This patent application is related to the patent application entitled “Cable Sandwich Ribbon Fairing,” filed by the United States Department of the Navy.
Cable fairings are structures attached to cables typically towed by marine vessels. They are designed to streamline the water flow around the cable and reduce normal drag and cable vibration caused by vortex shedding. Faired cables are used in applications such as underwater geophysical exploration and military reconnaissance operations, including towing buoys from ships, submarine detection, and deploying radio antennas from submarines. Rectangular ribbon fairings are the most popular type of fairings used to reduce vortex induced vibration and normal drag. Normal drag is the component of cable drag that is perpendicular to the cable axis. Conversely, tangential drag is the component of drag parallel to the cable axis.
Prior art
While ribbon fairings can be effective in reducing normal drag and cable strum, they introduce tangential drag when the tow angle is less than 90 degrees to the flow. This is because ribbon fairings naturally lie close to 90 degrees to the cable axis as shown in prior art
This increased cross sectional area becomes more problematic as the cable tension increases and the tow angle gets closer to horizontal. At angles of 30 degrees or less, the tangential drag of the rectangular ribbon fairing increases significantly. In fact, rectangular fairing tangential drag at these angles is typically ten times, or more, the tangential drag of the bare cable. Since each strip is held at its center (105) by the outer armor strands of the cable (210), the rectangular fairing warps or twists as the tow angle of the cable decreases and the ribbon tries to align with the flow. Consequently, instead of presenting a frontal area of t×w to the flow, where t is the ribbon thickness and w is the ribbon width, the rectangular fairing presents a frontal area on the order of w×w.
At more shallow cable angles, this tangential drag from the ribbon fairing can significantly increase the tow tension on the cable at the tow vessel. As a result, ribbon fairings are typically not used at angles shallower than 20-30 degrees. Therefore, there is a need for a fairing that reduces normal drag at shallow angles without introducing high levels of tangential drag.
This invention provides a solution to the issue of increased tangential drag with a reduced cable angle to the flow by providing a chevron ribbon fairing, which can significantly reduce the hydrodynamic vibration and drag on the tow cable. As the name implies, the chevron ribbon fairing is shaped like the letter “V.” The vertex or tip of the chevron ribbon fairing is woven into strands of the outer armor of the steel towing cable or molded to a jacketed towing cable, leaving the two legs of the chevron free. When the cable is towed at a shallow angle for which the chevron fairing is designed, the chevron ribbon aligns with the flow so that the cross sectional area presented to the flow from each leg is near t×w, where, t is the chevron ribbon leg thickness and w is the chevron ribbon leg width. This results in a significant decrease in tangential drag.
The chevron design allows the legs of the ribbon to naturally align with the flow even as the cable rotates about its axis due to changes in applied tension. When the cable is at a predetermined acute towing angle, for which the chevron fairing is designed, the fairing aligns with the flow, thereby reducing its cross sectional area to the flow. This ensures a reduction in tangential drag regardless of the level of cable tension.
The chevron ribbon fairing design is most effective when its vertex angle is twice the cable's towing angle to the flow. The chevron fairing vertex angle can be designed to accommodate any tow angle between approximately 10-90 degrees. However, the chevron ribbon fairing will typically be used for more acute tow cable angles relative to the flow. For example, in an embodiment where the cable angle is 15 degrees relative to the flow, the vertex of the chevron fairing will have an angle of 30 degrees and be woven into the outer armor of the cable.
The chevron fairing (like normal ribbon fairings) can be made from a variety of a pliable materials, such as polyurethane, a fiber reinforced polymer, cloth, plastic, etc.
Referring to
In addition to the rounded fillet (S), the tip of the vertex (310) can be altered to create a more flattened or rounded vertex (330) to facilitate weaving the fairing into the armored cable. If it is attached to a smooth jacket of a polymer cable, via molding, gluing etc., the pointed top vertex is preferred. The rounded vertex (330) and rounded fillet (S) shorten the vertex length from length (D) to length (E) as shown in
The chevron ribbon fairing (300) is employed as shown in
All embodiments of the chevron ribbon fairings can be made from a variety of materials. Any flexible material such as cloth, composite reinforced polyurethane, rubber, polyethylene, or the like can be used.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is the intent of this application to cover, in the appended claims, all such modification and equivalents. The entire disclosure and all references, applications, patents, and publications cited above are hereby incorporated by reference.
This patent application claims benefit of Provisional Patent Application No. 62/447,621, filed on Jan. 18, 2017 by the same inventor.
The invention described herein may be manufactured and used by, or for the Government of the United States of America, for governmental purposes without payment of any royalties thereon or therefore.
Number | Name | Date | Kind |
---|---|---|---|
3467047 | Behr | Sep 1969 | A |
4542708 | Holcombe | Sep 1985 | A |
4567841 | Hale | Feb 1986 | A |
20100212573 | Hawkes | Aug 2010 | A1 |
20100212574 | Hawkes | Aug 2010 | A1 |
20170334526 | Godoy | Nov 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
62447621 | Jan 2017 | US |