This application is claims priority to EP Application No. 11173949.6, filed on Jul. 14, 2011, which is incorporated herein by reference in its entirety.
The present disclosure relates to a child seat for rearward-facing use in a vehicle according to the preamble of claim 1. The disclosure further relates to a child seat arrangement, a kit of parts and a vehicle comprising the child seat.
Child seats for use in a vehicle as such are known.
It is further known that in many situations a child, especially a small child, travels more safely in a child seat facing rearwards than forwards, since a rearward-facing child seat provides more support for the child's head in the event of a sudden deceleration. Such rearward-facing child seats may be placed on the front passenger seat and/or the rear seat.
A child seat may comprise a shell of a rigid material such as plastic, which shell is intended to protect the child in case of a collision. The shell is commonly at least partly covered by a cover of a softer material to provide comfort for the child. However, due to the weight of the shell, such a child seat has a considerable weight and may therefore be difficult to handle, especially when installing the child seat in a vehicle or removing it from the vehicle. Further, when not in use, it may be desirable to store the child seat somewhere else in the vehicle and it will then, due to its construction, occupy a rather large space for example in the luggage boot.
WO2006/030048 A1 relates to an inflatable child seat which can be fitted to the rear part of front passenger seat of a motor vehicle. A support is mounted to the back rest of the front passenger seat using fixing means comprising clamps that are positioned on the back rest. In addition, a structure of a box is removably mounted to the support with a fixing anchor. The box comprises a part which can rotate by means of hinges and a cover that rests on an area of the rear seat of the vehicle. In this way, when the child seat is closed, the visible face thereof is aligned with the rear surface of the back rest. Moreover, the box contains a canvas surface which is built into the inner periphery of the box and the cover. The canvas surface is equipped with a safety belt for the baby, such as to define a housing which communicates with an air inlet for inflating the seat-forming canvas using air from an actuated compressor that is connected to the electric system of the vehicle.
Since, according to WO2006/030048 A1, the child seat is attached to the front seat, its safety in case of an accident is dependent on the properties of the front seat. Thus, if the back rest of the front seat were to collapse in a collision, so too will the child seat.
Moreover, the suspension of the child seat of WO2006/030048 A1 is further influenced by the angle of the backrest. If the back rest is reclined backwards, the child seat will be sloped in such a way that the child may slide along the seat cushion. It may therefore be difficult to obtain a comfortable position of the back rest for a passenger at the same time that a child is able to sit securely in the child seat.
The object of the present disclosure is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
It is desirable to provide a rearward-facing child seat, which is easy to handle, especially when installing it in a vehicle or removing it from the vehicle.
It is further desirable that the rearward-facing child seat has a low weight, facilitating the easy handling, since the adjustment and movement of heavy objects in general in a passenger car is extremely awkward. Yet, at the same time it is desirable that the rearward-facing child seat provides adequate safety for a child being seated in the child seat.
It is also desirable to provide a rearward-facing child seat, which may be mounted in a vehicle directly to the vehicle body or interior, e.g. by an ISO fix point, in order to be independent of the back rest of the front seat.
One or more of the objects above may be achieved by the subject-matter of claim 1.
Thus, in a first aspect of the present invention there is provided a child seat for rearward-facing use in a vehicle. The child seat comprises a back portion and a squab portion. The back portion comprises a first side being adapted to support the back of a child, when the child sits in the child seat, and a second side, opposite of the first side. The back portion further comprises a lower back region, a shoulder region, and a head region. The squab portion is adapted to support the bottom of the child, when the child sits in the child seat. The child seat further comprises a child safety best arrangement for securing the child to be seated in the child seat. The back portion comprises a force-receiving assembly located at the shoulder region, the force-receiving assembly being of a more rigid material than a main portion of the back portion, the main portion being of a light-weight material. The force-receiving assembly comprises a first portion arranged at the first side of the back portion providing an anchor point for a shoulder portion of the child safety belt arrangement. The force-receiving assembly further comprises a second portion arranged at the second side of the back portion providing an anchor point for a child seat fixation means.
At least the main portion of the back portion is essentially made of a light-weight material. Besides the main portion, there may also be details made of other materials such as the connection members described below. Examples of suitable light-weight materials are extruded foam, such as polystyrene, and inflatable air chambers. It would also be possible to fill the chambers with another gas, but air is practical since it is readily available.
The force-receiving assembly is arranged to take up and transfer forces. It provides strength and durability for anchoring of the child seat fixation means and the shoulder portions of the child safety belt arrangement. The first and second portions of the force-receiving assembly are therefore made of a more rigid material than the main portion of the back portion. They may suitably be made of metal or a strong plastic. The combination of a light-weight material for the main portion of the back portion with the more rigid force-receiving assembly results in a low-weight child seat providing adequate safety for a child seated in it in case of a collision. Such a child seat is possible to mount in a vehicle independently of the front seat.
Preferably, the main portion of the squab portion is also made of a light-weight material, most preferably of the same or a similar material as the back portion. The child seat may further comprise side portions located at the lateral skies of the back portion and the squab portion, which in that case preferably also are made of the light-weight material. Essentially the whole child seat, except for the force-receiving assembly, may thus be made of the light-weight material.
The purpose of the light-weight material is to provide a child seat, which weighs less than a conventional child seat comprising a plastic shell. The child seat according to the invention may thus weigh 10% less, preferably 20% and most preferably 30%, and in some cases up to 50%, less than a conventional child seat of equal size.
The child seat fixation means is used to secure the child seat to the vehicle. The child seat fixation means may be a belt or a strap. In addition to being anchored to the second portion of the force-receiving assembly, it may be sewn, stitched, bonded or glued to the child seat in at least at one location, at the end or somewhere mid-span. It would also be possible to use a safety belt of the back seat as a child seat fixation means. Further alternative child seat fixation means in the form of a rigid subframe are described below.
In an embodiment, an end of the shoulder portion of the child safety belt arrangement is attached to the first portion of the force-receiving assembly. Thereby, a force may be transferred from the shoulder portion to the first portion. By attaching the end to the first portion, there will be no safety belt passing through the back portion, as is common for conventional child seats comprising a shell of a rigid material. Thereby, there is no need to have an opening for the safety belt through the back portion. This embodiment is especially advantageous if using a child seat comprising an inflatable air chamber as described below.
The force-receiving assembly may comprise means for anchoring the shoulder portion at a selectable distance from the squab portion. Thereby the child seat may be adapted to children of varying size. One way is to provide the first and/or second portion of the force-receiving assembly with slots at various heights. Alternatively, the force-receiving assembly may provide vertical adjustability by being slidable or by providing a plurality of connection points. A child seat according to the invention may be suitable for children up to 4 years of age.
The first and the second portion of the force-receiving assembly may be connected to each other by a connection belt or strap. The connection belt or strap holds the first and second portion together. Further, the connection belt or strap helps to transfer forces of the shoulder portions of the child safety belt arrangement via the first portion to the second portion of the force-receiving assembly.
In an embodiment, the child seat fixation means comprises a belt or strap passing through the first and the second portion of the force-receiving assembly. With this arrangement, the child seat fixation means will contribute to holding the first and second portion of the force-receiving assembly together.
The child seat fixation means may be provided with a loop, a hook and/or a latch for attachment to a vehicle seat, floor or interior. This facilitates quick and easy attachment, as well as quick and easy release.
In an embodiment, the child seat comprises at least one, at least partly inflatable, air chamber. The child seat may be assembled from multiple inflatable air chambers. The child seat may further comprise side portions adapted to be located at the respective lateral side of the back portion and the squab portion, when the child seat is inflated, the side portions also forming at least partly inflatable air chambers. The back, squab and side portions may be formed as separate air chambers. As an alternative, two or more of the back, squab and side portions may form a common air chamber. In particular the back portion and squab portion may be formed as an integral unit.
The whole child seat may be formed from one single air chamber. Alternatively, the air chambers of the hack portion, squab portion and side portions may be interconnectable, such that they form a continuous inflatable volume, for example by the use of grommets, which are paired to provide an unobstructed airtight passage between the air chambers. Advantageously, it is possible to inflate the whole child seat through one single port.
If inflatable, the air chamber may be made of a gas impermeable fabric and may comprise limiting means for limiting a maximal separation between at least two gas impermeable fabric surfaces, the limiting means for example being provided by a drop-stitch fabric. The limiting means helps to maintain a constant separation between the surfaces of the fabric when inflated, resulting in an air chamber that has essentially flat surfaces that do not curve outwards. This is advantageous when forming a child seat, since it is desirable that each of the back portion, squab portion, and side portions forms a relatively flat surface.
In order to connect a belt or strap to the child seat, connection members may be used, e.g. a loop, a D-ring or a double D-ring. The connection members may be sewn, stitched, bonded and/or glued to the child seat, for example to the impermeable fabric of an inflatable air chamber.
In order to further reinforce the child seat, it may be provided with at least one reinforcement bell/strap, the reinforcement belt/strap extending along a surface of the child seat, on the inside and/or the outside of the child seat. The reinforcement belt/strap may envelop the child seat. The reinforcement belt/strap may further be connected to the child seat fixation means.
In an embodiment the child seat comprises a flexible panel adapted to be extending from the child seat, along a lateral side of the child seat when mounted, to a connection point in the vehicle floor or interior. The flexible panel may be made in one piece, which envelops the back of the child seat, or as two separate side pieces.
The child seat may comprise an interchangeable cover, which at least partly encloses the child seat. The cover may provide a comfortable surface for the child sitting in the child seat. The cover may be removed to be washed or exchanged. Further, it is easy to make a cover which matches the interior fittings of the vehicle, e.g. by using the same kind of fabric as for the vehicle seats. When using a cover, a child seat fixation means in the form of belts, or an optional reinforcement belt/strap, may extend along a surface of the child seat beneath the cover, such that the belt/strap is invisible externally.
In a second aspect of the present invention, there is provided a child seat arrangement comprising a child seat as described above and at least one rigid subframe, wherein the child seat is adapted for attachment to the at least one rigid subframe, and the rigid subframe is adapted for attachment to a vehicle floor or interior, such that forces may be transferred to and from the child seat to the vehicle floor or interior. The subframe may be in the form of a leg connecting the child seat to a rail or any other suitable fix point on the vehicle floor. The subframe may also comprise a docking unit located on the back seat.
In a third aspect of the present invention, there is provided a kit of parts comprising a child seat according to above and an inflator for inflating the child seat, the inflator being integrated into the child seat. Advantageously, the child seat is in that case inflatable through a single port.
In a fourth aspect of the present invention, there is provided a vehicle comprising a child seat according to the first aspect above, a child seat arrangement according to the second aspect above or a kit of parts according to the third aspect above, wherein the child seat is mountable in a rearward-facing position in a back seat of the vehicle, such that the fastening of the child seat is made by the child seat fixation means being connected directly to the vehicle body or interior, e.g. by an ISO fix point. Thereby, the fastening of the child seat is independent of the front seat. Further, since the child seat is provided with child seat fixation means, it may be mounted in the vehicle independently of the safety belts of the vehicle.
The present invention will hereinafter be further explained by means of non-limiting examples with reference to the appended drawings wherein:
a is a perspective front view of the child seat of
b is a perspective rear view of the child seat of
c is a cross-sectional view of the child seat of
a illustrates an attachment for a belt/strap,
b illustrates an alternative attachment for a belt/strap,
It should be noted that the appended drawings are not necessarily drawn to scale and that the dimensions of some features of the present invention may have been exaggerated for the sake of clarity.
The invention will, in the following, be exemplified by embodiments. It should however be realized that the embodiments are included in order to explain principles of the invention and not to limit the scope of the invention, defined by the appended claims. Details from two or more of the embodiments may be combined with each other.
The child seat 1 is attached to the vehicle 3 by means of child seat fixation means, here illustrated by a first 33 and a second 35 belt. Each belt 33, 35 is at a first end 37, 39 attached to rails 41, 43 on the vehicle floor by means of loops 45, 47 and hooks 49, 51. Alternatively, the child seat fixation means may be connected to any other structure of the vehicle floor or interior, such as attachments especially provided to secure the child seat. However, it is desired that the child seat fixation means is connected to the vehicle interior or floor, and not to the front seat 19. Thereby the attachment is independent of the front seat 19. Further, since the child seat 1 is provided with child seat fixation means, it may be mounted in the vehicle 3 independently of the safety belts of the vehicle 3.
A second end 53, 55 of each belt 33, 35 is attached to ISO fix attachments 57, 59 located in the back seat 5. It is therefore suitable if the distance between the side portions 11, 13 matches the distance between the ISO fix attachments 57, 59. As an alternative (not illustrated) the second end 53, 55 of the belt 33, 35 may be attached to a seat buckle located in the back seat 19.
Even if the child seat fixation means in
Moreover, the safety belt of the back seat 5 may also be used for attachment of the child seat 1 to the vehicle 3. This may be used as an alternative to attachment to the ISO fix attachments 57, 59 or as a complement.
The child seat 1 may further comprise an interchangeable cover, not illustrated, which at least partly encompasses the child seat 1. The cover may provide a comfortable surface for the child sitting in the child seat. The cover may be removed to be washed or exchanged. Further, it is easy to make a cover which matches the interior fittings of the vehicle, e.g. by using the same kind of fabric as for the vehicle seats. When using a cover, the belts 33, 35 may extend along a surface of the child seat 1 beneath the cover, such that the belts 33, 35 are invisible externally.
The child seat may also comprise cushions of e.g. light-weight foam which may be attached to the child seat in order to change the surface contour. Such cushions may for example be used to provide a comfortable head rest for the child. These cushions may be attached as separate units or be integrated into the cover.
a and 2b are perspective views of the child seat 1 seen from the front and from behind. The back portion comprises a lower back region 7a, a shoulder region 7b and a head region 7c. The shoulder region 7b is located at a height corresponding essentially to the shoulders of a child when seated in the child seat 1. In the same way, the head region 7c corresponds to the head of a child when seated in the child seat 1. Since the child seat may be used by children of varying size, the shoulder region 7b extends in the height direction from an infant size to a height corresponding to the largest child, for which the child seat is intended, e.g. 4 years. If the child seat is used by a small child, not only its shoulders, but also its head may be located at least partly at the shoulder region.
A force-receiving assembly 60 is located at the shoulder region 7b and comprises a first portion 61 at the first side 15 of the back portion 7, and a second portion 63 at the second side 17 of the back portion 7. The first portion 61 provides an anchor point for the shoulder portion 23, 25 of the safety belt. The force-receiving assembly 60 is further adapted also to receive the child seat fixation means. In the illustrated child seat 1, loops 65 are provided in the first 61 and second portion 63, through which the belts 33, 35, illustrated in
The force-receiving assembly 60, here the first portion 61 and the second portion 63, is made of a more rigid material than a main portion of the back portion 7. The main portion of the back portion 7 may for example be made of fabric or plastic, which will be described in more detail below in conjunction with
In order for the child seat 1 to be able to function for children of different sizes, the shoulder portions 23, 25 of the safety belt may be attached at a selectable height, here achieved by providing a plurality of slots 67 at various heights in the first portion 61. Alternatively, the force-receiving assembly may provide vertical adjustability by being slidable or by providing a plurality of connection points. A child seat according to the invention may be suitable for children up to 4 years.
In an alternative embodiment, not illustrated, the part of the safety belt 21 forming the shoulder portion 23, 25 may pass through one of the slots 67, through an opening in the back portion 7 to the second portion 63 of the force-receiving assembly 60, continue at the second side 17 of the back portion 7, return through another opening in the back portion 7 and form one of the waist portions 27, 29 of the safety bell 21.
Another alternative (not illustrated) would be to let one belt form both shoulder portions. A portion of that belt may in that case extend along the first portion 61 of the force-receiving assembly 60, from a position corresponding to the left shoulder of the child to a position corresponding to the right shoulder of the child.
The child seat fixation means may form a part of the child seat 1, for example by being sewn, stitched, bonded or glued to the child seat 1 at least at one location, at the end or somewhere mid-span, such that the child seat fixation means and the child seat 1 form one unit. The child seat fixation means may also be connected to the child seat by passing through loops 65, as in
As an alternative the child seat fixation means may instead form separate units, such as loose belts or straps, which may be attached to the vehicle interior and to the child seat 1, respectively.
As illustrated in
Preferably, the air chambers are interconnectable such that they form a continuous inflatable volume requiring only a single port for inflation and deflation.
Interconnection between the one or more inflatable air chambers forming the portions 7, 9, 11, 13 may for example be achieved by using hollow plastic grommets 71, 73 as illustrated in
Alternatively, the portions 7, 9, 11, 13 of the child seat 1 may be configured as one common air chamber, thereby being possible to inflate through one single port. Yet another alternative would be to use separate ports for the different portions 7, 9, 11, 13 of the child seat 1.
With the above described design the entire inflatable child seat 1 can be inflated and deflated through a single port or air valve. Thus, when inflated, the pressure through the inflatable child seat 1 places the structure in an operating mode where it becomes a substantially rigid structure due to the air pressure. Then, when it is deflated, the child seat can be folded into a rather compact package for easy stowage in the vehicle.
In order to achieve air chambers having essentially flat sides where required, the chambers may be constructed out of a non-permeable fabric that comprises means for limiting a maximal separation between at least two non-permeable fabric surfaces when inflated. It is appropriate to use what is commonly called a “drop-stitch fabric” or “drop-stitch structure” as the moans for limiting a maximal separation in order to provide the basic structure of the inflatable child seat 1.
As shown in
The main portion of the child seat is made of a light-weight material. Besides the main portion, there may also be details made of other materials such as the connection members described below in conjunction with
The purpose of the light-weight material is to provide a child seat, which weighs less than the conventional child seats comprising a plastic shell. The child seat according to the invention may thus weigh 10% less, preferably 20% and most preferably 30%, and in some cases up to 50%, less than a conventional child seat of equal size.
Since the main portion of the back portion 7 is constituted by a light-weight material, it is the force-receiving assembly 60 that provides strength and durability needed for anchoring of the child seat fixation means 33, 35 and the shoulder portions 23, 25 of the safety belt. The first 61 and second 63 portions of the force-receiving assembly are therefore made of a more rigid material than the main portion of the back portion 7. They may suitably be made of metal or a strong plastic. The force-receiving assembly is thus made of a more rigid material than the main portion of the back portion.
Instead of, or complementary to, using belts 31, 35, at least one rigid subframe may be used as illustrated in
a and 8b show in detail how belts and straps, such as the ones used as child seat fixation means and safety belts, may be attached to the child seat by means of connection members 93, 97. Such attachments are for example suitable when using a child seat comprising inflatable air chambers as illustrated above in
Reinforcement belt/straps may be used to reinforce the child seat 1. One or more reinforcement belt/strap may be used, as exemplified by two belts in
In
A kit of parts may, further to the inflatable child seat 1, comprise an inflator in order to facilitate inflation of the inflatable child seat. The inflator may be a manual or motorized air pump. The inflator may be integrated into the child seat, an optional rigid subframe, or remain a discrete device for which storage is provided within the child seat structure or its cover. The inflator can also serve as a deflator to evacuate air from the air chambers in order to allow the child seat to be folded into a more compact volume when not in use. A battery-powered electronic sensor may be used to monitor air pressure. The motorized inflator and sensor may be powered by a 12V vehicle power outlet or by a built-in battery. The air pressure and battery state of charge may be continuously monitor by the electronic system and warnings may be issued as required.
Further modifications of the invention within the scope of the appended claims are feasible. As such, the present invention should not be considered as limited by the embodiments and figures described herein. Rather, the full scope of the invention should be determined by the appended claims, with reference to the description and drawings.
Number | Date | Country | Kind |
---|---|---|---|
11173949 | Jul 2011 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4113306 | von Wimmersperg | Sep 1978 | A |
4480870 | von Wimmersperg | Nov 1984 | A |
4640545 | von Wimmersperg | Feb 1987 | A |
5332285 | Sinnhuber | Jul 1994 | A |
5487588 | Burleigh et al. | Jan 1996 | A |
5630645 | Lumley et al. | May 1997 | A |
5685603 | Lane, Jr. | Nov 1997 | A |
5810435 | Surot | Sep 1998 | A |
5820215 | Dreisbach | Oct 1998 | A |
5941600 | Mar et al. | Aug 1999 | A |
6237999 | Hobson | May 2001 | B1 |
6592183 | Kain | Jul 2003 | B2 |
6817665 | Pacella et al. | Nov 2004 | B2 |
6869141 | Yamaoka et al. | Mar 2005 | B2 |
7083237 | Horton et al. | Aug 2006 | B2 |
7097245 | Barker | Aug 2006 | B2 |
7328946 | Hendrikus Van Montfort et al. | Feb 2008 | B2 |
7390064 | Horton et al. | Jun 2008 | B2 |
7441733 | Chen et al. | Oct 2008 | B2 |
7467824 | Nakhla et al. | Dec 2008 | B2 |
7467825 | Jane Santamaria | Dec 2008 | B2 |
7472952 | Nakhla et al. | Jan 2009 | B2 |
7984947 | Pos | Jul 2011 | B2 |
8366192 | Clement et al. | Feb 2013 | B2 |
8496293 | Gaudreau, Jr. | Jul 2013 | B2 |
20020000743 | Mori et al. | Jan 2002 | A1 |
20020000744 | Maciejczyk | Jan 2002 | A1 |
20030047972 | Burleigh et al. | Mar 2003 | A1 |
20040095004 | Horton et al. | May 2004 | A1 |
20050092539 | Chitalia et al. | May 2005 | A1 |
20060006714 | Van Geer et al. | Jan 2006 | A1 |
20080012401 | Amesar et al. | Jan 2008 | A1 |
20080224516 | Vegt | Sep 2008 | A1 |
20080303321 | Powell | Dec 2008 | A1 |
20100060046 | Vertegaal | Mar 2010 | A1 |
20110089732 | Yang | Apr 2011 | A1 |
20120098304 | Gaudreau, Jr. | Apr 2012 | A1 |
20120319442 | Clement | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
2010246523 | Jun 2011 | AU |
19732385 | Jan 1999 | DE |
102006033849 | May 2007 | DE |
2004091964 | Oct 2004 | WO |
2006030048 | Mar 2006 | WO |
Entry |
---|
The EP Search Report issued in connection with EP Application No. 11173949.6 mailed on Nov. 29, 2011. |
Number | Date | Country | |
---|---|---|---|
20130015690 A1 | Jan 2013 | US |