The present application is a National Stage Application under 35 U.S.C. 371 of International Patent Application No. PCT/CN2019/075804, filed on Feb. 22, 2019, which claims priority to Chinese patent applications No. 201811209431.3 and No. 201821686823.4 filed on Oct. 17, 2018, the disclosures of which are incorporated herein by reference in their entireties.
The present disclosure relates to a technical field of electronic components and, for example, a chip inductor and manufacturing method thereof.
With an increasing demand of users for miniaturization of electronic products, integration level of electronic products has been gradually increased, which leads to higher requirements for the size of electronic components contained in the electronic products. The compromise of miniaturization and electrical performance of electronic components has become an urgent problem to be solved.
Chip inductors are widely used in various electronic products, the size and electrical performance of chip inductors directly affect the size and performance of electronic products integrated with the chip inductors, which also makes it crucial for the chip inductors to take both miniaturization and electrical performance of the chip inductors into account.
In view of this, the present disclosure provides a chip inductor and manufacturing method thereof, which is beneficial to obtaining a large inductance value within a small size, that is, to realizing miniaturization of the chip inductor; meanwhile the chip inductor may be manufactured using a semiconductor process, which is beneficial to accurately controlling size of the chip inductor, improving precision of the chip inductor, increasing conductivity of the chip inductor, reducing resistance of the chip inductor and improving Q value (quality factor) of the chip inductor.
In a first aspect, a chip inductor is provided according to an embodiment of the present disclosure, including: a pin layer, multiple insulating layers and multiple metal layers. The multiple insulating layers and the multiple metal layers are arranged successively and alternately on the pin layer. Multiple patterned metal structures respectively arranged in the multiple metal layers are electrically connected to form a multilayer plane spiral coil structure. Any two adjacent patterned metal structures of the multiple patterned metal structures are electrically connected through a via structure in one insulating layer between the two adjacent patterned metal structures of the multiple insulating layers.
The multilayer plane spiral coil structure has two ends electrically connected with respective pin structures in the pin layer.
In an embodiment, the multilayer plane spiral coil structure includes multiple monolayer plane spiral coil structures along an axial direction of the multiplayer plane spiral coil structure, and a dielectric structure between two adjacent monolayer plane spiral coil structures of multiple monolayer plane spiral coil structures has a thickness greater than a thickness of each of the monolayer plane spiral coil.
In an embodiment, the dielectric structure is formed of a material including polyimide (PI).
In an embodiment, the multilayer plane spiral coil structure has an axial direction perpendicular to or parallel with a plane of the pin layer.
In an embodiment, the multilayer plane spiral coil structure includes multiple monolayer plane spiral coil structures along an axial direction of the multilayer plane spiral coil structure, and each of multiple monolayer plane spiral coil structures forms a coil structure with at least one turn.
In an embodiment, each pin structure includes a pad structure and metal structure located on the pad structure, and the two ends of the multilayer plane spiral coil structure are electrically connected with respective metal structures.
In a second aspect, a manufacturing method of a chip inductor is provided according to an embodiment of the present disclosure, used for manufacturing the chip inductor according to the first aspect.
The manufacturing method includes: a substrate is formed; a first patterned metal structure on the substrate is formed; a first insulating layer is formed on the first patterned metal structure and a via structure is formed at a set position of the first insulating layer; a second patterned metal structure is formed on the first insulating layer, where the second patterned metal structure is electrically connected to the first patterned metal structure through the via structure located in the first insulating layer; insulating layers and patterned metal structures are alternately formed on the second patterned metal structure, until an N-th insulating layer is formed, where N is an integer greater than 1, an M-th patterned metal structure is electrically connected with an (M−1)-th patterned metal structure through a via structure located in M−1-th insulating layer, M is an integer greater than 2 and less than or equal to N; a pin structure is formed on the N-th insulating layer; at last the substrate is removed or ground.
In an embodiment, an M1-th patterned metal structure is formed through one of an electroplating process, a sputtering process or an etching process; where M1 is a positive integer and less than or equal to N.
In an embodiment, an M2-th insulating layer is formed of a material including polyimide (PI), and a via structure is formed at the set position of the M2-th insulating layer through at one of a dry etching process or a laser etching process; where M2 is a positive integer and less than or equal to N.
A chip inductor is provided according to an embodiment of the present disclosure. The chip inductor includes a pin layer, multiple insulating layers and multiple metal layers, where the multiple insulating layers and the multiple metal layers are arranged alternately on the pin layer, multiple patterned metal structures arranged in the multiple metal layers are electrically connected to form a multilayer plane spiral coil structure; the multilayer plane spiral coil structure has two ends electrically connected with respective pin structures in the pin layer. The multiple insulating layers and metal layers are arranged alternately in the chip inductor, and the multiple patterned metal structures arranged in the multiple metal layers form the multilayer plane spiral coil structure, which is beneficial to obtaining a large inductance value within a small size, that is, to realizing miniaturization of the chip inductor; meanwhile the chip inductor may be manufactured using a semiconductor process, which is beneficial to accurately controlling size of the chip inductor, improving precision of the chip inductor precision and increasing conductivity of the chip inductor, reducing resistance of the chip inductor and improving Q value of the chip inductor.
The present disclosure will be further described in detail with reference to the accompanying drawings and embodiments. It is to be understood that the embodiments set forth below are intended to illustrate and not to limit the present disclosure. Additionally, it is to be noted that to facilitate description, only part, not all, of structures related to the present disclosure are illustrated in the accompanying drawings. In this specification, a same or similar reference numeral refers to a same or similar structure, element or process. It should be noted that the embodiments in this disclosure and the features in the embodiments may be combined with each other without conflict.
The embodiments of this disclosure provide a chip inductor including a pin layer, insulating layers and metal layers. The insulating layers and the metal layers are arranged successively and alternately on the pin layer. Multiple patterned metal structures arranged in the metal layers are respectively electrically connected to form a multilayer plane spiral coil structure. Any two adjacent patterned metal structures are electrically connected through a via structure in one insulating layer between the two adjacent patterned metal structures of the insulating layers. The multilayer plane spiral coil structure has two ends electrically connected with respective pin structures in the pin layer.
With an increasing demand of users for miniaturization of electronic products, electronic products have a gradually increased integration level, which leads to higher requirements for the size of electronic components contained in the electronic products. The compromise of miniaturization and electrical performance of electronic components has become an urgent problem to be solved. Chip inductors are widely used in various electronic products, the size and electrical performance of chip inductors directly affect the size and performance of electronic products integrated with the chip inductors, which also makes it crucial for the chip inductors to take both miniaturization and electrical performance of the chip inductors into account.
The chip inductor according to the present disclosure includes a pin layer, insulating layers and metal layers. The insulating layers and the metal layers are arranged on the pin layer. Multiple patterned metal structures respectively arranged in the metal layers are electrically connected to form a multilayer plane spiral coil structure. The multilayer plane spiral coil structure has two ends electrically connected with respective pin structures in the pin layer. In this way, the insulating layers and the metal layers are arranged alternately on the pin layer, and the patterned metal structures arranged in the metal layers form a multilayer plane spiral coil structure to obtain a large inductance value within a small size, which is advantageous for miniaturization of the chip inductor, meanwhile the chip inductor may be manufactured using a semiconductor process, which is beneficial to accurately controlling size of the chip inductor, improving precision of the chip inductor, increasing conductivity of the chip inductor, reducing resistance of the chip inductor and improving Q value of the chip inductor.
The present disclosure will be further described in detail with reference to the accompanying drawings and embodiments. Based on the present disclosure, all other embodiments obtained by those skilled in the art without creative work are within the protection scope of the present disclosure.
An insulating layer 2 is arranged between every two adjacent metal layers 3 along a direction perpendicular to the pin layer 1 to realize electrical insulation of the multilayer patterned metal structure 31 in the adjacent metal layers 3 without an electrical connection. An insulating layer 2 is also arranged between lowermost metal layer 3 and the pin layer 1 to achieve electrical insulation of the part without an electrical connection between the lowermost metal layer 3 and the pin layer 1. In
A commonly used chip inductor is a multilayer co-fired ceramic (MLCC) using a ceramic material with a low conductivity, and its rough manufacturing process makes the chip inductor with a low Q value, which is unable to accurately control the size of the chip inductor. Because of a low precision, it is difficult to realize miniaturize the chip inductor. The multiple insulating layers 2 and metal layers 3 are arranged alternately in the chip inductor according to the present disclosure, and the multiple patterned metal structures 31 arranged in the multiple metal layers 3 form the multilayer plane spiral coil structure, which is beneficial to obtaining a large inductance value within a small size, that is, to realizing miniaturization of the chip inductor; meanwhile the chip inductor may be manufactured using a semiconductor process, which is beneficial to accurately controlling size of the chip inductor, improving precision of the chip inductor, increasing conductivity of the chip inductor, reducing resistance of the chip inductor and improving Q value of the chip inductor.
In an embodiment, the multilayer plane spiral coil structure includes monolayer plane spiral coil structures 5 along an axial direction of the multiplayer plane spiral coil structure, and a dielectric structure between two adjacent monolayer plane spiral coil structures of the monolayer plane spiral coil structures 5 has a thickness greater than a thickness of each of the monolayer plane spiral coil structures 5. As shown in
No matter whether the axial direction of the multilayer planar spiral coil structure of the chip inductor is perpendicular or parallel with the plane of the pin layer 1, the dielectric structure between the adjacent two monolayer plane spiral coil structures 5 has a thickness greater than the thickness of a single monolayer plane spiral coil structure 5. Compared with the chip inductor which has a same thickness and in which the thickness of monolayer plane spiral coil structures 5 along the axial direction of the chip inductor equal to the thickness of the dielectric structure, adjacent two monolayer plane spiral coil structures 5 have an increased distance, which addresses the problem in which a large coupling effect of the adjacent monolayer plane spiral coil structures 5 along the axial direction of the chip inductor due to the small distance between the adjacent monolayer plane spiral coil structures 5 affects the resonant frequency of the chip inductor, and improves the resonant frequency of the chip inductor. Exemplarily, the dielectric structure may be formed of a material including PI, that is, polyimide. In other words, the dielectric structure is formed of PI.
In an embodiment, the multilayer plane spiral coil structure includes monolayer plane spiral coil structures 5 along the axial direction of the multilayer plane spiral coil structure. Each monolayer plane spiral coil structure may form a coil structure with at least one turn. For example, the monolayer plane spiral coil structure 5 in uppermost metal layer 3 in
In an embodiment, referring to
A manufacturing method of a chip inductor is also provided, which is used for manufacturing the chip inductor according to the above embodiments.
In step 110, a substrate is formed.
The substrate may be a wafer with a size of 8 inches, 12 inches, 500 mm×500 mm or larger, and may have a shape of a circular, a square, a rectangular, etc. The substrate may be formed of at least one of the following materials: silicon, glass, quartz, ceramic or organic material.
In step 120, a first patterned metal structure is formed on the substrate.
Referring to
In step 130, a first insulating layer is formed on the first patterned metal structure and a via structure is formed at a set position of the first insulating layer.
Referring to
Exemplary, the first insulating layer 21 is formed of a material including PI, i.e. polyimide. An insulating layer 21 may be deposited first, and then the via structure 20 is formed at the set position of the first insulating layer 21 through a dry etching process or a laser etching process. According to the chip inductor shown in
In step 140, a second patterned metal structure is formed on the first insulating layer, where the second patterned metal structure is electrically connected to the first patterned metal structure through the via structure located in the first insulating layer.
Referring to
In step 150, insulating layers and patterned metal structures on the second patterned metal structure are alternately formed, until an N-th insulating layer is formed. N is an integer greater than 1. An M-th patterned metal structure is electrically connected with an (M−1)-th patterned metal structure through a via structure located in M−1-th insulating layer. M is an integer greater than 2 and less than or equal to N.
Referring to
In step 160, a pin structure is formed on the N-th insulating layer.
Referring to
In step 170, the substrate is removed or ground.
After the pin structure 10 is formed, the substrate may be removed or ground, i.e. the substrate located above the first metal layer 31 may be peeled off or ground to form a complete chip inductor. After the substrate is removed or ground, the metal layers 3 and the insulating layers 2 may be cut to form a surface mount device with a standard size, such as 0201, 01005 or a smaller size.
Exemplary, referring to
The chip inductor according to the present disclosure includes a pin layer, insulating layers and metal layers alternately arranged on the pin layer. Multiple patterned metal structures arranged in the metal layers are respectively electrically connected to form a multilayer plane spiral coil structure. The multilayer plane spiral coil structure has two ends electrically connected with respective pin structures in the pin layer. The chip inductor may be manufactured by a semiconductor process according to above described embodiments, which is beneficial to accurately controlling size of the chip inductor, improving precision of the chip inductor, increasing conductivity of the chip inductor, reducing resistance of the chip inductor and improving Q value of the chip inductor. In addition, the insulating layers and metal layers are arranged alternately in the formed chip inductor, and the patterned metal structures in the metal layers form the multi-layer planar spiral coil structure, which is beneficial to obtaining a relatively large inductance within a small size, that is, to realizing miniaturization of the chip inductor.
Number | Date | Country | Kind |
---|---|---|---|
201811209431.3 | Oct 2018 | CN | national |
201821686823.4 | Oct 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/075804 | 2/22/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/077928 | 4/23/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6293001 | Uriu | Sep 2001 | B1 |
7355270 | Hasebe et al. | Apr 2008 | B2 |
9396874 | Nakamura | Jul 2016 | B2 |
20050174208 | Sato et al. | Aug 2005 | A1 |
20110133879 | Chiu et al. | Jun 2011 | A1 |
20140176283 | Yang et al. | Jun 2014 | A1 |
20150040382 | Wi et al. | Feb 2015 | A1 |
20160079165 | Mei et al. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1635637 | Jul 2005 | CN |
101106129 | Jan 2008 | CN |
101477873 | Jul 2009 | CN |
101840768 | Sep 2010 | CN |
102522181 | Jun 2012 | CN |
103268873 | Aug 2013 | CN |
104538383 | Apr 2015 | CN |
106129047 | Nov 2016 | CN |
106298180 | Jan 2017 | CN |
107039395 | Aug 2017 | CN |
107492437 | Dec 2017 | CN |
108346642 | Jul 2018 | CN |
109215979 | Jan 2019 | CN |
208834878 | May 2019 | CN |
2009266908 | Nov 2009 | JP |
2017216428 | Dec 2017 | JP |
Entry |
---|
International Search Report, PCT/CN2019/075804, mailed Jul. 9, 2019. |
Number | Date | Country | |
---|---|---|---|
20210257141 A1 | Aug 2021 | US |