Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates to chin guards for use with helmets. More particularly, the present invention relates to chin guards that have protective cups associated therewith for protection of the chin of the wearer. More particularly, the present invention relates to chin guard apparatus that have a single resilient layer extending across an interior surface of the protective cup.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
The invention relates to improvements in protective headgear such as football helmets, motorcycle and bicycle helmets, and helmets for other activities where protection from head impact and injury is desirable. The invention also relates to protective pads, particularly chin pads.
Protective helmets to minimize head injuries have been known and used for many years. For example, football helmet shells have been produced from injection molded ABS, or polycarbonate plastic. Helmets intended for youth usage have usually been produced from ABS plastic, and helmets for adult usage have usually been produced from polycarbonate plastic. ABS plastic is significantly less expensive than polycarbonate, but ABS plastic is not as structurally rigid as polycarbonate. As the level of intensity of contact in youth football is significantly lower than that at the adult level, ABS has been accepted as a satisfactory material for use at the youth level. For adult helmets, however, the structural rigidity of the polycarbonate material is essential to minimize the flex and deformation of the shell under extreme impact conditions.
The National Operating Committee on Standards for Athletic Equipment (NOCSAE) has been responsible for setting minimum performance criteria for football helmets. The minimum standard acceptance level measured by the Severity Index (IS) is set at 1200. Through the continuous testing of NOCSAE, it has been established that the rigidity of polycarbonate shells, in comparison to ABS shells, leads to significantly lower IS results. From these tests, it is believed that there is a correlation between the rigidity of the shell material and improved safety performance.
Protection can also be improved by the addition of a face mask attached to the helmet. For example, football helmets are usually equipped over the exposed face area with a vinyl coated wire or other metal structure, or an injection molded plastic face mask. The obvious purpose of the face mask is to protect the face of the player from injury, while not obstructing the player's vision unnecessarily. The addition of a face mask can also increase the rigidity of the shell which improves the IS performance. Helmets are usually tested without face masks so that the IS performance of a helmet with the mask will somewhat exceed the test standard.
Face masks have been mounted to the exterior surface of the helmet shell behind the front edge of the helmet face opening. This design can, under certain conditions, contribute to serious injury. Helmet shells are specifically designed with smooth spherical surfaces to allow the shells to glance and slide on impact.
Protective helmets usually include a chin strap to retain the helmet, particularly during impact. In the past, chin straps were frequently constructed using a molded plastic cup made of compression or injection-molded plastic material. A pad, usually of a felt or foam material, was bonded or otherwise attached to the plastic cup. This cup construction is preferable to non-padded chin straps which have been standard equipment on football helmets. Non-padded chin straps do not offer any impact protection to the chin area, and only serve to secure the helmet to the player's head. Padded chin cups provide an added measure of protection to the chin from impacts, in addition to securing the helmet to the player's head.
Improvement in the impact absorption performance of padded chin straps is desirable. Most molded plastic chin cups currently used are molded in a manner which allows the formed cup to flex upon impact. An improved construction is a rigid material which does not flex on impact to an undesirable degree, thus distributing the impact force over a larger area of the chin.
The present inventor is the owner of U.S. Pat. No. 6,298,493, issued on Oct. 1, 2001 to Schiebl et al. U.S. Pat. No. 6,298,493 describes a protective headgear that comprises a rigid shell with face pads that can be released and removed while the headgear is still on a person's head. A protective chin guard is attached to the headgear by way of the face pads. The chin guard includes a substantially rigid shell with a removable insert made of a flexible bladder filled with a shock-absorbing fluid. The headgear includes a shell made of an inner and outer material layered over an internal foam core to effect both strength and light weight construction.
The cup associated with the protective shell of the chin strap often has had an imperfect fit with the wearer's chin. In certain circumstances, the user may desire to have enhanced protection against impacts. The wearer may also desire a more comfortable fit with the cup of the shell of the protective chin strap and more comfortable contact between the chin and an interior surface of the chin guard. Often, the cup of the chin strap has a peripheral edge which bears against the skin of the user. In the event of an impact, this edge can bruise the chin of the user. In the event of a severe impact, the peripheral edge of the protective shell of the chin strap can cause adverse impacts to the face of the user. As such, a need has developed whereby the edge of the shell of the cup of the chin strap be fully cushioned and protected from the skin of the wearer.
It is an object of the present invention to provide a chin guard apparatus which maximizes the protection and comfort of the user.
It is another object of the present invention to provide a chin strap apparatus which enhances the degree of protection against the peripheral edge of the rigid shell of the cup of the chin guard apparatus.
It is a further object of the present invention to provide a chin guard apparatus whereby the cushion of the cup can be adapted to properly fit the facial configuration and desires of the user.
It is another object of the present invention to provide a chin guard apparatus that enhances shock absorption on the exterior surface of the protective shell of the chin guard.
It is still a further object of the present invention to provide a chin guard apparatus to provide air circulation and comfortable contact with the skin of the user.
It is another object of the present invention to provide a chin guard apparatus that is relatively inexpensive, easy to manufacture and easy to assemble.
It is a further object of the present invention to provide a chin guard device that enhances moisture management within the interior of the chin guard.
These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.
The present invention is a chin guard apparatus for use with a helmet. This chin guard has a shell with a cup suitable for fitting upon a human chin. The shell has an outer peripheral edge. A resilient layer is received within the cup of the shell. This resilient layer has a periphery overlying the outer peripheral edge of the shell. The resilient layer has an interior surface with bumps formed substantially over an entirety of the interior surface.
In the present invention, the resilient layer is in surface-to-surface contact with a surface of the shell. A netting material is affixed to the interior surface of the resilient layer and around the bumps. The netting material resides in the channels extending between adjacent bumps. As used herein, the term “netting material” can refer to netting and to fabric elements extending through the channels between the adjacent bumps.
The shell has a plurality of through holes formed in the cup. Additionally, the resilient layer has a plurality of through holes formed therein so as to align with the through holes of the shell. The cup also has at least one opening formed generally centrally of the cup. In the preferred embodiment, the cup has a pair of generally semicircular openings formed generally centrally of the cup.
The outer peripheral edge of the shell is flanged outwardly of the cup. The periphery of the resilient layer extends over and beyond the outer periphery of the shell. The resilient layer is formed of a foamed polymeric material. The shell is formed of a rigid polymeric material. The shell has a first slot formed on one side thereof and a second slot formed on an opposite side thereof. The resilient layer has a channel formed on opposite sides thereof so as to overlie the first and second slots.
Referring to
As can be seen in
The shell 12 also includes a first generally semi-circular opening 36 and a second semi-circular opening 38 formed centrally of the cup 16. A bumper member 44 is received between the semi-circular openings 36 and 38 so as to extend thereacross. Bumper member 44 can provide shock absorbency at the very center of the shell 12. The bumper member 44 can be formed of a rubber or elastomeric material.
The shell 12 includes a slot 46 formed on one side and another slot formed on the opposite side. The slot 46 is suitable for receiving the strap which serves to connect the chin guard 10 to a helmet. A suitable channel 48 can be formed on the resilient member 14 generally adjacent to the slot 46 so as to provide a suitable guide for the chin strap extending thereacross.
The shell 12 is formed of a rigid polymeric material while the resilient layer 14 is formed of a foamed polymeric material. Since there are only two main components of the chin guard 10 of the present invention, the chin guard 10 can be assembled in an easy manner. Additionally, the manufacturing costs associated with forming the chin guard 10 of the present invention are minimal. These goals can be accomplished while, at the same time, providing maximum protection to the wearer of the chin guard. Since the resilient layer 14 overlies the outer peripheral edge 18 of the shell 12, sharp contacts between the outer peripheral edge 18 of the shell 12 and the face of the wearer are effectively cushioned.
In
The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction can be made within the scope of the appended claims without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.
The present application is a continuation-in-part of U.S. application Ser. No. 11/222,283, filed on Sep. 8, 2005 and entitled “Chin Guard Apparatus for use with a Helmet”, presently pending. U.S. application Ser. No. 11/222,283 is a continuation-in-part of U.S. patent application Ser. No. 10/463,774, filed on Jun. 16, 2003, and entitled “Helmet Chinstrap”, presently pending.
Number | Name | Date | Kind |
---|---|---|---|
2867811 | Jones | Jan 1959 | A |
3619813 | Masrchello | Nov 1971 | A |
4741054 | Mattes | May 1988 | A |
5794274 | Kraemer | Aug 1998 | A |
5946735 | Bayes | Sep 1999 | A |
6298483 | Schiebl et al. | Oct 2001 | B1 |
6481024 | Grant | Nov 2002 | B1 |
6499139 | Brown et al. | Dec 2002 | B1 |
6499147 | Schiebl et al. | Dec 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
Parent | 11222283 | Sep 2005 | US |
Child | 11761289 | US | |
Parent | 10463774 | Jun 2003 | US |
Child | 11222283 | US |