The present invention is directed to child-resistant closure and container packages, to closures and containers for such packages, and to methods of making such packages, closures and containers.
Child-resistant closure and container packages are conventionally employed for prescription vials, vitamin bottles and a number of other applications. The present invention deals particularly with those types of child-resistant packages that involve application of axial pressure to the closure and simultaneous turning of the closure with respect to the container in order to remove the closure from the container. The present invention involves a number of features or aspects in a child-resistant closure, container or package, which may be implemented separately from or more preferably in combination with each other.
The present invention embodies a number of features or aspects that may be used separately from or, more preferably, in combination with each other. In accordance with a first aspect of the present invention, a child-resistant closure and container package includes a container having a finish with at least one external thread and pockets in the thread. A closure has a base wall, a peripheral skirt with at least one internal thread and lugs on the internal thread for receipt in the pockets, and a spring element on the base wall for engagement with the container finish to bias the closure away from the container finish and resiliently urge the lugs into the pockets. A liner preferably is urged by the spring element into engagement with the container finish. The liner may include a base with metal and plastic layers for induction-welded sealing engagement with the finish such that, upon removal of the closure, the metal and plastic layers remain secured to the finish and the liner base is removed with the closure. The metal and plastic layers may be removed by a user for access to the contents of the container, and the liner base continues to serve as a package seal during use of the package. The package may alternatively be supplied with a mono-layer liner, or without a liner.
In accordance with another aspect of the present invention, the pockets in the at least one external thread on the container finish are formed on an undersurface of the external thread and do not extend axially through the thread, such that the upper surface of the external thread is continuous throughout the external thread. This feature helps prevent cross threading during application of the closure to the container finish. In accordance with a further feature of the invention, the at least one external thread on the container finish and the at least one internal thread on the closure skirt may be of elongated dimension as compared with industry standards, and thread abutment stops are formed on the ends of the threads to prevent over-tightening of the closure and potential damage to the spring element. The elongated external thread on the container finish, particularly in combination with the pockets that do not extend axially through the external thread, permits the container to be used with a conventional non-child-resistant closure if desired, for example, by elderly persons. In dual lead packages, each thread on the closure may extend over an arc of 190° for example, and each thread on the finish may extend over an arc of 180°. In a single lead package with the thread stop at the bottom of the thread on the container finish, the closure thread may extend over an arc of 450° and the finish thread may extend over an arc of 455°. In single lead packages with the thread stop at the top of the closure thread, the closure thread may extend over an arc of 370° and the finish thread may extend over an arc of 360°.
A closure in accordance with a further aspect of the present invention is of integrally molded plastic construction. The closure has a base wall, a peripheral skirt with at least one internal thread and lugs on an upper surface of the thread, and a spring element on the base wall for engagement with a container finish to bias the lugs into opposing thread pockets on the container finish. The lugs have an angulated surface sloping toward an end of the thread remote from the base wall and a circumferentially facing radially extending abutment surface on an end of the lugs facing the opposing end of the thread. The spring element preferably comprises a circumferentially continuous conical lip that extends radially and axially inwardly from the base wall adjacent to the skirt. The lip tapers in thickness from the base wall to the free end of the lip to promote differential flexing of the lip upon engagement with a container finish or with a liner in opposed engagement with the container finish. The free end of the lip is rounded to permit sliding of the lip along the surface of a liner without binding or tearing. A container in accordance with yet another aspect of the invention includes an integrally molded plastic body having a finish with at least one external thread and pockets on an undersurface of the thread that do not extend axially through the thread, such that the upper surface of the thread is continuous throughout the thread. The pockets in the external thread have a circumferentially extending axially angulated cam surface and a radially extending abutment surface opposed to the cam surface.
The invention, together with additional objects, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawing in which:
A spring element 42 in the illustrated embodiment takes the form of a conical lip that extends axially and radially inwardly from base wall 26 adjacent to the junction of base wall 26 and peripheral skirt 28. Alternatively, spring lip 42 may extend axially and radially inwardly from the upper end of skirt 28 adjacent to the juncture with base wall 26. Spring lip 42 is circumferentially continuous, as best seen in
Container 24 (
A liner 70 is preferably disposed between closure spring lip 42 and the upper edge of container finish 52, at least when the package is initially assembled. Liner 70 in the embodiment of
Liner 70 may be initially assembled to closure 22, and preferably is of a diameter to be loosely retained within the closure by the upper reach of closure internal thread 30. Alternatively, liner 70 may have a greater diameter than closure skirt 28 and be held by friction within the closure skirt. When container 24 is filled with product, and the closure and liner subassembly is assembled to the container, conventional induction equipment is employed to heat metal layer 76, vaporize wax layer 74 and melt plastic layer 78 so as to secure the metal and plastic layers to the upper edge of container finish 52. When closure 22 is thereafter removed from the container by a user, cellulose layer 72 is removed with the closure, while metal layer 76 and plastic layer 78 remain with the container for removal by the user. This not only seals the contents of the container until ready for use, but provides an indication to the user of potential tampering. Cellulose layer 72 remains in the closure loosely or frictionally captured between the closure base wall and the upper reach of the thread. Layer 72 provides a sealing function during continued use of the package.
When the closure is applied to the container, both at the time of filling and during use, lugs 36 on closure thread 30 enter and ride under pockets 64 in container external thread 54. Cam surfaces 40 on lugs 36 cooperate with cam surfaces 68 in pockets 64 to facilitate threading of the closure onto the container. As previously noted, the fact that pockets 64 do not extend fully through the finish external thread also helps prevent crossing of the threads. When the closure is fully applied to the container, spring lip 42 urges closure 22 axially upwardly with respect to the container finish so that lugs 36 nest within pockets 64. When it is thereafter attempted to remove the closure from the container finish, lug abutment faces 38 will cooperate with pocket abutment faces 60 to prevent unscrewing of the closure in the absence of sufficient axial force on the closure to compress spring lip 42 and permit the lugs to clear the pockets. This structure provides the child-resistant feature of the invention.
In the embodiment of the invention illustrated in
Closure 94 in this embodiment has a base wall 26, a peripheral skirt 28 and a spring lip 42 as in the previous embodiments. Closure 94 is a dual-thread closure, containing a pair of internal threads 106, 108. Each internal thread preferably extends over an arc of 190°, plus a 10° lead-in. Each thread 106, 108 includes a circumferentially spaced pair of lugs 36 with circumferentially oriented abutment surfaces 38 and sloping cam surfaces 40 as previously described. Lugs 36 are at 90° spacing. The upper end of each thread—i.e., the end adjacent to closure base wall 26—terminates in an axially upwardly extending thread abutment stop 110. Each abutment stop projects radially inwardly from skirt 28 and has a circumferentially facing abutment stop face 112 opposed to the stop face 38 of the adjacent lug 36 on that thread. When the closure is threaded onto the container, abutment face 112 of stop 110 cooperates with abutment face 104 at the upper end of each external thread 100, 102 to prevent over-tightening of the closure onto the container and potential damage to spring element 42.
Liner 96 in the embodiment of
There have thus been disclosed a child-resistant closure and container package, a closure, a container, and a method of making a child-resistant closure and container package, which fully satisfy all of the objects and aims previously set forth. Three embodiments of the invention have been disclosed, and a number of modifications and variations have been discussed. Other modification and variations will readily suggest themselves to persons of ordinary skill in the art. The invention is intended to embrace all such modifications and variations as fall within the spirit and broad scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3739933 | Degaetano | Jun 1973 | A |
3880313 | Akers | Apr 1975 | A |
3907145 | Horvath | Sep 1975 | A |
3917096 | Hedgewick | Nov 1975 | A |
4032028 | Reiss et al. | Jun 1977 | A |
4084717 | King | Apr 1978 | A |
4090629 | Hedgewick | May 1978 | A |
4091948 | Northup | May 1978 | A |
4139112 | Cooke | Feb 1979 | A |
4320844 | Cooper | Mar 1982 | A |
4353475 | Kachur | Oct 1982 | A |
4375858 | Shah | Mar 1983 | A |
4387817 | Wiles et al. | Jun 1983 | A |
4456136 | Palsson | Jun 1984 | A |
4522307 | Steiner | Jun 1985 | A |
4567992 | Davis | Feb 1986 | A |
4935273 | Ou-Yang | Jun 1990 | A |
5135124 | Wobser | Aug 1992 | A |
5449078 | Akers | Sep 1995 | A |
5462186 | Ladina et al. | Oct 1995 | A |
5819967 | Lo | Oct 1998 | A |
5938055 | Philips | Aug 1999 | A |
6015054 | King et al. | Jan 2000 | A |
Number | Date | Country |
---|---|---|
2625875 | Dec 1977 | DE |
Number | Date | Country | |
---|---|---|---|
20030121877 A1 | Jul 2003 | US |