BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure, together with additional objects, features, advantages and aspects thereof, will best be understood from the following description, the appended claims and the accompanying drawings, in which:
FIG. 1 is a fragmentary sectional view of a closure and container package in accordance with an exemplary embodiment of the present disclosure;
FIG. 2 is an enlarged view of the portion of FIG. 1 within the area 2;
FIG. 3 is an elevational view of the container in the package of FIGS. 1 and 2;
FIG. 4 is a top plan view of the container in FIG. 3;
FIG. 5 is a fragmentary sectional view taken substantially along the line 5-5 in FIG. 3;
FIG. 6 is a sectional view of the closure in the package of FIGS. 1 and 2;
FIG. 7 is a bottom plan view of the closure in FIG. 6;
FIG. 8 is a fragmentary sectional view on an enlarged scale of the portion of FIG. 6 within the area 8; and
FIG. 9 is a fragmentary sectional view on an enlarged scale taken substantially along the line 9-9 in FIG. 6.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
FIGS. 1-2 illustrate a closure and container package 20 in accordance with an exemplary embodiment of the present disclosure. Package 20 includes a container 22 having a neck finish 24 with a closure 26 secured thereto. Container 22 and closure 26 preferably are each of one-piece molded plastic construction.
Container 22 is illustrated in greater detail in FIGS. 3-5. Neck finish 24 has an open mouth and a plurality of angularly spaced external projections 28. Each external projection 28 has an underside with a notch 30. The upper edge of each projection 28 includes a first portion 32 at a slight helical angle with respect to the axis of the neck finish, and a second portion 34 partially underlying the adjacent projection 28 and at a greater helical angle to the axis of the neck finish. A wall 36 extends axially adjacent to each notch 30 to function as a stop against over-application of the closure to the neck finish. Neck finish 24 also has an internal conical surface 38 adjacent to the container mouth. Internal surface 38 is a compound surface that includes a first conical portion 40 at the open end of the container mouth and a second conical portion 42 that extends from first portion 40. As best seen in FIG. 5, second portion 42 is at a greater angle to the axis of the container neck finish than is the first portion 40. Surface portions 40,42 are connected to each other by a concave surface portion 44. By way of example only, first conical surface portion 40 may be at an angle of about 12° to the axis of the neck finish and second conical surface portion 42 at an angle of about 20°. This greater angle at surface portion 42 helps closure 26 to “spring back” away from the neck finish and facilitates automated application of the closure to the neck finish.
Closure 26 is illustrated in detail in FIGS. 6-9. Closure 26 is of one piece molded plastic construction and includes a base wall 46, an outer first annular wall or skirt 48 and an inner second annular wall 50, both integrally extending from base wall 46. Annular walls 48, 50 preferably are coaxial. First annular 48 has a plurality of angularly spaced internal lugs 52 that correspond in number and angular spacing with external projections 28 on container neck finish 24, specifically four internal lugs 52 at ninety degree spacing corresponding to four external projections 28 in the exemplary embodiment of the disclosure. Referring in particular to FIG. 9, each internal lug 52 has a concave radially inner surface with a clockwise edge 56 and a counterclockwise edge 58 as viewed from closure base wall 46 (FIGS. 6 and 8). Clockwise edge 56 is closer to the inside surface 60 of first annular wall or skirt 48 than is counterclockwise edge 58, as clearly shown in FIG. 9. The radially inner surface of each lug 52 preferably includes a curving first portion 62 of uniform radius of curvature extending from clockwise edge 56 to a position adjacent to but spaced from counterclockwise edge 58, and a flat second portion 64 extending from first portion 62 to counterclockwise edge 58. Edges 56, 58 preferably are rounded. The radially inner convex surface geometry of lugs 52, particularly surface portions 62, helps prevent jamming of the lugs on projections 28 of the container neck finish during automated application of the closure to the container neck finish.
As shown in FIGS. 1 and 2, second annular wall 50 of closure 26 functions as a spring/seal wall in package 20—i.e., functions both to seal the package and to bias the closure away from the container neck finish. Referring to FIG. 8, second annular wall 50 in the closure as molded preferably includes a cylindrical first portion 66 adjacent to and contiguous with closure base wall 46, and a second portion 68 extending from the free end of first portion 66. Second portion 68 preferably is conical in the closure as molded, extending axially away from base wall 46 and radially inwardly from first annular wall or skirt 48. In an exemplary embodiment of the disclosure, second portion 68 is at an angle of about 32° with respect to the axis of the closure. Conical end portion 68 of wall 50 helps prevent interference between wall 50 and container neck finish 24 during automated application of the closure to the container neck finish. Base wall 46 includes a circular first portion 70 within annular wall 50 and an annular second portion 72 between wall 50 and wall 48. First portion 70 preferably is thicker than second portion 72.
During application of the closure to the container neck finish, spring/seal second annular wall 50 is brought into contact with internal surface 38 of container neck finish 24 and closure internal lugs 52 are brought into contact with surfaces 32 of container external projections 28. The spiral geometry of surfaces 32 facilitates application of the closure by clockwise rotation of the closure with respect to the container neck finish (or counterclockwise rotation of the container with respect to the closure). During such application of the closure to the container neck finish, second annular wall 50 slides along internal surface 38, particularly along first portion 40 and onto second portion 42 of internal surface 38. When lugs 52 hit walls 36 of neck finish 24, the lugs are aligned with notches 30 and the closure can be released by the automated equipment. The spring force generated by second annular wall 50 against surface 38 of neck finish 28 urges the lugs into notches 30 to complete the capping operation. At this point, the free edge of wall portion 68 is spaced from surface 38, as best seen in FIG. 2. Inward pressure on spring/seal annular wall 50 from neck finish surface 38 may cause wall portion 66 resiliently to assume a slightly conical geometry, as shown in FIG. 2. Thus, wall portion 66 in assembly with the container is described as being “substantially cylindrical.” To remove the closure, the closure is pressed downwardly over neck finish 24 against the spring/seal force of annular wall 50 against surface 38 until lugs 52 clear notches 30. The greater angle of wall portion 42 with respect to the axis of the neck finish applies a greater spring force to the closure to facilitate removal. The closure is then twisted in a counterclockwise direction with respect to the neck finish to remove the closure from the container neck finish.
There thus have been disclosed a child-resistant closure and container package, and a closure and a container for such a package, that fully satisfy all of the objects and aims previously set forth. The disclosure has been presented in conjunction with an exemplary presently preferred embodiment, and a number of modifications and variations have been discussed. Other modifications and variations readily will suggest themselves to persons of ordinary skill in the art in view of the foregoing description. The disclosure is intended to embrace all such modifications and variations as fall within the spirit and broad scope of the appended claims.