This invention relates broadly to the field of medical devices and more specifically to an apparatus for increasing the blood flow by compressing the chest cavity of a person suffering from cardiac arrest.
During cardiac arrest, it is desirable to generate blood flow by external means in order to maintain brain and heart viability. Traditionally, the external means of generating blood flow has been manual cardiopulmonary resuscitation (CPR). Using CPR, the rescuer tilts the patient's head back, lifts the chin to clear and straighten the airway, and depresses the sternum 1½ to 2 inches 15 times (at a rate of 80 to 100 depressions per minute), after which the rescuer gives the patient 2 full breaths. This 15 depressions and 2 breaths is repeated cyclically.
Currently, the CPR research community believes that blood flow produced by external means can be explained by one, or a combination of two, theoretical mechanisms: the “cardiac pump” mechanism and the “thoracic pump” mechanism.
According to the cardiac pump mechanism, blood flow caused by external means is due to direct mechanical compression of the heart. During compression, blood is squeezed out of the heart chambers, and during release of the compression (relaxation) blood flows into the heart chambers. Backflow of the blood is prevented by the valving of the heart and vessels.
According to the thoracic pump mechanism, blood is pumped by external means as a result of the cyclical increase and decrease of intrathoracic pressure. During compression, the intrathoracic pressure rises, which causes blood to be forced out of the blood vessels and organs located in the thorax, and the blood flows into the peripheral tissues. During release, blood flows back into the thorax via the normal venous return. In this method, backflow is prevented by the valving of the veins.
Most researchers believe that both mechanisms are active to some degree. However, the methods presently in use, and the devices currently in use, for promoting blood flow by the application of an external force are directed toward only one of the two mechanisms. In order to maximize blood flow, a device which takes advantage of both mechanisms is needed.
A variety of devices have been developed to increase blood and/or air flow in the chest cavity of a cardiac arrest patient.
U.S. Pat. No. 2,071,215 to Petersen shows a piston and cylinder arrangement attached to two ends of a girdle which encircles a patient's chest. The expansion or compression of a fluid in the piston and cylinder combination tightens and loosens the girdle to ventilate the lungs. This device is large and heavy, and is dependent upon a compressed fluid for driving power.
U.S. Pat. No. 3,425,409 to Isaacson et al. discloses an apparatus for compressing the sternum by a downward force generated by a piston. A belt is placed around the chest in order to minimize bodily damage, and air is applied to the air passages of the patient.
U.S. Pat. No. 5,287,846 to Capjon et al. shows an upper frame that rests on a patient, whose back rests on a lower frame. Retractable straps extend from the upper frame and attach to the lower frame. A hydraulic cylinder in the upper frame presses downwardly on the chest.
Barkalow, in U.S. Pat. No. 3,461,860, discloses a device using a pneumatic plunger to mechanically compress the sternum a predetermined distance. A mechanical ventilator was added to this device in U.S. Pat. No. 4,326,507 to insure proper ventilation and increase the volume of the chest. This device was limited in its success due to complexity which requires trained personnel to use it.
A similar device was disclosed in U.S. Pat. No. 4,060,079 to Reinhold. This device is merely a similar portable unit.
Bloom, in U.S. Pat. No. 4,338,924, shows a sternum compression device using an air cylinder to depress the chest of the cardiac arrest patient. This device, like many others using a chest compression design, is large and is heavy.
Newman et al., in U.S. Pat. No. 4,424,806, show a pneumatic vest for generating a rise in thoracic pressure. This vest uses the “thoracic pump” concept of exerting greater force over a larger area under the assumption that if more major organs could be compressed and released, greater blood flow would occur. By releasing the compression force, the chest would return to its normal size and draw blood back into the major organs. Positive blood flow would occur due to the one-way valves in the vascular network. The Newman device is not readily portable, in addition to having substantial complexity. In U.S. Pat. No. 4,928,674, Halperin et al. disclose a similar vest which is similarly not portable.
Lach et al., in U.S. Pat. No. 4,770,164, disclose a circumferential band and take-up reel used to generate a rise in thoracic pressure. Although either manually or mechanically driven, this apparatus requires the use of a backboard for guiding the band around the chest.
The use of bands or belts to generate a rise in intrathoracic compression for the purpose of assisting respiratory ailments is disclosed in U.S. Pat. No. 651,962 to Boghean. This device is for periodic loosening and tightening of the band around a patient's chest for treating respiratory disease by regulating periods of breathing as well as the size or depth of breath.
In U.S. Pat. No. 3,777,744, Fryfogle et al. disclose a breathing aid consisting of a belt and a handle which tightens the belt for expelling excessive residual air in the lungs.
Other devices known to the Applicants using circumferential bands for generating a compression force on the abdomen and lower chest to assist in compression of lungs for respiratory purposes include U.S. Pat. No. 2,899,955 to Huxley, U.S. Pat. No. 3,368,581 to Glascock and U.S. Pat. No. 2,754,817 to Nemeth. Furthermore, the use of inflatable bladders positioned around either the chest or the abdomen have been disclosed in U.S. Pat. No. 3,481,327 to Drennen, U.S. Pat. No. 3,120,228 to Huxley, U.S. Pat. No. 3,042,024 to Mendelson, U.S. Pat. No. 2,853,998 to Emerson, U.S. Pat. No. 2,780,222 to Polzin, U.S. Pat. No. 2,071,215 to Petersen, U.S. Pat. No. 4,424,806 to Newman and U.S. Pat. No. 4,928,674 to Halperin.
U.S. Pat. No. 2,699,163 to Engström, shows a respirator device for ventilating a patient's lungs.
U.S. Pat. No. 5,295,481 to Geeham shows a chest compression device comprising a T-shaped mechanical chest compression apparatus with a suction cup. The central shaft attached to the cup may be compressed beyond the lips of the cup and bruise or otherwise injure the patient due to the concentration of force on the patient by the shaft tip.
U.S. Pat. No. 4,397,306 to Weisfeldt et al. and U.S. Pat. No. 1,399,034 to Taplin show large mechanical devices for compressing the chest of a cardiac arrest patient.
Szpur, in U.S. Pat. No. 5,407,418, discloses a power-driven, pulsating compressor apparatus for stimulating blood flow within vessels of a person's foot or hand. The device periodically applies a concentrated force against a localized region of the foot or hand.
In spite of the prior art, the need still exists for a device which effectively increases the flow of blood in the organs of a cardiac arrest patient. This device should be truly portable and useable by a person of average strength and skill.
The invention is an apparatus for increasing the flow of blood in a patient, for example a person suffering cardiac arrest. The apparatus comprises a base contoured to seat near a central region of the patient's chest. Also included are a manual actuator and a substantially inelastic belt which is for wrapping around the patient's chest. The invention further comprises a force converter mounted to the base. The force converter is connected to the actuator and has belt connectors for connecting to opposite extremities of the belt. The force converter is for converting a force manually applied to the actuator and directed toward the chest into a chest compressing resultant. The chest compressing resultant is directed through the base toward the chest. The force manually applied to the actuator is converted, in addition to the chest compressing resultant, into belt tightening resultants applied to the belt connectors, and directed tangentially to the chest.
The invention contemplates the converter comprising first and second assemblies. The first assembly has a pair of spaced, parallel arms rigidly connected at handle ends by a first hand-grippable handle. The arms of the first assembly are further rigidly connected at opposite, belt ends by a first strut. The first assembly arms are pivotally mounted to the base at a first assembly fulcrum intermediate the handle and belt ends. The second assembly is substantially similar to the first assembly and both assemblies are pivotally mounted to the base, forming a scissors arrangement. A force applied to the handle ends pivots the scissoring assemblies, which form a pair of levers. The strut ends of the assemblies are levered toward one another, tightening the belt attached to the struts.
It is an objective of the present invention to provide an apparatus having a flexible belt which wraps around the chest of a cardiac arrest patient. The apparatus tightens the belt while depressing the chest, the combination of which raises the intrathoracic pressure, enhancing blood flow.
In describing the preferred embodiment of the invention which is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
The sole 92 of the base 14 is seated against the upper surface of the chest 12 and may have an adhesive pad 500 (shown in
The base 14 contains a switch 70 and a pair of lights 72. Additionally, the base 14 contains a battery, a battery charge indicator and a sound generator (not visible in
The first arm assembly 16 is made up of a pair of spaced, parallel arms 22 and 24 which are made of high tensile strength, lightweight material such as plastic. The second arm assembly 18 has substantially similar spaced, parallel arms 26 and 28. A pair of rods 37 and 38 rigidly fasten the spaced parallel arms of the assemblies 16 and 18, respectively. A pair of manual actuators, which are preferably two cylindrical, hand-grippable handles 30 and 32, are rotatably mounted between the spaced, parallel arms of the first and second arm assemblies 16 and 18, around the rods 37 and 38, respectively. A pair of rod-like, preferably metal struts 34 and 36 (strut 36 not visible in
The rigid arm assemblies 16 and 18 pivot relative to one another about the pivot pin 20, which is preferably a stainless steel bolt. The pin 20 extends longitudinally through the base 14 and extends out of each longitudinal end to pivotally attach to each arm 22, 24, 26 and 28.
The arm assemblies 16 and 18 are arranged in a scissor-like configuration. This configuration is designed to convert a small force into a larger force. This is done by the scissor-like configuration having a pair of levers with a common fulcrum, where the fulcrum is located a distance from the center of the levers. A large displacement of the handles 30 and 32 causes a relatively small displacement of the struts 34 and 36. In elementary physics, it is understood that work equals force times distance and the force applied to cause a displacement at one end of a lever should equal the product of force and displacement at the opposite end of the lever. Conservation of work gives
FsDs=FhDh Equation 1
where the subscript s indicates the force or displacement at the struts 34 and 36 and the subscript h indicates the force or displacement at the handles 30 and 32. Solving Equation 1 for the force at the struts 34 and 36 obtains
The displacement at the struts 34 and 36 (Ds in Equation 2) will always be smaller than the displacement at the handle (Dh in Equation 2). By separating the displacement part of Equation 2 in parenthesis, the following is obtained:
Since the displacement at the struts is smaller than the displacement at the handles, the displacement portion of Equation 3 will be a number greater than 1 which, when multiplied by the force at the handles, will obtain a force at the struts which is greater than the force at the handles. It is this greater force at the struts 34 and 36, effected by the force applied to the handles, which is used to artificially induce or enhance blood flow in a patient.
The pivoting motion of the arm assemblies 16 and 18 is a simple and reliable action which virtually any person can effectuate. Doing so requires a small force, and creates a larger force that is to be applied to a patient's chest 12. The force at the struts 34 and 36 could not be generated by an average person for the time period required to treat a cardiac arrest patient, without the help of a mechanical device.
Two stainless steel stroke limiters 52 and 54 are pivotally mounted to the arms 22 and 24 and slidingly attach to the arms 26 and 28. The limiters 52 and 54 serve the purpose of limiting the relative pivoting displacement of the assemblies 16 and 18 by mechanically restricting their movement. Unlimited displacement between the two assemblies 16 and 18 could result in an excessive compression force on the chest 12 which could injure the patient.
An alternative to the arm assemblies 16 and 18 shown in
As the arms 422 and 426, shown in
For example,
The belt 40, which extends around the front, sides and back of the chest, is substantially inelastic and flexible. A plurality of indicia 50 is imprinted on the exposed surface of the belt 50. The belt 40 attaches to the strut 34 on one side of the chest 12, and extends around a major portion of the circumference of the chest 12 to attach to the other strut 36. When the assemblies 16 and 18 pivot around the pivot pin 20, the belt 40 is tightened by the struts 34 and 36 to which the belt 40 attaches.
Although the belt 40 is described as extending around the front, sides and back of the chest, the belt may be made up of two or more component parts, such as a pair of belts. This pair of belts could extend from attachment to the struts 34 and 36, extending downwardly past the sides of the patient's chest to rigid attachment to a board which spans the width of the back of the chest. Therefore, “a belt wrapped around the chest” can be made up of two or more belt components which extend around portions of the chest circumference in combination with other rigid or flexible components.
The relaxed and mid-actuated positions of the arms of the apparatus 10 are shown in
The belt 40 extends through slots 44 formed in a backboard 42 which, when in use, is positioned beneath the chest 12 of the patient. The belt 40 preferably seats against a sliding mechanism 43 which permits sliding of the belt 40 along the length of the chest 12 for positioning of the belt 40 on the chest 12. The backboard 42 is made of a strong, lightweight material such as plastic and is wide enough to span the width of the chests of a large majority of the population. The backboard 42 has a padded, raised portion 46 which elevates the patient's neck above his head for opening the breathing passages, and the backboard 42 preferably has handles 250 and 252 (shown in
An oxygen tank 100 and a mask 102 are shown in hidden lines in
The apparatus 10 is operated in the following manner, referring to
The belt 40 is next extended around the struts 34 and 36, passing first between each strut 34 and 36 and the base 14. The base 14 is more exactly positioned near the center of the chest 12 by matching the indicia 50 on the belt 40 on opposite sides of the base 14. The indicia 50 are alphanumeric characters spaced equally along the length of the belt 40 in a preferably identical arrangement at both ends of the belt 40. The indicia could, of course, be colored bands or other symbols.
Once the belt 40 extends around the struts 34 and 36, the ends of the belt 40 are folded back over onto the portion of the belt 40 contacting the chest 12 and are attached thereto by fasteners. Before fastening, though, the indicia 50 at both struts 34 and 36 must match. For example, the number “3” is shown as the highest number on the belt 40 visible in
After fastening the belt 40 to the struts 34 and 36, the stroke limiter pins 60 and 62 extend into the holes 1 and 4 in the arms 26 and 28. Since the number “3” is the highest visible number on the belt 40, the limiter pins 60 and 62 are placed in the distal of the six holes 1–6 in arms 26 and 28. If the number “2” were the highest number visible on the belt 40, the center holes 2 and 5 of the six holes 1–6 on the pivot arms 26 and 28 would be used, since the number “2” would indicate a larger chest circumference than when “3” is the highest visible number. The stroke when the number “2” is the highest visible number is greater than when “3” is the highest visible number. This means for a larger chest circumference, the apparatus would be permitted to cause greater displacement of the chest 12.
If the arm assemblies 416 and 418 shown in
Once the apparatus 10 is positioned with the belt 40 around the chest 12, the base 14 is centered and the limiters 52 and 54 are in the correct position for the visible indicia 50 on the belt 40, the rescuer depresses the switch 70. This causes the lights 72 to begin emitting a periodic, visible signal and the base 14 to emit a periodic, audible signal in synchronization with the lights 72. The rescuer then grips handles 30 and 32 with his or her hands and, with a downwardly directed force toward the chest 12, pushes the handles 30 and 32, pivoting them about the pivot pin 20, thereby pivoting the arms 22, 24, 26 and 28 through arcuate paths about the pin 20. This pivoting motion causes the struts 34 and 36 at the opposite ends of the arms from the handles 30 and 32 to pivot about the pivot pin 20 in a direction away from the chest 12, but with a smaller displacement than the handles 30 and 32. Pivoting of the struts 34 and 36 draws the ends of the belt 40 closer together, thereby tightening the belt 40 around the chest 12. Since the belt 40 is inelastic, tightening of the belt 40 compresses the chest 12. The arcuate motion of the handles 30 and 32 is limited to a maximum displacement by the stroke limiters 52 and 54, when the pins 60 and 62 contact the ends of the slots 64 and 66. The force on the handles 30 and 32 is released and then exerted again by the rescuer after the handles 30 and 32 have returned to their original positions.
By cyclically depressing with a downwardly directed force, and releasing the handles 30 and 32 (preferably in phase with the lights 72), the rescuer cyclically tightens and loosens the belt 40 around the patient's chest 12. The base 14 concentrates some of the tightening force of the belt in the chest 12 center and prevents pinching of the chest by the scissor-like assemblies 16 and 18. The belt 40 tightening around the chest 12 represents the “thoracic pump” method of artificially inducing blood flow in a cardiac arrest patient by applying a circumferential compressive force to a large area. The large force is from the leverage created by the scissor-like assemblies 16 and 18, and the large area is the circumference of the chest 12.
As the first assembly 16 and the second assembly 18 are forced downwardly toward the chest, the base sole 92 is forced downwardly along a path directed into, and preferably perpendicular to, the chest surface by the downwardly directed force on the handles 30 and 32. Therefore, each depression of the first and second assemblies 16 and 18 results in a downward compression of the center of the chest by the base 14. This is the “cardiac pump” method of inducing blood flow by compressing the heart between the spine and the sternum.
Compressing the organs using the present invention takes advantage of both the “thoracic pump” (belt tightening and loosening) and “cardiac pump” (chest depression by the base 14) methods to convey blood through the blood vessels and, upon release, draw blood back into the organs. Upon each increase in pressure, the blood is compressed out of the organs (and air out of the lungs) and along the vascular system. Upon release, other blood is pulled in. Since the veins have a series of one-way valves, the periodic raising and lowering of thoracic pressure with the present invention creates an artificial blood flow supplying necessary elements to the vital organs, such as the brain, which increases the patient's chances of survival.
The pivoting assemblies 16 and 18 comprise a force converter which converts the downwardly directed chest compressing force applied to the handles 30 and 32 into multiple resultant forces. These resultant forces include a downwardly directed force applied from the base 14 into the chest 12 and two equal tangential forces applied by the struts 34 and 36 to the belt 40. The forces are applied tangentially to the chest 12 since the belt 40 wrapped around the chest 12 and pulled taut must be tangential to the chest 12 surface if it contacts the chest at the chest sides as shown in
A converter for converting the above described applied force into the resultants includes all equivalents to the preferred force converter. A converter need not merely redirect a specific force but could amplify, reduce or signal a device to generate other forces, by the application of a force.
The force necessary to generate sufficient pressure in the chest cavity to create blood flow can be generated by an average person if a device utilizes an applied force correctly. In the position in which a cardiac arrest patient is normally found, a rescuer cannot normally, without leverage, generate a downward force into the patient's chest sufficient to generate the necessary intrathoracic pressure without the risk of injury. The apparatus of the present invention uses the force which an average person can apply and converts the applied force into resultant forces in the directions needed while limiting the maximum displacement of the chest to prevent injury.
The force converter described above can be considered as a free body shown in
The preferred embodiment of the present invention is one device the Applicants have found advantageous for converting the downward force 112 into the three resultant forces 120, 122 and 124. The Applicants know that many apparatuses are equivalent to, and could be substituted for, the preferred apparatus to provide the force conversion described in association with
Another alternative, mechanical apparatus 260 which is equivalent to the preferred embodiment is shown in
Many illustrations show equivalent substitute devices for converting an applied force into the desired resultant forces. Most of those described above show purely mechanical equivalents to the preferred embodiment. As a person skilled in the mechanical arts will quickly find, there are many other different substitutes for the preferred embodiment. These devices are equivalent to the preferred embodiment or one of the alternatives described above and shown in the drawings. In addition to purely mechanical alternatives to the preferred embodiment, it is of course possible to combine mechanical, electrical, hydraulic and many other elements to arrive at an equivalent substitute for the preferred embodiment. These combination equivalents are discussed below.
In
The actuator 234 could be attached to a central piston which compresses a fluid within a hydraulic cylinder. Upon actuation of actuator 234, the hydraulic fluid within the cylinder is compressed and is conveyed through the lines 222 and 224 and the pistons 226 and 228 are driven inwardly as described above. This embodiment is also equivalent to the preferred embodiment.
It is possible to attach a power unit, such as a prime mover, to the apparatus 10 which could function as an actuator to apply a lateral force to the arm assemblies 16 and 18 to actuate them automatically and in regular, periodic intervals. As shown in
An example of a power unit 280 applying a force which tightens a belt 282 and depresses a base 284 is shown in the development of another person appearing in
In order to ensure that the patient's lungs are allowed to expand as much as desired, it may be necessary to include a full-release indicator with the present invention. This indicator should have some means for alerting the rescuer when full release of the tension on the belt has not occurred. This indicator may include a limit switch, a magnet reed relay or contacts on the base 14 against which the arm assemblies 16 and 18 rest in their relaxed position.
Instead of an indicator of full release, a mechanism could be added to the arm assemblies 16 and 18 for preventing the application of force to the handles 30 and 32 until full release (and return to the relaxed position) has occurred. A ratchet mechanism having discreet spacings could be used for this purpose. Additionally, such mechanisms are commonly found on electrical crimping tools for loose terminals.
It is possible to build into the force converter a mechanism for storing and suddenly releasing energy during the application of a downward force. The sudden release would be actuated during the withdrawal of the downward force, applying a short duration, high intensity force to the chest rather than a long duration application of force as with the preferred embodiment.
It is preferred that the apparatus which rests on the top of a patient's chest be as light in weight as possible. The reason for this is that after the patient's chest has been fully compressed, any weight which rests on top of the chest will tend to resist decompression of the chest once the compression force is removed. Reducing this weight minimizes the amount of unwanted compression during release and decompression of the chest.
The adhesive pad 500 shown in
The electrodes 504 can be interposed at multiple positions along the length of the belt 506 or in the backboard 508, but there will preferably be a minimum of one electrode on the base 512 (such as the adhesive pad 500 which functions as an electrode) in addition to at least one other electrode 504. The reason it is desirable to have an electrode at least on the base 512 is that at the furthest extent of compression of the chest 510, the distance between the anterior and posterior outer surfaces of the chest 510 will be at a minimum, and the base 512 will be positioned closer to the heart than at any other point in the whole compression/decompression cycle. At this point there is a minimum of resistance to the flow of current which gives the greatest current flow through the heart with the least likelihood of injuring the patient's chest 510 tissue.
The electrodes 504 can be positioned not only circumferentially about the chest 510, but can also be positioned at the same circumferential location but at various longitudinal spacings.
It is preferred that a means be adapted to limit the travel of the assemblies 416 and 418 shown in
While certain preferred embodiments of the present invention have been disclosed in detail, it is to be understood that various modifications may be adopted without departing from the spirit of the invention or scope of the following claims.
The present application is (1) s division of U.S. patent application Ser. No. 9/818,102, filed Mar. 27, 2001 now U.S. Pat. No. 6,645,163, due to issue into U.S. patent on Nov. 11, 2003, which itself is (a) a division of U.S. patent application Ser. No. 09/059,497, filed Apr. 13, 1998 now U.S. Pat. No. 6,234,984, which is a continuation of U.S. patent application Ser. No. 08/573,465, filed Dec. 15, 1995, and issued as U.S. Pat. No. 5,738,637 on Apr. 14, 1998, and (b) a continuation of U.S. patent application Ser. No. 09/546,519, filed Apr. 11, 2000 now U.S. Pat. No. 6,325,771, which is a continuation of U.S. patent application Ser. No. 09/059,497, filed Apr. 13, 1998 now U.S. Pat. 6,234,984, which is a continuation of U.S. patent application Ser. No. 08/573,465, filed Dec. 15, 1995, and issued as U.S. Pat. No. 5,738,637 on Apr. 14, 1998, and (2) a continuation of U.S. patent application Ser. No. 10/633,938, filed Aug. 4, 2003, which itself is a continuation of U.S. patent application Ser. No. 09/818,102, filed Mar. 27, 2001 now U.S. Pat. No. 6,645,163, which is (a) a division of U.S. patent application Ser. No. 09/059,497, filed Apr. 13, 1998, and issued as U.S. Pat. No. 6,234,984 on May 22, 2001, which was a continuation of U.S. patent application Ser. No. 08/573,465, filed Dec. 15, 1995, and issued as U.S. Pat. No. 5,738,637 on Apr. 14, 1998, and (b) a continuation of U.S. patent application Ser. No. 09/546,519, filed Apr. 11, 2000, and issued as U.S. Pat. No. 6,325,771, on Dec. 4, 2001, which was a continuation of U.S. patent application Ser. No. 09/059,497, filed Apr. 13, 1998, and issued as U.S. Pat. No. 6,234,984 on May 22, 2001, which was a continuation of U.S. patent application Ser. No. 08/573,465, filed Dec. 15, 1995, and issued as U.S. Pat. 5,738,637 on Apr. 14, 1998.
Number | Name | Date | Kind |
---|---|---|---|
651962 | Boghean | Jun 1900 | A |
1399034 | Taplin | Dec 1921 | A |
2071215 | Petersen | Feb 1937 | A |
2699163 | Engstrom | Jan 1955 | A |
2754817 | Nemeth | Jul 1956 | A |
2780222 | Polzin et al. | Feb 1957 | A |
2853998 | Emerson | Sep 1958 | A |
2899955 | Huxley | Aug 1959 | A |
3042024 | Mendelson | Jul 1962 | A |
3120228 | Huxley | Feb 1964 | A |
3368550 | Glascock | Feb 1968 | A |
3374783 | Hurvitz | Mar 1968 | A |
3425409 | Isaacson et al. | Feb 1969 | A |
3461860 | Barkalow | Aug 1969 | A |
3481327 | Drennen | Dec 1969 | A |
3491751 | Wolfing | Jan 1970 | A |
3503388 | Cook | Mar 1970 | A |
3777744 | Fryfogle et al. | Dec 1973 | A |
3782371 | Derouineau | Jan 1974 | A |
4060079 | Reinhold, Jr. | Nov 1977 | A |
4198963 | Barkalow et al. | Apr 1980 | A |
4326507 | Barkalow | Apr 1982 | A |
4338924 | Bloom | Jul 1982 | A |
4397306 | Weisfeldt et al. | Aug 1983 | A |
4424806 | Newman et al. | Jan 1984 | A |
4770164 | Lach et al. | Sep 1988 | A |
4928674 | Halperin et al. | May 1990 | A |
5167602 | Lehktman | Dec 1992 | A |
5287846 | Capjon et al. | Feb 1994 | A |
5295481 | Geeham | Mar 1994 | A |
5407418 | Szpur | Apr 1995 | A |
5484391 | Buckman, Jr. et al. | Jan 1996 | A |
5490820 | Schock et al. | Feb 1996 | A |
5823185 | Chang | Oct 1998 | A |
6066106 | Sherman et al. | May 2000 | A |
6142962 | Mollenauer et al. | Nov 2000 | A |
6397843 | Tien-Tsai | Jun 2002 | B1 |
6645163 | Kelly et al. | Nov 2003 | B2 |
6676613 | Cantrell et al. | Jan 2004 | B2 |
6690969 | Bystrom et al. | Feb 2004 | B2 |
Number | Date | Country |
---|---|---|
624118 | Jan 1936 | DE |
Number | Date | Country | |
---|---|---|---|
20040220501 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09818102 | Mar 2001 | US |
Child | 10705487 | US | |
Parent | 09059497 | Apr 1998 | US |
Child | 09818102 | US | |
Parent | 09059497 | Apr 1998 | US |
Child | 09818102 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08573465 | Dec 1995 | US |
Child | 09059497 | US | |
Parent | 09546519 | Apr 2000 | US |
Child | 08573465 | US | |
Parent | 09059497 | Apr 1998 | US |
Child | 09546519 | US | |
Parent | 08573465 | Dec 1995 | US |
Child | 09059497 | US | |
Parent | 10633938 | Aug 2003 | US |
Child | 08573465 | US | |
Parent | 09818102 | Mar 2001 | US |
Child | 10633938 | US | |
Parent | 08573465 | Dec 1995 | US |
Child | 09059497 | US | |
Parent | 09546519 | Apr 2000 | US |
Child | 08573465 | US | |
Parent | 09059497 | Apr 1998 | US |
Child | 09546519 | US | |
Parent | 08573465 | Dec 1995 | US |
Child | 09059497 | US |