This application is the U.S. National stage of International Application No. PCT/DE2006/002126, filed on Nov. 30, 2006, published in German, which claims priority to German Patent Application No. 10 2005 058 101.3, filed on Dec. 5, 2005. The entire teachings of the above applications are incorporated herein by reference.
The present invention pertains to a chip card with a chip module that is contacted with an external contact arrangement arranged in the contact surface of a card body, as well as an antenna device arranged in a card inlay. The invention furthermore pertains to a method for the production of such a chip card.
Chip cards of the initially cited type are also referred to as so-called “Combicards” or “Dual-Interface-Cards.” Such chip cards make it possible to access the information contained on the chip in a contacting fashion by means of the external contact arrangement arranged in the card surface, as well as in a contactless fashion by means of the antenna device that forms a transponder unit in connection with the chip.
Until now, the production of such chip cards has proved very complex because the recess required for accommodating the chip module in the card body is typically produced with an abrasive material processing method such as, for example, milling in order to ensure that the chip module provided with the external contact arrangement is arranged within the card body in such a way that it securely contacts the antenna device situated in the interior of the card body. On the other hand, the external contact arrangement needs to be arranged flush in the contact surface of the card body in order to ensure a trouble-free operation of the card.
Regardless of whether the card body is produced by means of a molding process or in the form of a laminate consisting of a plurality of layers that are connected to one another in a laminating process, the subsequent production of the recess in the card body for accommodating the chip module in the card body requires an additional processing step based on the production of the card body. Furthermore, the contacting between the antenna device and the chip module in thusly designed chip cards needs to be realized in a concealed fashion in the form of a rear surface contact subsequent to the implementation of the chip module.
The present invention is based on the objective of proposing a chip card that is suitable for a contacting and for a contactless operation, as well as a method for the production thereof, which allows a significantly simplified production of the chip card.
According to the invention, the chip card features a card inlay with at least two layers, namely a receptacle layer that is provided with a recess for partially accommodating the chip module and a cover layer that covers the chip module on one side. The card inlay of the inventive chip card is provided with at least one respective external layer on both sides, wherein the recess serves for accommodating a chip housing arranged on an internal contact side of a chip carrier of the chip module and the cover layer defines a bottom of the recess. In this case, the external contact arrangement arranged on the external contact side of the chip carrier forms a layer projection that protrudes from the plane of the receptacle layer and is accommodated in a recess of the external layer in such a way that the external contact arrangement is arranged flush with the contact surface of the card body.
The design of the inventive chip card therefore is based on a card inlay, from which the external contact arrangement of the chip module protrudes such that an altogether flush arrangement of the external contact arrangement in the card body can be easily achieved by applying an external layer, the thickness of which corresponds to the layer projection formed by the external contact arrangement. Since the card inlay is designed with at least two layers, namely a receptacle layer and a cover layer that accommodate the antenna device between one another, and since the internal contact side of the chip carrier is accessible through the recess of the receptacle layer, the contacting points for contacting the chip module with the antenna device are freely accessible such that a secure contacting between the chip module and the antenna device can be realized and checked with respect to its quality. In contrast to conventional chip cards of the generic type that are designed as described above, the contacting therefore no longer has to be realized in a concealed fashion in the form of a rear surface contact, but rather can be achieved by directly acting upon the contacting point.
The inventive card inlay features at least two layers, namely a receptacle layer that is provided with a recess for partially accommodating the chip module and a cover layer that covers the chip module on one side, wherein these two layers accommodate the antenna device between one another. The recess for accommodating a chip housing arranged on an internal contact side of a chip carrier of the chip module makes it possible to freely access the contacting points between the internal contacts arranged on the internal contact side of the chip carrier and the antenna device prior to the application of the cover layer. A bottom of the recess can be defined only after the contacting by applying the cover layer such that only the external contact arrangement arranged on the external contact side of the chip carrier forms a layer projection of the card inlay that protrudes from the plane of the receptacle layer. During the subsequent finishing of the chip card, this projection can be accommodated in a flush fashion by an external layer that is provided with a corresponding recess, wherein the layer projection simultaneously forms a positioning aid for the relative positioning of the external layer on the card inlay.
An exactly defined relative positioning between the internal contact side of the chip carrier and the antenna device arranged in the card inlay can be achieved if the substrate for the antenna device is formed by the receptacle layer itself.
With respect to a secure relative positioning of the chip module in the card inlay, it is particularly advantageous if the chip housing of the chip module is provided with an adhesive coating on its upper side that faces the cover layer. This ensures that the chip module is fixed in the recess of the card inlay after the cover layer has been applied on the chip housing regardless of the contacting with the antenna device.
In this context, it is particularly advantageous if the adhesive coating consists of a hot-melt adhesive mass because this adhesive mass is activated by subjecting the hot-melt adhesive to a corresponding temperature during a laminating process such that the adhesive effect is not impaired by the laminating process, but rather promoted.
If the adhesive coating is furthermore realized in the shape of a band, the adhesive mass can be very easily handled and adapted to the contour of the chip housing during the production of the card inlay.
If a pressure-sensitive adhesive is additionally provided on the band-shaped adhesive coating, the adhesive coating is securely fixed on the chip housing prior to the laminating process by means of the pressure-sensitive adhesive and a permanent, secure connection between the chip module and the card inlay is produced by means of the hot-melt adhesive mass that is subsequently activated during the laminating process.
In the inventive method, a card inlay is initially produced in a first production device. Subsequently, the card inlay is provided with at least one respective external layer on both sides in a second production device, namely in such a way that the external contact arrangement arranged on the external contact side of the chip carrier is introduced into a recess of the assigned external layer. Subsequently, the card inlay is connected to the external layers in a laminating process.
The inventive method therefore makes it possible to produce a chip card of the generic type based on a card inlay and two independent production devices such that the card inlay can be handled as a semi-finished product that is produced at a first production site and subsequently finished in a second production process that is completely independent of the first production process and is carried out in a second production device that may be arranged distant of the first production device. The card inlay therefore can be delivered to a card manufacturer in the form of a semi-finished product for further processing and/or finishing a chip card.
It is particularly advantageous if the production of the card inlay in the first production device begins by positioning the chip module in a recess of a laminator plate in such a way that an external contact arrangement arranged on an external contact side of a chip carrier of the chip module is accommodated in the recess of the laminator plate and a chip housing arranged on an internal contact side of the chip carrier protrudes from the recess of the laminator plate. Subsequently, a receptacle layer that is preferably realized in the form of a substrate of an antenna device is arranged on the laminator plate in such a way that the chip housing is introduced into a recess of the receptacle layer, wherein the antenna device is arranged on the surface of the substrate that faces away from the laminator plate. Consequently, the antenna device can be subsequently contacted with the internal contact side of the chip carrier due to the freely accessible internal contacts of the chip carrier before the cover layer is arranged on the receptacle layer in order to cover the contacting points. The subsequent production in a laminate between the receptacle layer and the cover layer therefore produces a permanently sealed arrangement of the chip housing arranged on the chip carrier and of the internal contact side of the chip carrier in the card inlay such that the additional storage and handling of the card inlay prior to the finishing of the chip card at the card manufacturer by laminating on the external layers can be realized in a completely unproblematic fashion and without special precautions such as, for example, a special protective packaging of the card inlay.
In order to produce the chip card in the second production device, the card inlay is preferably provided with at least one respective external layer on both sides, wherein the external contact arrangement arranged on the external contact side of the chip carrier is introduced into a recess of the assigned external layer. Subsequently, a laminate between the external layer and the card inlay is produced in such a way that a flush-surface arrangement of the external contact arrangement with the contact surface of the card body formed due to the production of the laminate is adjusted.
Preferred embodiments of the chip card and the card inlay, as well as of the method for the production of the chip card, are described in greater detail below with reference to the figures.
a is a side view of a chip module accommodated in a recess of a laminator plate.
b is a top view of the chip module illustrated in
a is a side view of the chip module arranged in a receptacle layer.
b is a top view of the chip module illustrated in
a is a side view of the chip module that is covered by a cover layer and arranged between two laminator plates.
b is a top view of the chip module illustrated in
The receptacle layer sheet 12 and the cover layer sheet 14 are situated between a lower laminator plate 17 and an upper laminator plate 18 of a laminator arrangement 16. The lower laminator plate 17 is provided with an arrangement 19 of recesses 20 corresponding to the panel arrangement of the receptacle layer sheet 12 and serving for accommodating a corresponding number of chip modules 21.
The receptacle layers 13 of the receptacle layer sheet 12 respectively serve as antenna substrates, on which one respective antenna device 22 with several antenna windings 23 is arranged, namely in the form of a wire arrangement in the example shown. The antenna devices 22 respectively feature two contact ends 24, 25 that extend over contacting bays 26 in an opening edge 27 of a recess 28.
The receptacle layer sheet 12, as well as the cover layer sheet 14, consists of a plastic material that can be laminated such as, for example, polyethylene or PVC.
The structure of the layer arrangement according to
According to an overall view of
In addition,
The receptacle layer sheet 12 is subsequently arranged on the laminator plate 17 illustrated in
An overall view of
a shows the contact ends 24, 25 of the antenna device 22 that are contacted with the internal contacts 33, 34, as well as the cover layer sheet 14 that is arranged on the receptacle layer sheet 12 subsequent to the contacting process, wherein the cover layer sheet features the cover layers 15 that are formed therein and are respectively arranged on the chip module 21 and the chip housing 35 and thusly form a bottom 39 of the recess 28.
In the configuration shown in
The card inlay sheet 10 that is illustrated in
According to
The external layer sheets 47 and 48 are realized in a closed fashion and preferably have a thickness that corresponds to the respective thickness of the external layer sheets 45, 46. The external layer sheets 45 to 48 that are applied in another production device, for example, at a card manufacturer may consist, for example, of printed external layer sheets 46 and 47 that are respectively covered with an additional external layer 45, 48 in the form of a protective foil layer.
In order to ensure the correct relative positioning between the individual layers 45, 46, 10, 47 and 48 illustrated in
After the chip card sheet 40 is finished, the interconnected chip cards 41 of the panel arrangement can be separated into individual chip cards.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 058 101.3 | Dec 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE06/02126 | 11/30/2006 | WO | 00 | 6/3/2008 |