid and, thereby, the luminance is increased by a synergistic effect with the chemiluminescence reaction effected simultaneously in the solution. Alternatively, it is believed that the solid oxalic ester is dissolved and contributes to the luminescence as the oxalic ester is consumed. In the case where the solubility of the oxalic ester is low, the oxalic ester in the state of powder or small crystals is allowed to present in the solution, and the luminescent unit is shaken when it is used, so that the oxalic ester is dissolved into the solvent in the reaction system and contributes to the luminescence.
The luminescence capacity up to a lapse of 4 hours is described above. A luminescence capacity V6 up to a lapse of 6 hours will be described below.
The largest luminescence capacity V4 (Table 4), 228869 mcd/m2/hour, is exhibited by A-3-4
The largest luminous efficacy X is exhibited by A-3-1
From the viewpoint of the luminous efficacy X, the luminescence is inhibited by an increase in CPPO, as a result. The above-described tendency becomes significant as the concentration is increased (the degree of reduction in luminescence is smaller than those for A-2-2 to A-2-6). However the luminescence capacity is hardly reduced. The luminescence capacity V up to 6 hours is slightly improved as compared with the luminescence capacity V up to 4 hours. As described above, for the known Composition A-1 and the Composition B-1, the luminescence capacity V4 is 148330 mcd/m2/hour. Therefore, the luminescence capacity V4 of the composition of A-3-4 is increased by 64%, and this is a satisfactory result. From the viewpoint of the luminescence capacity up to 6 hours, the value is improved as the concentration is increased. This is because the luminance is maintained even after a lapse of 4 hours.
From the above-described results, the compositions of A-3-2 and A-3-3 are suitable for a short-time (3 hours) use, and the compositions of A-3-4, A-3-5, and A-3-6 are suitable for a long-time (6 hours) use. According to a general judgment in consideration of the luminescence time, the luminescence capacity, and the luminous efficacy, A-3-4 seems to be most suitable. The CPPO content of A-3-4 is 0.32 mol.
In order to calculate the luminescence capacity based on the area along the luminance curve, the areas of triangles on B, C, D, E, and F shown in
As described above, an adequate amount of luminescent substance must be present in order to make full use of all chemical energy in consideration of the stage (2). However, it is useless to add more than necessary. The data thereof are as described below.
A-4-1 A composition is prepared by adding 0.090 g of CPPO and 0.52 mg of 1-BPEA both in a powder state to 0.77 ml of the solution of A-1.
A-4-2 A composition is prepared by adding 0.090 g of CPPO and 1.04 mg of 1-BPEA both in a powder state to 0.77 ml of the solution of A-1.
A-4-3 A composition is prepared by adding 0.090 g of CPPO and 1.56 mg of 1-BPEA both in a powder state to 0.77 ml of the solution of A-1.
A-4-4 A composition is prepared by adding 0.090 g of CPPO and 2.08 mg of 1-BPEA both in a powder state to 0.77 ml of the solution of A-1.
A-4-5 A composition is prepared by adding 0.090 g of CPPO and 2.60 mg of 1-BPEA both in a powder state to 0.77 ml of the solution of A-1.
For 1-cBPEA serving as a luminescent substance, A-4-3 exhibits the largest luminescence capacity and luminous efficacy. However, there is substantially no difference among A-4-2 to A-4-5. Therefore, it is adequate that about 0.010 to 0.015 mol of 1-cBPEA is present. If 0.015 mol or more is added, the luminance tends to be reduced. In the case where the solubility and the stability of the luminescent substance are low, the luminescent substance in the state of powder or small crystals is allowed to present in the solution, and the luminescent unit is shaken when it is used, so that the luminescent substance is dissolved into the solvent in the reaction system and contributes to the luminescence. That is, even when the luminescent substance is decomposed during proceeding of the chemiluminescence reaction, the luminescent substance present in a solid state is dissolved and, thereby, the shortage in the concentration of the luminescent substance can be compensated.
The case where the luminescent substance is lumogen red.
A solution containing 0.164 mol of CPPO, 0.00027 mol of 1-cBPEA, and 0.00139 mol of lumogen red is prepared from dibutyl phthalate.
A-8-1 Known red composition of A-8
A-8-2 A composition is prepared by adding and dissolving 0.00028 mol of lumogen red into 0.77 ml of the solution of
A-8, and further adding 0.090 g of CPPO in a powder state.
A-8-3 A composition is prepared by adding and dissolving 0.00056 mol of lumogen red into 0.77 ml of the solution of A-8, and further adding 0.090 g of CPPO in a powder state.
A-8-4 A composition is prepared by adding and dissolving 0.00084 mol of lumogen red into 0.77 ml of the solution of A-8, and further adding 0.090 g of CPPO in a powder state.
A-8-5 A composition is prepared by adding and dissolving 0.0011 mol of lumogen red into 0.77 ml of the solution of A-8, and further adding 0.090 g of CPPO in a powder state.
A-8-6 A composition is prepared by adding and dissolving 0.00139 mol of lumogen red into 0.77 ml of the solution of A-8, and further adding 0.090 g of CPPO in a powder state.
A composition is prepared by adding 0.42 ml of Composition B-2 to 0.84 ml of one of Compositions A-7 and A-8-1 to A-8-6, and luminescence is effected.
The current commercial product is the best composition from the viewpoint of the luminous efficacy. However, under the present circumstances, the price of CPPO has been reduced. When emphasis is laid on the luminescence capacity, V4 of the known product is 24586, 30% UP thereof is 31961, and 50% UP thereof is 36879. Therefore, A-8-3, A-8-4, and A-8-6 reach the target.
For lumogen red, the suitable concentration is 0.0025 mol to 0.0028 mol.
Measurement Results
Some luminescent substances exhibit good efficiencies, and some luminescent substances exhibit poor efficiencies. Furthermore, they are mutually different in the solubility and the stability. Therefore, the concentration is not limited.
Discussion on Catalyst
Although sodium salicylate is a good catalyst of the chemiluminescence reaction, it is not effective as described below.
A composition is prepared by adding 0.09 g of CPPO in a powder state to 0.77 ml of solution in which 0.164 mol of CPPO and 14.8 mM of 1-cBPEA are dissolved in dibutyl phthalate.
B-5-1. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0008 mol of sodium salicylate into the resulting mixture.
B-5-2. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0012 mol of sodium salicylate into the resulting mixture.
B-5-3. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0016 mol of sodium salicylate into the resulting mixture.
B-5-4. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0020 mol of sodium salicylate into the resulting mixture.
B-5-5. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0024 mol of sodium salicylate into the resulting mixture.
B-5-6. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0028 mol of sodium salicylate into the resulting mixture.
A composition is prepared by adding 0.42 ml of one of Compositions B-5-1 to B-5-6 to Composition A-5, and luminescence is effected.
As described above, for the known Composition A-1 and the Composition B-1, the luminescence capacity V4 is 148330 mcd/m2/hour, and the luminous efficacy X is 927063 mcd/m2/hour/mol. Therefore, as a result, only B-5-6, among these compositions, satisfies the value 192829 mcd/m2/hour which is 30% or more of the luminescence capacity V4.
A suitable catalyst is tetrabutylammonium salicylate (TBAS). The data thereof are as described below.
B-6-1. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0002 mol of TBAS into the resulting mixture.
B-6-2. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0004 mol of TBAS into the resulting mixture.
B-5-3. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0006 mol of TBAS into the resulting mixture.
B-5-4. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.0008 mol of TBAS into the resulting mixture.
B-5-5. A composition is prepared by mixing 400 cc of dimethyl phthalate and 100 cc of t-butanol, adding 35 g of 85% aqueous hydrogen peroxide thereto, and further adding and dissolving 0.001 mol of TBAS into the resulting mixture.
A composition is prepared by adding 0.42 ml of one of Compositions B-6-1 to B-6-5 to Composition A-5, and luminescence is effected.
In this experiment, Compositions B-6-4 and B-6-5 containing TBAS within the range of 0.0008 to 0.001 mol were optimum.
The manufacture of the chemiluminescent composition and the luminescent unit of the present invention will be described below.
A solution having a CPPO concentration of 0.32 mol and a 1-cBPEA concentration of 14.8 mM is prepared by adding CPPO and 1-cBPEA to dibutyl phthalate, followed by heating to facilitate dissolution. A breakable glass ampule is filled in with 0.84 ml of the resulting solution and is sealed. Since about 0.2 mol of CPPO is dissolved (saturated solution) into dibutyl phthalate, theoretically, 0.12 mol of crystal is deposited.
A flexible polyethylene pipe with the end closed is filled in with 0.42 ml of solution in which 100 cc of t-butanol is added to 400 cc of dimethyl phthalate, 35 g of 85% aqueous hydrogen peroxide is added thereto, and 0.001 mol of TBAS is further added thereto. In addition, the above-described glass ampule is put into the pipe and sealing is conducted.
A solution having a CPPO concentration of 0.2 mol and a 1-cBPEA concentration of 14.8 mM is prepared by adding CPPO and 1-cBPEA to dibutyl phthalate, followed by heating to facilitate dissolution. The solution is blended with 0.12 mol of CPPO in a solid state. A breakable glass ampule is filled in with 0.84 ml of the resulting solution and is sealed. Thereafter, a luminescent unit is produced as in Example 1. When the luminescent unit is used, the pipe is bent, and the glass ample disposed therein is broken, so that the two components are mixed and a chemiluminescence reaction is started.
When the luminescent unit is stood after the luminescence, crystals or powder are deposited, but the solution portion is emitting light. The intensity of the light is attenuated with the passage of time. However, when the luminescent unit is shaken again after a predetermined time is elapsed, individual CPPO is agitated and is dissolved into the solvent. Consequently, significantly intense light as compared with the light immediately before the shaking is emitted.
For the purpose of long-time luminescence, research on catalysts and research on amounts or types of solvent have been conducted and many inventions have been made. The purpose can be achieved by allowing large amounts of oxalic ester (CPPO) to present while not being dissolved. However, agitation must be conducted by shaking at times, as described above.
In the present invention, the concentration of the oxalic ester in the solution, in which the oxalic ester and the luminescent substance are dissolved, is equal to a concentration of the saturated solution or close to that. When a composition is allowed to be composed of this solution in which the oxalic ester in the solid state is further present, the reduction in chemiluminescence efficiency with an increase in the oxalic ester concentration can be decreased and, thereby, the luminescence capacity can be increased significantly. Consequently, a chemiluminescent composition for significantly increasing the luminance up to about 4 hours from the start of luminescence, that is the time period when the light is most required of event luminescence tools, toy luminescence tools, emergency luminescent tools, and the like, can be provided. Furthermore, for luminescence tools for fishing at night, a luminescent unit which maintains high luminance up to 6 hours can also be provided.
Number | Date | Country | Kind |
---|---|---|---|
2004-131256 | Apr 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/008266 | 4/22/2005 | WO | 00 | 1/23/2008 |