The technical field generally relates to chimes and more particularly concerns an actuation mechanism for producing a sound with a tubular bells chime or the like.
Conventional mechanisms used in tubular chimes for residential bells rely on the use of different means for striking the tubular bells. Those different means dictate the minimum dimensions that the tubular chimes may have. The use of the conventional mechanisms also has a considerable impact on the quality of the sound produced, and on the aesthetic properties of these tubular chimes.
There is thus a for an actuation mechanism for producing a sound that addresses at least some of the challenges presented above.
In accordance with one aspect, there is provided a chime apparatus for producing a sound in response to an actuation signal. The chime apparatus includes a support frame, a bell, a hammer assembly, and a chiming mechanism. The bell hangs from the support frame. The hammer assembly includes an L-shaped lever and a hammer head. The L-shaped lever has a lever fulcrum and is pivotally mounted to the support frame. The L-shaped lever has a first and a second lever segments orthogonally projecting from the lever fulcrum. The hammer head is affixed to an extremity of the first lever segment opposite the fulcrum. The chiming mechanism includes a plunger element being vertically movable in the support frame, and an actuator operatively connected to the plunger element.
In some embodiments, the chiming mechanism is configured such that in response to the actuation signal, the plunger element moves in a downward direction and engages with the second lever segment of the L-shaped lever, the L-shaped lever pivots, moving the hammer head away from the bell, and wherein the plunger element thereafter moves in an upward direction and releases the L-shaped lever so that the hammer head freely falls to strike the bell to produce the sound.
In one embodiment, the support frame has an opened bottom end.
In one embodiment, the bell is hung from the opened bottom end of the support frame.
In one embodiment, the support frame includes a mounting bracket, a pair of sidewalls suspended from the mounting bracket, and suspension elements for connecting the sidewalls to the mounting bracket.
In one embodiment, the suspension elements are pieces of felt.
In one embodiment, the bell is a tubular bell has a top opened end and a bottom opened end.
In one embodiment, the bell includes a hole extending through the bell, proximate the top opened end.
In one embodiment, the chime apparatus includes a bell hanging assembly. The bell hanging assembly includes a horizontal slot provided on each one of the pair of sidewalls, a bell supporting element mounted to the horizontal slot, and a rope passing through the hole of the bell. The rope is attached to the bell supporting element.
In one embodiment, the chime apparatus includes a bell hanging assembly. The bell hanging assembly includes a horizontal slot provided on each one of the pair of sidewalls. The horizontal slot includes a toothed side including a plurality of individual tooth. The bell hanging assembly also includes a rope passing through the hole of the bell. The rope is engaged with one individual tooth of the toothed side of the horizontal slot.
In one embodiment, the L-shaped lever is made of acrylic.
In one embodiment, the L-shaped lever has a top surface provided with a sliding pad.
In one embodiment, the hammer head is a balanced weight.
In one embodiment, the hammer head includes a contacting element affixed to the hammer head. The contacting element is positioned to contact the bell when the hammer head strikes the bell.
In one embodiment, the plunger element includes a top portion and a bottom portion. The top portion includes a plunger shaft having a top end and a bottom end, a stopper flange attached to a top end of the plunger shaft, and a spring wound about the plunger shaft. The bottom portion includes a plunger stem mechanically connected to the bottom end of the plunger shaft, and a contact ball fastened at a bottom end of the plunger stem.
In one embodiment, the contact ball is made of high-crystalline thermoplastic polymer.
In one embodiment, the chime apparatus includes a pivoting shaft, wherein the L-shaped lever is pivotally mounted to the support frame with the pivoting shaft.
In one embodiment, the actuator is a solenoid.
In one embodiment, the chime apparatus includes an actuator housing for housing the solenoid. The actuator housing is mounted into the support frame and has a top wall traversed by a hole.
In one embodiment, the actuator is configured to receive the actuation signal from an external source.
In accordance with another aspect, there is provided a chime apparatus which produces a sound in response to an actuation signal.
In some embodiments, the chime apparatus generally includes a support frame, a bell, a hammer assembly and a chiming mechanism.
The support frame has an opened bottom end and the bell may be hung from the opened bottom end of the support frame.
The hammer assembly comprises an L-shaped lever and a hammer head. The L-shaped lever has a lever fulcrum and is pivotally mounted to the support frame. Furthermore, the L-shaped lever has a first and a second lever segments orthogonally projecting from the lever fulcrum. The hammer head is affixed to an extremity of the first lever segment opposite the fulcrum and may be extending next to the bell.
The chiming mechanism comprises a plunger element which is vertically movable in the support frame. An actuator is generally operatively connected to the plunger element. The actuator may be embodied by a solenoid and configured to receive an actuation signal from an external source. In response to the actuation signal, the plunger element may move in a downward direction and engage with the second lever segment of the L-shaped lever. The L-shaped lever hence pivots, moving the hammer head away from the bell. The plunger element may thereafter move in an upward direction, thus releasing the L-shaped lever so that the hammer head freely falls to strike the bell and produces a sound.
Other features and advantages of the invention will be better understood upon reading of preferred embodiments thereof with reference to the appended drawings.
In the following description, similar features in the drawings have been given similar reference numerals. In order to not unduly encumber the figures, some elements may not be indicated on some figures if they were already mentioned in preceding figures. It should also be understood herein that the elements of the drawings are not necessarily drawn to scale and that the emphasis is instead being placed upon clearly illustrating the elements and structures of the present embodiments.
In accordance with embodiments, there is provided a chime apparatus for producing a sound in response to an actuation signal. Some embodiments of the present invention may be particularly useful in tubular bells chimes. Embodiments described herein below permit the fabrication of compact tubular bells chimes, conjugating aesthetics properties and sound quality required by the market for such products. In one implementation, the chime apparatus may be used in residential door chime application, the chime apparatus producing one or more sounds in response to the activation of the doorbell mechanism. Alternatively, the chime apparatus may be used in clock, commercial door chime, alarm device, or the like.
Referring to
The chime apparatus 10 includes a support frame 20 having an opened bottom end 22. The support frame 20 can be made of polymer, metal, felt, combinations thereof, or any other suitable materials having the desired structural properties. It will be understood that the support frame 20 is embodied by a plurality of components assembled together defining a space that admits the insertion of a plurality of elements.
In the illustrated embodiment of
The chime apparatus 10 also includes a bell 30 hanging from the opened bottom end 22 of the support frame 20. The bell can be made of metal, brass, alloy, ceramic material, glass or any monolithic elements which resonate upon being struck.
Referring now to
In some embodiments, and now referring back to
In some embodiments, and now referring to
The chime apparatus 10 further includes a hammer assembly 40 which includes an L-shaped lever 50 and a hammer head 60. It will be understood that the hammer assembly 40 is embodied by a plurality of components assembled together aimed at striking the bell.
With reference to
The L-shaped lever 50 is for example made from acrylic and is preferably provided with a sliding-pad 55, extending from end to end of the top surface of the L-shaped lever second segment 52. Furthermore, the second lever segment 56 has a rounded corner 53 diametrically opposite the fulcrum 52 and orthogonally opposite the sliding-pad 55. The hammer head 60 includes a balanced weight 62 and a contact 64. In the illustrated example, the balanced weight 62 has a rectangular cuboid shape and is preferably made of brass. The contact 64 has a discoidal form and is made of plastic. Alternatively, the contact can also be made of wood, copper, metal, or any other material, which may be selected in view in the desired sound effect. The contact 64 is affixed to the hammer head and is to be put into contact with the bell 30 when the hammer head 60 strikes the bell 30.
The chime apparatus 10 further includes a chiming mechanism 70. The chiming mechanism is generally embodied by a group of components assembled together to act on the hammer assembly to produce a sound in response to an actuation signal.
In the illustrated embodiment of
Referring to
In some embodiments, the ball 86 is made of a highly-crystalline thermoplastic polymer suitable for use in high load mechanical applications. In some embodiments, the highly-crystalline thermoplastic polymer can include a polyoxymethylene (also known as polyacetal), a polycarbonate, a polybutylene terephthalate (PBT) or a blend thereof. Example of commercially available polyoxymethylenes can include Delrin™ (such as Delrin™ acetal homopolymer resin), Celcon™, Ramtal™, Duracon™, Kepital™ or Hostaform™. Preferably, the ball is made from thermoplastic polymer allowing the ball to slide on the sliding-pad 55 when engaging with the L-shaped lever 50, as will be explained further below.
In accordance with one embodiment illustrated on
In the illustrated embodiment of
In operation, the plunger element 80 may be in an engaged or a released position. Upon an actuation signal emitted by the external source and received by the electrical contact 74 of the solenoid, an electric current is applied upon the solenoid, hence exercising a downward force on the plunger element 80, downwardly moving the plunger element 80 within the solenoid, and compressing the spring 82. Preferably, the stopper flange 82 has a diameter greater than the diameter of the circular hole 102 defining the centering element 104, so as to limit the downward movement of the plunger element 80 within the solenoid. The force applied on the plunger element 80 by the solenoid is controlled by the value of the electric current passing through the solenoid. When in the released position, the plunger element 80 is free from any forces and the spring 82 is released.
Now referring to
In
Next, with reference to
Referring now to
In some embodiments and now referring to
Of course, numerous modifications could be made to the embodiment described above without departing from the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2017/050249 | 2/27/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62300398 | Feb 2016 | US |