The present invention relates to oscillatory chest compression devices and systems and more particularly to an air pulse delivery system having multiple operating modes utilizing one or more physiological sensor accessories adapted for coupling to a patient during a therapy session.
A variety of high frequency chest compression (“HFCC”) systems have been developed to aid in the clearance of mucus from the lung. Such systems typically involve the use of an air delivery device, in combination with a patient-worn vest. Such vests were developed for patients with cystic fibrosis, and are designed to provide airway clearance therapy. The inflatable vest is linked to an air pulse generator that provides air pulses to the vest during inspiration and/or expiration. The air pulses produce transient cephalad air flow bias spikes in the airways, which moves mucous toward the larger airways where it can be cleared by coughing. The prior vest systems differ from each other, in at least one respect, by the valves they employ (if any), and in turn, by such features as their overall weight and the wave form of the air produced.
The present invention is generally directed to a chest compression apparatus for applying a force to the thoracic region of the patient. More particularly, the present invention is directed to an apparatus for applying chest compressions during a therapy session in combination with a physiologic sensor accessory, such as a pulse oximeter or lung function monitor.
The force applying mechanism includes a vest or other wearable air chamber for receiving pressurized air. The apparatus further includes a mechanism for supplying pressure pulses of pressurized air to the vest. For example, the pulses may have a sinusoidal, triangular, square wave form, etc. Additionally, the apparatus includes a mechanism for venting the pressurized air from the bladder. In addition to performance that is comparable to, if not better than, that provided by prior devices, the apparatus of the present invention can be manufactured and sold for considerably less than current devices, and can be provided in a form that is far more modular and portable than existing devices.
In a preferred embodiment of the present invention, a fan valve is used to establish and determine the rate and duration of air pulses entering the vest from the pressure side and allow air to evacuate the bladder on the depressurizing side. An air generator (e.g., blower) is used on the pressurizing side of the fan valve. The fan valve advantageously provides a controlled communication between the blower and the bladder.
One exemplary embodiment of the present invention includes a plurality of physiological sensor accessories adapted for use by the patient before, during or after a therapy session utilizing the pulsating air vest. Sensor accessories may include a pulse oximeter, CO2 meter, NO meter and lung function evaluator.
In oximeters, input signals are received from a sensor device which is directly connected to the blood-carrying tissue of a patient, such as a finger or ear lobe. The sensor device generally consists of a red LED, an infrared LED, and one or two photodetectors. Light from each LED is transmitted through the tissue, and the photodetectors detect the amount of light which passes through the tissue. The detected light consists of two components for each bandwidth. An AC component represents the amount of pulsating blood detected, while the DC component represents the amount of non-pulsating blood. Therefore, four separate components of detected light are examined in order to determine the arterial oxygen saturation: red DC, red AC, infrared DC and infrared AC. The amount of light detected is then used to determine the oxygen saturation in the blood of the patient based on known equations. In a traditional oximeter, the sensor output signal is converted to an analog voltage and then separated into infrared and red components.
The present apparatus provides a variety of solutions and options to the treatment problem faced by people having cystic fibrosis. The advantages of the invention relate to benefits derived from a treatment program using the present apparatus rather than a conventional device having a rotary valve and corresponding pulses. In this regard, a treatment program with the present apparatus provides a cystic fibrosis patient with independence in that the person can manipulate, move, and operate the machine alone. He/she is no longer required to schedule treatment with a trained individual. This results in increased psychological and physical freedom and self esteem. The person becomes flexible in his/her treatment and can add extra treatments, if desired, for instance in order to fight a common cold. An additional benefit is the corresponding decrease in cost of treatment, as well as a significant lessening of the weight (and in turn, increased portability) of the device itself.
A system in accordance with the present invention may include a housing having a port, a therapy system carried by the housing and operable to deliver HFCC therapy to a patient in accordance with a set of operating parameters, and a memory device coupled to the port and configured to store at least a portion of the set of operating parameters. The therapy system may be operable in accordance with the portion of the set of operating parameters stored in the memory device. The memory device may comprise a read/write memory. Alternatively or additionally, the memory device may comprise a read-only memory.
The memory device may store one or more of a plurality of pre-programmed therapy modes to allow a caregiver to deliver HFCC therapy to a patient in accordance with any one of the plurality of pre-programmed therapy modes stored in the memory device. The plurality of pre-programmed therapy modes may comprise a step program mode, a sweep program mode, a training program mode, and the like. Alternatively or additionally, the memory device may store one or more of a plurality of customized therapy modes to allow a caregiver to deliver a customized HFCC therapy to a patient in accordance with any one of the plurality of customized therapy modes stored in the memory device. The memory device may store information regarding functionalities available to a patient. The functionalities available to a patient may comprise a positive expiratory pressure (PEP) therapy, a nebulizer therapy, an intermittent positive pressure breathing (IPPB) therapy, a cough assist therapy, a suction therapy, a bronchial dilator therapy, and the like.
A user interface apparatus of the therapy system may include a touch screen display. The display may be signaled by software of the therapy system to display a data download screen. The data download screen may comprise a patient list and a list of device selection buttons. The patient list may comprise patient ID numbers. Each device selection button may be associated with one of the plurality of devices. The plurality of devices may comprise one or more of physiological sensors, a printer, a PC, a laptop, a PDA button, and the like. One or more of the plurality of devices may be associated with a computer network of a hospital. The data relating to HFCC therapy delivered to a patient may comprise one or more of the following: a type of the HFCC therapy, the settings of the various operating parameters associated with the HFCC therapy, data associated with any tests or assessments of the patient, including graphs and tables of such data, date and time of the therapy, and patient personal information. The data associated with a patient's assessment may comprise oximetry and air flow data.
The system may further comprise a wireless receiver carried by the housing and operable to wirelessly receive updates relating to software of the therapy system. The system may be operable to wirelessly receive updates relating to problem diagnoses. The wireless transmitter and/or the wireless receiver may be included as part of a wireless transceiver. Alternatively, the housing may include a data port to receive updates relating to software of the therapy system and/or updates relating to problem diagnoses. The wireless transmission of the data may be in accordance with known protocols.
The system may include an accessory mouthpiece coupled to a pressure monitoring system via a pair of air lines. The mouthpiece, via an internal flow restricting structure, establishes a pressure differential which is communicated to the monitoring device. During patient expiration, the mouthpiece functions to accurately and consistently provide a pressure differential to the monitor for conversion into a patient-usable format. One aspect of the monitoring system is the provision of statistical analyses of stored measurements, for example to provide a trend analysis and report of the information for the patient.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
An embodiment of a chest compression system according to the present invention is referenced herein by the numeral 10.
System 10 includes a blood oximeter for monitoring the blood oxygen saturation of the patient before, during or after a therapy session. In a preferred embodiment the sensor accessory 6 is attached to a blood-carrying tissue sample of the patient, such as the finger or ear lobe. In one example, sensor 6 consist of a red LED, an infrared LED, and a single photodetector, but the sensor can include three or more LED's of different wavelengths and an associated plurality of photodetectors. The LED's are driven by signals from a microprocessor, which may be the system 10 controller. Light from the LED's is transmitted through the tissue sample, and is detected by the photodetector, which produces an analog current signal with an amplitude proportional to the amount of light detected in each bandwidth. The current signal from the photodetector is then digitized by the microprocessor. Ambient interference identification and elimination, and signal filtering can be performed by means of digital signal processing software routines in the microprocessor. Once the signals are processed, the microprocessor calculates a ratio of a DC component representing the non-pulsating blood flow, and a AC component indicating the pulsatile blood flow. The microprocessor then determines the arterial oxygen saturation by comparing the result to the value stored in a look-up table or otherwise determined. A variety of blood oxygen sensors and controllers are suitably adaptable for use within system 10.
Pulse frequency module 14, in a preferred embodiment, is provided in the form of a motor-driven rotating blade 20 (“fan valve”) adapted to periodically interrupt the air stream from the air flow generator 12. During these brief interruptions air pressure builds up behind the blade. When released, as by the passage of blade 20, the air travels as a pressure pulse to vest 18 worn by the patient. The resulting pulses can be in the form of fast rise, sine wave pressure pulses. Alternative waveforms can be defined through accurate control of blade 20, such as via an electronically controlled stepper motor. These pulses, in turn, can produce significantly faster air movement in the lungs, in the therapeutic frequency range of about 5 Hz to about 25 Hz, as measured at the mouth. In combination with higher flow rates into the lungs, as achieved using the present apparatus, these factors result in stronger mucus shear action, and thus more effective therapy in a shorter period of time.
Fan valve 20 of the present invention can be adapted (e.g., by configuring the dimensions, pitch, etc. of one or more fan blades) to provide wave pulses in a variety of forms, including sine waves, near sine waves (e.g., waves having precipitous rising and/or falling portions), and complex waves. As used herein a sine wave can be generally defined as any uniform wave that is generated by a single frequency, and in particular, a wave whose amplitude is the sine of a linear function of time when plotted on a graph that plots amplitude against time. The pulses can also include one or more relatively minor perturbations or fluctuations within and/or between individual waves, such that the overall wave form is substantially as described above. Such perturbations can be desirable, for instance, in order to provide more efficacious mucus production in a manner similar to traditional hand delivered chest massages. Moreover, pulse frequency module 14 of the present invention can be programmed and controlled electronically to allow for the automatic timed cycling of frequencies, with the option of manual override at any frequency.
Referring to
Referring to
Pulse pressure control 16 is located between frequency control module 14 and vest 18 worn by the patient. In the illustrated embodiment, air chamber 50 of pulse pressure control 16 is immediately adjacent pulse frequency control module 14. In one preferred embodiment, a structure defining the air chamber is directly connected to the outlet ports of the pulse frequency control module 14. The manifold or air chamber 50 provides fluid communication between air lines 60 extending to vest 18 and the bladder-side ports of the pulse frequency control module 14. Pressure control unit 16 may be active or passive. For example, an active pressure control unit may include, for example, valves and electric solenoids in communication with an electronic controller, microprocessor, etc. A passive pressure control unit 16 may include a manual pressure relief or, in a simple embodiment, pressure control unit 16 may include only the air chamber providing air communication between the air lines extending to the vest 18 and not otherwise including a pressure relief or variable pressure control.
System 10 further includes a plurality of quick connect air couplings 80, 82 which couple vest 18 with system 10 via air hoses 60. Each quick connect air coupling 80, 82 includes male and female portions and a latch or other release for quickly disconnecting the portions. The benefits of the quick connect air couplings include minimization of inadvertent air hose disconnects and improved freedom of movement as the locking air coupling permit rotation between the air hose and the vest or air generator.
As shown in
Various user interfaces allows the patient to control system 10. System 10 activation/deactivation is controlled through on/off switch 77. The user interface includes touch-sensitive display panel 73. Display panel 73 is preferably an LCD panel display, although other displays could also be used. Display panel 73 shows the status of system 10 and options available for usage, optimization and/or modification of system 10. System 10 also provides a variety of feed back to the patient as to system status, blood oxygen saturation, lung function trending, etc. For example, the display 73 may be utilized to coordinate usage of the pulse oximeter and mouthpiece sensor 8 during therapy sessions. Data may be collected by the system 10 relating to system use, operation, errors, status, patient compliance and a variety of patient physiological data. Data may be transferred from system 10 to a remote system via various wired or wireless means, including but not limited to BLUETOOTH transmissions and removable memory appliances. Data across multiple systems may be utilized in outcome assessments.
In a related manner, update information may be stored on a removable memory appliance and transferred to system 10 or transmitted wirelessly directly to system 10 from a remote source. The updated information may include operating software, software updates, etc. In one embodiment, a removable memory appliance may be used to transmit data both to/from a remote system, the data including patient and system data and update information.
Mouthpiece sensor 8 is connected to system 10 via a pair of flexible tubes 170, 172. Tubes 170, 172 engage the airports 168, 169 of mouthpiece sensor 8 at one end and are coupled to air ports of system 10 via threaded couplings 178 at the other end (as shown in
The patient may be prompted to use mouthpiece sensor 8 by a visual and/or auditory cue provided by system 10. For example, a variety of visual displays may illustrate to the patient the correct manner of use, via for example a video displayed on panel 73. The visual display may also facilitate proper use of the mouthpiece accessory by indicating proper airflow and providing an alarm when, for example, the airflow is insufficient to provide an accurate reading or the airflow is reversed. Various entertainment programs could be utilized via display 73 to encourage routine use of the mouthpiece sensor by the patient. For example, system 10 may implement an age-appropriate game on display 73 promoting increased compliance by a pediatric patient. A variety of such games are envisioned with data from one or more physiological data sensors providing real-time user input for the games.
In another embodiment system 10 may include a CO2 or other gas monitor to evaluate patient condition. A CO2 monitor could be provided as a small gas sampler within the housing of system 10.
System 10 includes a congestion monitor designed to measure total volume of air expired in the first one second of a forced expiratory breath. This value when monitored on a regular basis can be a valuable tool in managing chronic obstructive pulmonary disease. It is often difficult for a patient to determine the gradual trending direction of his or her lung function without pulmonary testing over time. Using the congestion monitor on a regular basis can indicate to the patient whether his or her lung function is stable, decreasing, or improving. It gives the patient the opportunity to better judge the right combination of therapy, whether or not to increase therapy, and/or to contact his or her doctor.
The congestion monitor was designed to measure, with consistency, a one second volume of air flow. This measurement is repeatable to within plus or minus 3 percent over a range of 0 to 12 liters per second. The consistency of measurement allows the patient to establish a base line measurement that can be used to show trending of lung congestion over time. It is not a measure of true FEV1 values and should not be compared to FEV1 values measured in a pulmonary function laboratory. Additional disclosure relating to the mouthpiece and airway congestion monitoring system are disclosed in applicant's US Provisional Patent Application, Mouthpiece and Airway Congestion Monitoring System, Ser. No. 61/161,707, incorporated by reference herein.
HFCC therapy is prescribed as either an adjunct or outright replacement for manual chest physiotherapy. Total therapy time per day varies between about 30 minutes and about 240 minutes spread over one to four treatments per day. Patients can be instructed in either the continuous intermittent mode of HFCC therapy, which may include continuous use of aerosol.
System 10 is provided in the form of a compact air pulse delivery apparatus that is considerably smaller than those presently or previously on the market, with no single modular component of the present apparatus weighing more than about 10 pounds. Air flow generator module 12 is provided in the form of a single stage compressor, and is enclosed in a compartment having air inlet and outlet ports. The air inlet port can be open to atmosphere, while the outlet port can be flowably coupled to the pulse frequency control module. In another embodiment, the air flow generator module 12 may include a variable speed air fan adapted to be used with an electronic motor speed controller. In such an embodiment, the amplitude of pulses transmitted to the air vest 18 may be controlled by adjusting the fan motor speed. In embodiments of the present invention, the amplitude of the pulses may be increased or decreased in response to received physiological signals providing patient information, such as inhalation and exhalation periods, etc.
System 10 can provide pressurized pulses of on the order of 60 mm Hg or less. The ability to provide pulses having higher pressure, while also minimizing the overall size and weight of the unit, is a particular advantage of the present apparatus as well. Pulses of over about 60 mm Hg are generally not desirable, since they can tend to lead to bruising.
System 10 may include one or more display screens allowing the caregiver to control the operation of any of the additional respiratory therapy system(s) and/or assessment system(s) included in system 10. The set of operating parameters may be stored in the on-board memory associated with the controller or microprocessor. The system housing has two large air ports which are configured to be coupled to a HFCC therapy garment via hoses. The garment has at least one bladder and is configured to be positioned on a patient receiving HFCC therapy. An example of a garment suitable for use with the system is disclosed in U.S. Ser. No. 12/106,836, which is hereby incorporated by reference herein. In response to user inputs, the controller signals air pulse generator to deliver high frequency air pulses to the patient in accordance with a set of operating parameters.
In some embodiments, system 10 may also be couplable to a nebulizer mouthpiece (not shown). A mask and/or nebulizer mouthpiece can be used when the system performs one or more of the integrated additional therapies such as, for example, nebulizer therapy and cough assist therapy.
The controller of system 10 signals the air pulse generator to deliver high frequency air pulses to a patient in accordance with the portion of the set of operating parameters stored in a memory device. In some embodiments, the memory device is configured to store one or more of a plurality of pre-programmed therapy modes to allow a caregiver to deliver HFCC therapy to a patient in accordance with any one of the plurality of pre-programmed therapy modes stored in the memory device. Examples of the pre-programmed therapy modes include a step program mode, a sweep program mode, a training program mode, and the like. The step and sweep program modes are substantially as described in U.S. Ser. No. 11/520,846, which is already incorporated by reference herein. A program mode allows the caregiver to start at a desired starting frequency and/or intensity for the HFCC therapy and automatically gradually increase the frequency and/or intensity over a predetermined period of time or a programmed period of time to a desired maximum frequency and intensity.
System 10 may include a memory device configured to store one or more of a plurality of customized therapy modes to allow a caregiver to deliver HFCC therapy to a patient in accordance with any one of the plurality of customized therapy modes stored in the memory device. In the custom program mode, the caregiver is able to create a special waveform for a particular patient's therapy. Such a special waveform may be in accordance with wave type, frequency, pressure, and timing parameters of the caregiver's choosing or may be in accordance with a menu of special waveforms preprogrammed into the system. In still other embodiments, a memory device is configured to store information regarding functionalities available to a patient. Examples of functionalities available to a patient include one or more of a positive expiratory pressure (PEP) therapy, a nebulizer therapy, an intermittent positive pressure breathing (IPPB) therapy, a cough assist therapy, a suction therapy, a bronchial dilator therapy, and the like.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This applications claims the benefit of U.S. Provisional Patent Application Ser. No. 61/060,379, filed Jun. 10, 2008, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2588192 | Akerman et al. | Mar 1952 | A |
3462778 | Whitney | Aug 1969 | A |
4135500 | Gorran | Jan 1979 | A |
4197837 | Tringali et al. | Apr 1980 | A |
4311135 | Brueckner et al. | Jan 1982 | A |
4519146 | Herrington | May 1985 | A |
4653498 | New, Jr. et al. | Mar 1987 | A |
4838263 | Warwick et al. | Jun 1989 | A |
4977889 | Budd | Dec 1990 | A |
5056505 | Warwick et al. | Oct 1991 | A |
5453081 | Hansen | Sep 1995 | A |
5490820 | Schock et al. | Feb 1996 | A |
5569170 | Hansen | Oct 1996 | A |
5769797 | Van Brunt et al. | Jun 1998 | A |
5769800 | Gelfand et al. | Jun 1998 | A |
5997488 | Gelfand et al. | Dec 1999 | A |
6030353 | Van Brunt | Feb 2000 | A |
6036662 | Van Brunt et al. | Mar 2000 | A |
6155996 | Van Brunt et al. | Dec 2000 | A |
6179796 | Waldridge | Jan 2001 | B1 |
6182658 | Hayek | Feb 2001 | B1 |
6210345 | Van Brunt | Apr 2001 | B1 |
6254556 | Hansen et al. | Jul 2001 | B1 |
6340025 | Van Brunt | Jan 2002 | B1 |
D453560 | Van Brunt | Feb 2002 | S |
6379316 | Van Brunt et al. | Apr 2002 | B1 |
D456591 | Hansen | May 2002 | S |
6415791 | Van Brunt | Jul 2002 | B1 |
D461897 | Hansen et al. | Aug 2002 | S |
6471663 | Van Brunt et al. | Oct 2002 | B1 |
6488641 | Hansen | Dec 2002 | B2 |
D469876 | Hansen et al. | Feb 2003 | S |
6547749 | Hansen | Apr 2003 | B2 |
D478989 | Hansen et al. | Aug 2003 | S |
6605050 | Hansen | Aug 2003 | B2 |
6676614 | Hansen et al. | Jan 2004 | B1 |
6733464 | Olbrich et al. | May 2004 | B2 |
6736785 | Van Brunt | May 2004 | B1 |
6757916 | Mah et al. | Jul 2004 | B2 |
6764455 | Van Brunt et al. | Jul 2004 | B2 |
6910479 | Van Brunt | Jun 2005 | B1 |
6916298 | Van Brunt et al. | Jul 2005 | B2 |
6958046 | Warwick et al. | Oct 2005 | B2 |
20020014235 | Rogers et al. | Feb 2002 | A1 |
20020111571 | Warwick et al. | Aug 2002 | A1 |
20060009718 | Van Brunt et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
WO-9532753 | Dec 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20090306556 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61060379 | Jun 2008 | US |