The present invention relates generally to Chien searches and more particularly to Chien search algorithms in error correction decoders.
Conventional flash memory technology and related technologies are described in the following publications inter alia:
The disclosures of all publications and patent documents mentioned in the specification, and of the publications and patent documents cited therein directly or indirectly, are hereby incorporated by reference.
Certain embodiments of the present invention seek to provide an array of taps which performs a low power Chien search, the array typically including a number of taps which depends on the rank of the error locator polynomial currently subject of the Chien search.
Certain embodiments of the present invention seek to provide an error correction decoder including an array of taps which performs a low power Chien search, the array typically including a number of taps that typically depends on the maximum error correction capability of the error correction code, wherein the decoder includes control apparatus allowing a subset of taps to be used which depends on the rank of the error locator polynomial currently subject of the Chien search.
There is thus provided, in accordance with at least one embodiment of the present invention, Chien search apparatus operative to evaluate an error locator polynomial having a known rank and including a sequence of terms for each element in a finite field whose elements correspond respectively to bits in each of a stream of data blocks to be decoded, the apparatus comprising a sequence of functional units each operative to compute a corresponding term in the sequence of terms included in the error locator polynomial, each term having a degree; and a power saving unit operative to de-activate at least one individual functional unit from among the sequence of functional units, the individual functional unit being operative, when active, to compute a term whose degree exceeds the rank.
Further in accordance with at least one embodiment of the present invention, the apparatus also comprises clocks associated with the sequence of functional units and wherein the power saving unit comprises a clock gating unit controlling the clocks.
Still further in accordance with at least one embodiment of the present invention, the power saving unit comprises power saving logic operative to selectively deactivate any of a group of subsets of the functional units, the group comprising at least one predetermined subset of the plurality of functional units.
Additionally in accordance with at least one embodiment of the present invention, the power saving logic is operative to selectively deactivate an individual subset of functional units within the group of subsets, if all functional units in the individual subset are operative to compute terms whose degree exceeds the rank.
Further in accordance with at least one embodiment of the present invention, the group of subsets comprises at least one predetermined nested subset of the sequence of functional units, each predetermined nested subset including a sequence of functional units terminating in the functional unit in the sequence of functional units which has the highest degree.
Also provided, in accordance with at least one embodiment of the present invention, is a Chien search method operative to evaluate an error locator polynomial having a known rank and including a sequence of terms for each element in a finite field whose elements correspond respectively to bits in each of a stream of data blocks to be decoded, the method comprising providing a sequence of functional units each operative to compute a corresponding term in the error locator polynomial, each term having a degree; and de-activating at least one individual functional unit from among the sequence of functional units, the individual functional unit being operative, when active, to compute a term whose degree exceeds the rank.
Further in accordance with at least one embodiment of the present invention, a histogram of the number of errors per data block in the stream is known, and the method also comprises designing power saving logic operative to effect the de-activating, including selecting, for each predetermined subset, a cut-off point in the sequence of functional units above which all functional units belong to the predetermined subset, wherein the cut-off point is selected to maximize power saving achieved by the de-activating, given the histogram.
Additionally in accordance with at least one embodiment of the present invention, the data blocks are BCH-encoded.
Further in accordance with at least one embodiment of the present invention, the data blocks are Reed-Solomon-encoded.
Additionally in accordance with at least one embodiment of the present invention, the data blocks are stored in a flash memory device.
Additionally in accordance with at least one embodiment of the present invention, the apparatus also comprises an error locator polynomial generator operative to generate the error locator polynomial and output its rank to the power saving unit.
Further in accordance with at least one embodiment of the present invention, the clock gating unit defines a plurality of clock domains, wherein each of the sequence of functional units belongs to at least one of the clock domains.
The error locator polynomial generator may be operative in accordance with any suitable methodology such as but not limited to the Berlekamp-Massey algorithm or the Patterson algorithm.
A particular feature of certain embodiments of the present invention is that registers can be controlled, in groups pre-defined at the design stage to include one or more registers sharing a single clock, by gating or not gating the group clock.
A particular feature of certain embodiments of the present invention is that error information is used to determine power consumption.
A particular feature of certain embodiments of the present invention is that error information is used to determine sub group clock source shut down.
Any suitable processor, display and input means may be used to process, display, store and accept information, including computer programs, in accordance with some or all of the teachings of the present invention, such as but not limited to a conventional personal computer processor, workstation or other programmable device or computer or electronic computing device, either general-purpose or specifically constructed, for processing; a display screen and/or printer and/or speaker for displaying; machine-readable memory such as optical disks, CDROMs, magnetic-optical discs or other discs; RAMs, ROMs, EPROMs, EEPROMs, magnetic or optical or other cards, for storing, and keyboard or mouse for accepting. The term “process” as used above is intended to include any type of computation or manipulation or transformation of data represented as physical, e.g. electronic, phenomena which may occur or reside e.g. within registers and/or memories of a computer.
The above devices may communicate via any conventional wired or wireless digital communication means, e.g. via a wired or cellular telephone network or a computer network such as the Internet.
The apparatus of the present invention may include, according to certain embodiments of the invention, machine readable memory containing or otherwise storing a program of instructions which, when executed by the machine, implements some or all of the apparatus, methods, features and functionalities of the invention shown and described herein. Alternatively or in addition, the apparatus of the present invention may include, according to certain embodiments of the invention, a program as above which may be written in any conventional programming language, and optionally a machine for executing the program such as but not limited to a general purpose computer which may optionally be configured or activated in accordance with the teachings of the present invention.
A detailed description of embodiments referred to above, and other embodiments, will follow.
Any trademark occurring in the text or drawings is the property of its owner and occurs herein merely to explain or illustrate one example of how an embodiment of the invention may be implemented.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions, utilizing terms such as, “processing”, “computing”, “estimating”, “selecting”, “ranking”, “grading”, “calculating”, “determining”, “generating”, “reassessing”, “classifying”, “generating”, “producing”, “stereo-matching”, “registering”, “detecting”, “associating”, “superimposing”, “obtaining” or the like, refer to the action and/or processes of a computer or computing system, or processor or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories, into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Certain embodiments of the present invention are illustrated in the following drawings:
BCH and RS (Reed-Solomon) are among the most widely used cyclic error correcting codes. They are used in many various practical fields such as storage and communication.
Moreover, when these coding schemes are used in mobile applications, power consumption is a major design constraint which might affect the viability of the usage of these schemes in the aforementioned applications.
As shown in
The BCH and RS codes are conventional cyclic error correction codes. The encoder for BCH and RS codes can be described in terms of a generation matrix G, thus the encoding process comprises a matrix multiplication c=mG, where c is the transmitted codeword and m is the message to be transmitted.
The decoding of BCH/RS codes comprises syndrome decoding, i.e. there exists a parity check matrix H which has the following property: GHT=0. It follows that cHT=mGHT=0.
The received vector r comprises the transmitted codeword c and the errors added in the channel i.e. r=c+e. The receiver computes the syndrome vector s using the parity check matrix i.e. s=rHT=cHT+eHT=mGHT+eHT=0+eHT=eHT, or in short s=eHT.
The construction of BCH and RS codes and the special form of the parity check matrix H are known. Due to the special form of the BCH and RS codes and the matrix H the set of equations s=eHT can be solved directly by exhaustive search in the decoder thereby to find the error vector e and correctly decode the received message. Since exhaustive search is a computationally unattractive way to implement the decoder, the problem is solved by introducing an Error Locator Polynomial (ELP) whose roots are the reciprocals of the error locations. Several algorithms exist to derive the error locator polynomial from the syndromes, such as Berlekamp-Massey and the Euclidean algorithms, e.g. as described in “Error Correction Coding Mathematical Methods and Algorithms”, Todd K. Moon, John Wiley & Sons, Inc., 2005. The error locator polynomial can be written as follows, where j (or v) denotes the number of errors in the received vector:
Λ(x)=Λ0+Λ1x+Λ2x2+Λjxj
In the general case j can be equal to J (or t) which denotes the maximum number of errors the algorithm is designed to correct.
Once the decoder computes the error locator polynomial, all is left for the decoder to do is to evaluate the error locator polynomial for all the elements of the field; the ones that zero the error locator polynomial are the error locations.
The apparatus of
Reference is now made to
In
In each successive clock (clk signal) the contents of each register Reg_1 . . . Reg_J is multiplied with a respective constant from among constants Const_1 . . . Const_J and latched into a respective one of the registers Reg_1 . . . Reg_J. Each register and associated multiplier forms a “tap” 335, as shown. An adder adds the partial sums of the error locator polynomial to produce sum A which is the evaluation of the error locator polynomial for x=αn at the n'th clock cycle. If A equals Λ0 at some clock n, this means, as described above, and as is well known in the art, that αn is a root of the error locator polynomial. It follows that an error has occurred in bit n (for binary BCH codes) or in symbol n (for non-binary BCH or RS codes) of the received data. Having iterated over all elements in the field, and identified all errors, decoding is complete.
In contrast, according to certain embodiments of the present invention, as shown in
Also provided, according to certain embodiments of the present invention, is a clock-scheme associated with circuitry which takes advantage of the known number of errors to control which of several sub-circuits, also termed herein taps, are clocked and which have their clock gated, as depicted in
59 taps are provided altogether. If 2 clock domains are provided, the clock gating unit is operative to deactivate, say, all taps from 20 to 59. The clock gating unit typically does so if the rank is known to be less than 20. If the rank is 20 or larger, the taps from 20 to 59 are active i.e. are not de-activated. Alternatively, 3 clock domains may be provided, such that all taps from (say) 10 to 59 may be de-activated, or alternatively, all taps from 20 to 59 may be de-activated, or alternatively, all taps may be active. These 3 options are used when the rank of the error locator polynomial is known to be smaller than 10, smaller than 20 but greater than 10, and greater than 20, respectively. The 3 clock domains therefore define 2 subsets of taps—the first including taps 10 to 19, or 10 to 59, in the sequence of taps, the second subset including taps 20 to 59. Another example would be having 3 clock domains, associated with taps 0-9, 10-20 and 21-59 respectively.
As described above, j denotes the actual number of errors in the currently decoded data, which is also the rank of the error locator polynomial such that j is known at the time Chien-Search (CS) computation begins. J denotes the maximum error correcting capability of the constructed BCH/RS code.
The designed hardware includes J parallel “taps” as in
When the number of errors which occurs is less than the maximum error correction capability of the error correction code, all the coefficients of the error locator polynomial (Λ(x)) higher than j are equal to zero.
When j errors occur and j<J, natural power saving occurs; registers Reg_j+1 . . . Reg_J will constantly be equal to zero and the power associated with switching of the combinatorial logic and data inputs/outputs of the flip-flops is saved. But the power associated with the register's clock input still continues to draw power unnecessarily. This wasted power can represent a major part of the power dissipated by the circuit; specifically it is most wasteful at higher clock frequencies.
As shown, the clock signal (clk) that is fed to each of the registers may be gated depending on j, per each received data block. Each register need not receive its own gated clk; the registers may be partitioned into any suitable number of groups, such as 2 or 3 or more groups, typically according to the error probability of the application at hand.
In
The v_thr inputs to the gating logic units in
Pvthr is the probability that less than Vthr errors may occur, corresponding to the proportion of pages being decoded for which the associated clock will not be switched on. This in turn corresponds to the proportion of uses of the apparatus in which power is saved. It is appreciated that the total number of errors is known at the onset of decoding of each page of data.
The power saved in accordance with the above-described scheme can be computed, assuming, say, that the clock scheme is subdivided into 2 clk trees. The following description uses the notation presented in the table of
The power dissipated in the traditional clk scheme for a particular received data block i.e. for a particular j, can be expressed as follows.
jEtap-clk-data+(J−j)Etap-clk
The average power drawn in the traditional case is:
Simplifying, and assuming Etap≈Etap-clk-data≈Etap-clk which is a reasonable simplification at fast clock frequencies, yields:
Eold-total=tEtap
The power dissipated in the clk scheme shown herein, for a particular received data block and particular j can be expressed as follows
jEtap-clk-data+(Vthr−j)Etap-clk j≦Vthr
jEtap-clk-data+(J−j)Etap-clk j>Vthr
Using the same simplification utilized above:
Enew-total=PVthrVthrEtap+(1−PVthr)tEtap
Since PVthr≈1 and (1−PVthr) is small:
Enew-total=VthrEtap
Finally the power was reduced by factor of
It is appreciated that whereas the illustrated embodiment happens to include 2 clock domains, alternatively, any suitable number, n, of clock domains may be employed. The design process typically comprises the following steps:
1) Express the power of the Chien-Search as a function of the number of allowed clock-domains, e.g., using the notation of
2) Minimize the expression to find an optimal set of taps to connect to each of the clocks, or otherwise partition the taps into clock domains so as to reduce the power.
Minimization of the above expression (Etotal) for l1, l2, . . . ln, where l1, l2, . . . ln denotes the clk-gating partition scheme, yields optimal power, however the present invention is not limited to those applications in which optimal (minimal) power is achieved.
It is appreciated that software components of the present invention including programs and data may, if desired, be implemented in ROM (read only memory) form including CD-ROMs, EPROMs and EEPROMs, or may be stored in any other suitable computer-readable medium such as but not limited to disks of various kinds, cards of various kinds and RAMs. Components described herein as software may, alternatively, be implemented wholly or partly in hardware, if desired, using conventional techniques.
Included in the scope of the present invention, inter alia, are electromagnetic signals carrying computer-readable instructions for performing any or all of the steps of any of the methods shown and described herein, in any suitable order; machine-readable instructions for performing any or all of the steps of any of the methods shown and described herein, in any suitable order; program storage devices readable by machine, tangibly embodying a program of instructions executable by the machine to perform any or all of the steps of any of the methods shown and described herein, in any suitable order; a computer program product comprising a computer useable medium having computer readable program code having embodied therein, and/or including computer readable program code for performing, any or all of the steps of any of the methods shown and described herein, in any suitable order; any technical effects brought about by any or all of the steps of any of the methods shown and described herein, when performed in any suitable order; any suitable apparatus or device or combination of such, programmed to perform, alone or in combination, any or all of the steps of any of the methods shown and described herein, in any suitable order; information storage devices or physical records, such as disks or hard drives, causing a computer or other device to be configured so as to carry out any or all of the steps of any of the methods shown and described herein, in any suitable order; a program pre-stored e.g. in memory or on an information network such as the Internet, before or after being downloaded, which embodies any or all of the steps of any of the methods shown and described herein, in any suitable order, and the method of uploading or downloading such, and a system including server/s and/or client/s for using such; and hardware which performs any or all of the steps of any of the methods shown and described herein, in any suitable order, either alone or in conjunction with software.
Certain operations are described herein as occurring in the microcontroller internal to a flash memory device. Such description is intended to include operations which may be performed by hardware which may be associated with the microcontroller such as peripheral hardware on a chip on which the microcontroller may reside. It is also appreciated that some or all of these operations, in any embodiment, may alternatively be performed by the external, host-flash memory device interface controller including operations which may be performed by hardware which may be associated with the interface controller such as peripheral hardware on a chip on which the interface controller may reside. Finally it is appreciated that the internal and external controllers may each physically reside on a single hardware device, or alternatively on several operatively associated hardware devices.
Any data described as being stored at a specific location in memory may alternatively be stored elsewhere, in conjunction with an indication of the location in memory with which the data is associated. For example, instead of storing page- or erase-sector-specific information within a specific page or erase sector, the same may be stored within the flash memory device's internal microcontroller or within a microcontroller interfacing between the flash memory device and the host, and an indication may be stored of the specific page or erase sector associated with the cells.
It is appreciated that the teachings of the present invention can, for example, be implemented by suitably modifying, or interfacing externally with, flash controlling apparatus. The flash controlling apparatus controls a flash memory array and may comprise either a controller external to the flash array or a microcontroller on-board the flash array or otherwise incorporated therewithin. Examples of flash memory arrays include Samsung's K9XXG08UXM series, Hynix's HY27UK08BGFM Series, Micron's MT29F64G08TAAWP or other arrays such as but not limited to NOR or phase change memory. Examples of controllers which are external to the flash array they control include STMicroelectrocincs's ST7265x microcontroller family, STMicroelectrocincs's ST72681 microcontroller, and SMSC's USB97C242, Traspan Technologies' TS-4811, Chipsbank CBM2090/CBM 1190. Examples of commercial IP software for Flash file systems are: Denali's Spectra™ NAND Flash File System, Aarsan's NAND Flash Controller IP Core and Arasan's NAND Flash File System. It is appreciated that the flash controller apparatus need not be NAND-type and can alternatively, for example, be NOR-type or phase change memory-type.
Flash controlling apparatus, whether external or internal to the controlled flash array, typically includes the following components: a Memory Management/File system, a NAND interface (or other flash memory array interface), a Host Interface (USB, SD or other), error correction circuitry (ECC) typically comprising an Encoder and matching decoder, and a control system managing all of the above.
The present invention may for example interface with or modify, as per any of the embodiments described herein, one, some or all of the above components and particularly with the ECC component.
Features of the present invention which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, features of the invention, including method steps, which are described for brevity in the context of a single embodiment or in a certain order may be provided separately or in any suitable subcombination or in a different order. “e.g.” is used herein in the sense of a specific example which is not intended to be limiting.
This application is a National Phase Application of PCT International Application No. PCT/IL2008/001235, entitled “CHIEN-SEARCH SYSTEM EMPLOYING A CLOCK-GATING SCHEME TO SAVE POWER FOR ERROR CORRECTION DECODER AND OTHER APPLICATIONS”, International Filing Date Sep. 17, 2008, published on Jun. 18, 2009 as International Publication No. WO 2009/074979, which in turn claims priority from U.S. Provisional Patent Application No. 60/996,948, filed Dec. 12, 2007, U.S. Provisional Patent Application No. 61/071,468, filed Apr. 30, 2008 and U.S. Provisional Patent Application No. 61/071,487 filed May 1, 2008, all of which are incorporated herein by reference in their entirety. Other co-pending applications include: U.S. Provisional Application No. 60/960,207, filed Sep. 20, 2007 and entitled “Systems and Methods for Coupling Detection in Flash Memory”, U.S. Provisional Application No. 61/071,467, filed Apr. 30, 2008 and entitled “Improved Systems and Methods for Determining Logical Values of Coupled Flash Memory Cells”, U.S. Provisional Application No. 60/960,943, filed Oct. 22, 2007 and entitled “Systems and methods to reduce errors in Solid State Disks and Large Flash Devices” and U.S. Provisional Application No. 61/071,469, filed Apr. 30, 2008 and entitled “Systems and Methods for Averaging Error Rates in Non-Volatile Devices and Storage Systems”, U.S. Provisional Application No. 60/996,027, filed Oct. 25, 2007 and entitled “Systems and Methods for Coping with Variable Bit Error Rates in Flash Devices”, U.S. Provisional Application No. 61/071,466, filed Apr. 30, 2008 and entitled “Systems and Methods for Multiple Coding Rates in Flash Devices”, U.S. Provisional Application No. 61/006,120, filed Dec. 19, 2007 and entitled “Systems and Methods for Coping with Multi Stage Decoding in Flash Devices”, U.S. Provisional Application No. 61/071,464, filed Apr. 30, 2008 and entitled “A Decoder Operative to Effect A Plurality of Decoding Stages Upon Flash Memory Data and Methods Useful in Conjunction Therewith”, U.S. Provisional Application No. 61/006,385, filed Jan. 10, 2008 and entitled “A System for Error Correction Encoder and Decoder Using the Lee Metric and Adapted to Work on Multi-Level Physical Media”, U.S. Provisional Application No. 61/064,995, filed Apr. 8, 2008 and entitled “Systems and Methods for Error Correction and Decoding on Multi-Level Physical Media”, U.S. Provisional Application No. 60/996,782, filed Dec. 5, 2007 and entitled “Systems and Methods for Using a Training Sequence in Flash Memory”, U.S. Provisional Application No. 61/064,853, filed Mar. 31, 2008 and entitled “Flash Memory Device with Physical Cell Value Deterioration Accommodation and Methods Useful in Conjunction Therewith”, U.S. Provisional Application No. 61/129,608, filed Jul. 8, 2008 and entitled “A Method for Acquiring and Tracking Detection Thresholds in Flash Devices”, U.S. Provisional Application No. 61/006,806, filed Jan. 31, 2008 and entitled “Systems and Methods for using a Erasure Coding in Flash memory”, U.S. Provisional Application No. 61/071,486, filed May 1, 2008 and entitled “Systems and Methods for Handling Immediate Data Errors in Flash Memory”, U.S. Provisional Application No. 61/006,078, filed Dec. 18, 2007 and entitled “Systems and Methods for Multi Rate Coding in Multi Level Flash Devices”, U.S. Provisional Application No. 61/064,923, filed Apr. 30, 2008 and entitled “Apparatus For Coding At A Plurality Of Rates In Multi-Level Flash Memory Systems, And Methods Useful In Conjunction Therewith”, U.S. Provisional Application No. 61/006,805, filed Jan. 31, 2008 and entitled “A Method for Extending the Life of Flash Devices”, U.S. Provisional Application No. 61/071,465, filed Apr. 30, 2008 and entitled “Systems and Methods for Temporarily Retiring Memory Portions”, U.S. Provisional Application No. 61/064,760, filed Mar. 25, 2008 and entitled “Hardware efficient implementation of rounding in fixed-point arithmetic”, U.S. Provisional Application No. 61/071,404, filed Apr. 28, 2008 and entitled “Apparatus and Methods for Hardware-Efficient Unbiased Rounding”, U.S. Provisional Application No. 61/136,234, filed Aug. 20, 2008 and entitled “A Method Of Reprogramming A Non-Volatile Memory Device Without Performing An Erase Operation”, U.S. Provisional Application No. 61/129,414, filed Jun. 25, 2008 and entitled “Improved Programming Speed in Flash Devices Using Adaptive Programming”, and several other co-pending patent applications being filed concurrently (same day).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL2008/001235 | 9/17/2008 | WO | 00 | 10/13/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/074979 | 6/18/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4463375 | Macovski | Jul 1984 | A |
4584686 | Fritze | Apr 1986 | A |
4589084 | Fling et al. | May 1986 | A |
4866716 | Weng | Sep 1989 | A |
4998010 | Chandler et al. | Mar 1991 | A |
5077737 | Leger et al. | Dec 1991 | A |
5297153 | Baggen et al. | Mar 1994 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5729490 | Calligaro et al. | Mar 1998 | A |
5793774 | Usui et al. | Aug 1998 | A |
5905740 | Williamson | May 1999 | A |
5926409 | Engh et al. | Jul 1999 | A |
5956268 | Lee | Sep 1999 | A |
5982659 | Irrinki et al. | Nov 1999 | A |
6038634 | Ji et al. | Mar 2000 | A |
6094465 | Stein et al. | Jul 2000 | A |
6119245 | Hiratsuka | Sep 2000 | A |
6119262 | Chang et al. | Sep 2000 | A |
6182261 | Haller et al. | Jan 2001 | B1 |
6192497 | Yang et al. | Feb 2001 | B1 |
6195287 | Hirano | Feb 2001 | B1 |
6199188 | Shen et al. | Mar 2001 | B1 |
6209114 | Wolf et al. | Mar 2001 | B1 |
6259627 | Wong | Jul 2001 | B1 |
6278633 | Wong et al. | Aug 2001 | B1 |
6279133 | Vafai et al. | Aug 2001 | B1 |
6279137 | Poeppelman et al. | Aug 2001 | B1 |
6301151 | Engh et al. | Oct 2001 | B1 |
6370061 | Yachareni et al. | Apr 2002 | B1 |
6374383 | Weng | Apr 2002 | B1 |
6504891 | Chevallier | Jan 2003 | B1 |
6532169 | Mann et al. | Mar 2003 | B1 |
6532556 | Wong et al. | Mar 2003 | B1 |
6553533 | Demura et al. | Apr 2003 | B2 |
6560747 | Weng | May 2003 | B1 |
6637002 | Weng et al. | Oct 2003 | B1 |
6639865 | Kwon | Oct 2003 | B2 |
6674665 | Mann et al. | Jan 2004 | B1 |
6704902 | Shinbashi et al. | Mar 2004 | B1 |
6751766 | Guterman et al. | Jun 2004 | B2 |
6772274 | Estakhri | Aug 2004 | B1 |
6781910 | Smith | Aug 2004 | B2 |
6792569 | Cox et al. | Sep 2004 | B2 |
6873543 | Smith et al. | Mar 2005 | B2 |
6891768 | Smith et al. | May 2005 | B2 |
6914809 | Hilton et al. | Jul 2005 | B2 |
6915477 | Gollamudi et al. | Jul 2005 | B2 |
6952365 | Gonzalez et al. | Oct 2005 | B2 |
6961890 | Smith | Nov 2005 | B2 |
6990012 | Smith et al. | Jan 2006 | B2 |
6996004 | Fastow et al. | Feb 2006 | B1 |
6999854 | Roth | Feb 2006 | B2 |
7010739 | Feng et al. | Mar 2006 | B1 |
7012835 | Gonzalez et al. | Mar 2006 | B2 |
7038950 | Hamilton et al. | May 2006 | B1 |
7068539 | Guterman et al. | Jun 2006 | B2 |
7079436 | Perner et al. | Jul 2006 | B2 |
7149950 | Spencer et al. | Dec 2006 | B2 |
7177977 | Chen et al. | Feb 2007 | B2 |
7191379 | Adelmann et al. | Mar 2007 | B2 |
7196946 | Chen et al. | Mar 2007 | B2 |
7203874 | Roohparvar | Apr 2007 | B2 |
7290203 | Emma et al. | Oct 2007 | B2 |
7292365 | Knox | Nov 2007 | B2 |
7301928 | Nakabayashi et al. | Nov 2007 | B2 |
7441067 | Gorobets et al. | Oct 2008 | B2 |
7466575 | Shalvi et al. | Dec 2008 | B2 |
7533328 | Alrod et al. | May 2009 | B2 |
7558109 | Brandman et al. | Jul 2009 | B2 |
7593263 | Sokolov et al. | Sep 2009 | B2 |
7697326 | Sommer et al. | Apr 2010 | B2 |
7706182 | Shalvi et al. | Apr 2010 | B2 |
7716562 | Wu et al. | May 2010 | B1 |
7804718 | Kim | Sep 2010 | B2 |
7805663 | Brandman et al. | Sep 2010 | B2 |
7805664 | Yang et al. | Sep 2010 | B1 |
7844877 | Litsyn et al. | Nov 2010 | B2 |
7961797 | Yang et al. | Jun 2011 | B1 |
8020073 | Emma et al. | Sep 2011 | B2 |
8122328 | Liu et al. | Feb 2012 | B2 |
20020063774 | Hillis et al. | May 2002 | A1 |
20020085419 | Kwon et al. | Jul 2002 | A1 |
20020154769 | Petersen et al. | Oct 2002 | A1 |
20030065876 | Lasser | Apr 2003 | A1 |
20030101404 | Zhao et al. | May 2003 | A1 |
20030101406 | Song | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030192007 | Miller et al. | Oct 2003 | A1 |
20040015771 | Lasser et al. | Jan 2004 | A1 |
20040030971 | Tanaka et al. | Feb 2004 | A1 |
20040153722 | Lee | Aug 2004 | A1 |
20040153817 | Norman et al. | Aug 2004 | A1 |
20040181735 | Xin | Sep 2004 | A1 |
20050013165 | Ban | Jan 2005 | A1 |
20050018482 | Cemea et al. | Jan 2005 | A1 |
20050083735 | Chen et al. | Apr 2005 | A1 |
20050117401 | Chen et al. | Jun 2005 | A1 |
20050120265 | Pline et al. | Jun 2005 | A1 |
20050128811 | Kato et al. | Jun 2005 | A1 |
20050138533 | Le-Bars et al. | Jun 2005 | A1 |
20050144213 | Simkins et al. | Jun 2005 | A1 |
20050144368 | Chung et al. | Jun 2005 | A1 |
20050169057 | Shibata et al. | Aug 2005 | A1 |
20050172179 | Brandenberger et al. | Aug 2005 | A1 |
20050210353 | Dohmen et al. | Sep 2005 | A1 |
20050213393 | Lasser | Sep 2005 | A1 |
20060059406 | Micheloni et al. | Mar 2006 | A1 |
20060059409 | Lee | Mar 2006 | A1 |
20060064537 | Oshima et al. | Mar 2006 | A1 |
20060101193 | Murin | May 2006 | A1 |
20060203587 | Li et al. | Sep 2006 | A1 |
20060221692 | Chen | Oct 2006 | A1 |
20060248434 | Radke et al. | Nov 2006 | A1 |
20060268608 | Noguchi et al. | Nov 2006 | A1 |
20060294312 | Walmsley | Dec 2006 | A1 |
20070025157 | Wan et al. | Feb 2007 | A1 |
20070063180 | Asano et al. | Mar 2007 | A1 |
20070103992 | Sakui et al. | May 2007 | A1 |
20070104004 | So et al. | May 2007 | A1 |
20070109858 | Conley et al. | May 2007 | A1 |
20070124652 | Litsyn et al. | May 2007 | A1 |
20070143561 | Gorobets | Jun 2007 | A1 |
20070150694 | Chang et al. | Jun 2007 | A1 |
20070168625 | Cornwell et al. | Jul 2007 | A1 |
20070171714 | Wu et al. | Jul 2007 | A1 |
20070171730 | Ramamoorthy et al. | Jul 2007 | A1 |
20070180346 | Murin | Aug 2007 | A1 |
20070223277 | Tanaka et al. | Sep 2007 | A1 |
20070226582 | Tang et al. | Sep 2007 | A1 |
20070226592 | Radke | Sep 2007 | A1 |
20070228449 | Takano et al. | Oct 2007 | A1 |
20070253249 | Kang et al. | Nov 2007 | A1 |
20070253250 | Shibata et al. | Nov 2007 | A1 |
20070263439 | Cornwell et al. | Nov 2007 | A1 |
20070266291 | Toda et al. | Nov 2007 | A1 |
20070271494 | Gorobets | Nov 2007 | A1 |
20080010581 | Alrod et al. | Jan 2008 | A1 |
20080028014 | Hilt et al. | Jan 2008 | A1 |
20080055989 | Lee et al. | Mar 2008 | A1 |
20080082897 | Brandman et al. | Apr 2008 | A1 |
20080092026 | Brandman et al. | Apr 2008 | A1 |
20080104309 | Cheon et al. | May 2008 | A1 |
20080116509 | Harari et al. | May 2008 | A1 |
20080126686 | Sokolov et al. | May 2008 | A1 |
20080127104 | Li et al. | May 2008 | A1 |
20080128790 | Jung | Jun 2008 | A1 |
20080130341 | Shalvi et al. | Jun 2008 | A1 |
20080137413 | Kong et al. | Jun 2008 | A1 |
20080148115 | Sokolov et al. | Jun 2008 | A1 |
20080158958 | Shalvi et al. | Jul 2008 | A1 |
20080159059 | Moyer | Jul 2008 | A1 |
20080162079 | Astigarraga et al. | Jul 2008 | A1 |
20080168216 | Lee | Jul 2008 | A1 |
20080168320 | Cassuto et al. | Jul 2008 | A1 |
20080181001 | Shalvi | Jul 2008 | A1 |
20080198650 | Shalvi et al. | Aug 2008 | A1 |
20080198652 | Shalvi et al. | Aug 2008 | A1 |
20080219050 | Shalvi et al. | Sep 2008 | A1 |
20080225599 | Chae | Sep 2008 | A1 |
20080263262 | Sokolov et al. | Oct 2008 | A1 |
20080282106 | Shalvi et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20080301532 | Uchikawa et al. | Dec 2008 | A1 |
20090024905 | Shalvi et al. | Jan 2009 | A1 |
20090043951 | Shalvi et al. | Feb 2009 | A1 |
20090072303 | Prall et al. | Mar 2009 | A9 |
20090091979 | Shalvi | Apr 2009 | A1 |
20090103358 | Sommer et al. | Apr 2009 | A1 |
20090106485 | Anholt | Apr 2009 | A1 |
20090113275 | Chen et al. | Apr 2009 | A1 |
20090125671 | Flynn et al. | May 2009 | A1 |
20090144600 | Perlmutter et al. | Jun 2009 | A1 |
20090150748 | Egner et al. | Jun 2009 | A1 |
20090157964 | Kasorla et al. | Jun 2009 | A1 |
20090158126 | Perlmutter et al. | Jun 2009 | A1 |
20090168524 | Golov et al. | Jul 2009 | A1 |
20090187803 | Anholt et al. | Jul 2009 | A1 |
20090199074 | Sommer | Aug 2009 | A1 |
20090213653 | Perlmutter et al. | Aug 2009 | A1 |
20090213654 | Perlmutter et al. | Aug 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090240872 | Perlmutter et al. | Sep 2009 | A1 |
20100005270 | Jiang | Jan 2010 | A1 |
20100058146 | Weingarten et al. | Mar 2010 | A1 |
20100064096 | Weingarten et al. | Mar 2010 | A1 |
20100088557 | Weingarten et al. | Apr 2010 | A1 |
20100091535 | Sommer et al. | Apr 2010 | A1 |
20100095186 | Weingarten | Apr 2010 | A1 |
20100110787 | Shalvi et al. | May 2010 | A1 |
20100115376 | Shalvi et al. | May 2010 | A1 |
20100122113 | Weingarten et al. | May 2010 | A1 |
20100124088 | Shalvi et al. | May 2010 | A1 |
20100131580 | Kanter et al. | May 2010 | A1 |
20100131806 | Weingarten et al. | May 2010 | A1 |
20100131809 | Katz | May 2010 | A1 |
20100131826 | Shalvi et al. | May 2010 | A1 |
20100131827 | Sokolov et al. | May 2010 | A1 |
20100131831 | Weingarten et al. | May 2010 | A1 |
20100146191 | Katz | Jun 2010 | A1 |
20100146192 | Weingarten et al. | Jun 2010 | A1 |
20100149881 | Lee et al. | Jun 2010 | A1 |
20100180073 | Weingarten et al. | Jul 2010 | A1 |
20100199149 | Weingarten et al. | Aug 2010 | A1 |
20100211724 | Weingarten | Aug 2010 | A1 |
20100211833 | Weingarten | Aug 2010 | A1 |
20100211856 | Weingarten | Aug 2010 | A1 |
20100251066 | Radke | Sep 2010 | A1 |
20100253555 | Weingarten et al. | Oct 2010 | A1 |
20100257309 | Barsky et al. | Oct 2010 | A1 |
20100293321 | Weingarten | Nov 2010 | A1 |
20110051521 | Levy et al. | Mar 2011 | A1 |
20110055461 | Steiner et al. | Mar 2011 | A1 |
20110096612 | Steiner et al. | Apr 2011 | A1 |
20110119562 | Steiner et al. | May 2011 | A1 |
20110153919 | Sabbag | Jun 2011 | A1 |
20110161775 | Weingarten | Jun 2011 | A1 |
20110214029 | Steiner et al. | Sep 2011 | A1 |
20110214039 | Steiner et al. | Sep 2011 | A1 |
20110246792 | Weingarten | Oct 2011 | A1 |
20110246852 | Sabbag | Oct 2011 | A1 |
20110252187 | Segal et al. | Oct 2011 | A1 |
20110252188 | Weingarten | Oct 2011 | A1 |
20110271043 | Segal et al. | Nov 2011 | A1 |
20110302428 | Weingarten | Dec 2011 | A1 |
20120001778 | Steiner et al. | Jan 2012 | A1 |
20120005554 | Steiner et al. | Jan 2012 | A1 |
20120005558 | Steiner et al. | Jan 2012 | A1 |
20120005560 | Steiner et al. | Jan 2012 | A1 |
20120008401 | Katz et al. | Jan 2012 | A1 |
20120008414 | Katz et al. | Jan 2012 | A1 |
20120051144 | Weingarten et al. | Mar 2012 | A1 |
20120063227 | Weingarten et al. | Mar 2012 | A1 |
20120066441 | Weingarten | Mar 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20100058146 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
60996948 | Dec 2007 | US | |
61071468 | Apr 2008 | US | |
61071487 | May 2008 | US |