The application relates generally to gas turbine engines and, more particularly, to chevrons and like surface-increasing features.
The exhaust jet of a gas turbine engine remains a significant noise source, particularly at high power conditions. Chevrons located at the trailing edge of nozzles have emerged as an effective means of noise reduction in mid-to-high bypass ratio turbo-fan engines. The chevrons are the saw-tooth patterns on the trailing edges of jet engine nozzles. The chevron nozzles induce additional mixing mechanisms within the shear layer thereby promoting a rapid plume decay and resulting in noise reduction. This may however be accompanied by an increased drag which results in a deterioration of the performance of the gas turbine engine.
In one aspect, there is provided a surface-increasing feature system for a gas turbine engine comprising: at least one deployable surface-increasing feature defined at least by a first panel and a second panel connected to a deployment mechanism providing a translational actuation to deploy said deployable surface-increasing feature from a stowed configuration in which the deployable surface-increasing feature is substantially concealed fore of a trailing edge of a case of the gas turbine engine, to a deployed configuration in which the deployable surface-increasing feature extends beyond the trailing edge; at least one joint providing at least one degree of freedom for the first panel and the second panel relative to the deployment mechanism; and a guide operatively contacting the deployable surface-increasing feature to rotatably displace the first panel and the second panel away from one another in the at least one degree of freedom in response to movement induced by the translational actuation from the stowed configuration to the deployed configuration; whereby a footprint of the deployable surface-increasing feature concurrently defined by the first panel and the second panel is greater in the deployed configuration than in the stowed configuration.
In a second aspect, there is provided a chevron system for a gas turbine engine comprising: at least one chevron defined by a pair of panels, each panel having at least two degrees of freedom, with one degree of freedom consisting of a rotational movement of said panel around a joint and another degree of freedom consisting of translational movement of said panel within a guide; a biasing member for biasing the panels in said rotational movement, wherein said rotational movement is restricted by the guide; and a deployment mechanism for moving each panel within the guide.
In a third aspect, there is provided a method for deploying a pair of panels forming a surface-increasing feature at a trailing edge of a case of a gas turbine engine of an aircraft, comprising: receiving a translational actuation to move the surface-increasing feature beyond the trailing edge; and guiding the two panels in rotatably moving relative to one another as induced by the translational actuation to increase a footprint of the deployable surface-increasing feature concurrently defined by the first panel and the second panel.
Further details of these and other aspects of the present invention will be apparent from the detailed description and figures included below.
Reference is now made to the accompanying figures, in which:
Referring to
A chevron deployment mechanism is generally shown at 30, and is mostly concealed in the inner cavity 22. The chevron deployment mechanism 30 may feature linkages 31 and joints 32, operated by an actuator 33. However, it is considered to use any appropriate type of chevron deployment mechanism 30 to provide one or more translational degrees of actuation (DOAs) to displace chevrons between a stowed configuration and a deployed configuration. For example, there may be more or fewer of the linkages 31 and joints 32, or alternatively or additionally, rods, tendons, chains, linear actuators, cylinders, valves and like hardware components could be used to provide the translation DOA. Moreover, the DOA may be provided by any available type of actuators, such as electric, pneumatic, hydraulic, electro-mechanical, among possibilities. This is discussed in further detail hereinafter.
The mechanism 30 is connected to one or more deployable chevrons 40, that may be displaced to a deployed configuration, as shown concurrently by
The expression “chevron” is used as the deployable chevrons 40 described herein perform the same function as the sawtooth pattern chevrons integral with the outer skin of gas turbine engine cases. However, other expressions may be used to qualify such chevrons, such as silencers, flaps, tabs, sound-suppressing means, etc, all of which are encompassed by the present disclosure. The chevrons 40 may also include air-through chevrons, also known as hollow tabs. For simplicity, the expression chevron is used throughout the specification, but encompasses these other types of devices as well, and the expression “surface-increasing features” is used in the claims to cover the multiple possible embodiments described above.
Referring to
The chevron system also has a guide 43 operatively contacting the panels 40A and 40B. Referring to
Referring to
The panels 40A and 40B of the deployable chevron 40 may have any appropriate shape, although a trapezoidal or truncated triangular shape may be considered for noise reduction effectiveness. The trapezoidal or truncated triangular shape may be oriented such that the large side of these shapes is the trailing edge of the chevrons 40, i.e., the chevrons 40 flare beyond the trailing edge of the case. Such an inverted geometry provides an additional interface length, and creates increased singularities within the flow, thus creating favorable conditions for generation of more and stronger streamwise vortices which may result in sharper plume decay and hence a noise reduction.
Referring to
Other arrangements are considered for the chevron system. For example, referring to
Referring to
In another embodiment, the end frame 60 may feature separate constructional details along different circumferential sectors, to allow for installation of the guides 43 only along a specific sector of the end frame 60.
When the skins 20 and 21 are part of a thrust reverser, the chevron deployment mechanism 30 is positioned strategically relative to a pivoting location of the thrust reverser, so as not to hamper the pivoting movement.
As observed from
The chevron deployment mechanism 30 may be designed to operate in a ‘FAIL-CLOSE’ mode wherein the deployable chevrons 40 continuously stay in the stowed configuration, so as to minimize the hydraulic/pneumatic/mechanical load under the failure condition.
Within the embodiments, the hydraulic pressurization can be achieved through existing sources of hydraulic pressure on an engine, e.g. the actuation lines for the thrust reversers can be modified appropriately for translating the chevrons 40. Similar results can be achieved by using existing sources of hydraulic pressure on an aircraft or using a separate stand-alone source. Similarly, pneumatic actuation can be achieved by using high pressure air available from the engine and/or a stand-alone source located on the engine or aircraft.
The line used for conveying the fluid for translating the chevrons 40 may include flexible pipelines or a combination of rigid and flexible pipelines packaged between the skins 20 and 21 of the case. Another embodiment may feature a single line from the pressurizing source until a splitter beyond which multiple pressurizing lines may be used for translating the chevrons 40. Similarly, another embodiment may feature multiple pressurizing sources that may translate a single or multiple chevrons 40. In another embodiment, if the actuation is based on pneumatic pressure the return line may not be required and the depressurizing may be achieved by discharging directly into the thrust reverser.
The use of the expression chevron is used as the deployable panels 40A and 40B described above perform the same function as the sawtooth pattern chevrons integral with the outer skin of gas turbine engine cases. However, other expressions may be used to qualify such chevrons, such as silencers, flaps, sound-suppressing means, etc, all of which are encompassed by the present disclosure.
Therefore, a method for deploying the panels 40A and 40B forming the chevron 40 at the trailing edge 20A/21A comprises receiving a translational degree of actuation (or translational actuation) to move the chevron 40 beyond the trailing edge 20A/21A. The two panels 40A and 40B are guided in rotatably moving relative to one another as induced by the translational actuation to increase a footprint of the deployable chevron 40 concurrently defined by the first panel 40A and the second panel 40B. Moving the two panels 40A and 40B comprises rotating the two panels 40A and 40B about axes transverse to a direction of the translational actuation. Guiding the two panels 40A and 40B comprises operatively contacting edges of the two panels 40A and 40B. The method may be performed simultaneously for a plurality of chevrons 40.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.