The disclosure relates to chip sorting devices and related assemblies, components and methods. In particular, embodiments of the disclosure relate to chip sorting devices, collecting tubes for chip sorting devices, chip jam clearing systems, and methods of sorting chips.
Given the desire to improve profitability and increase the speed and efficiency of table game play in gaming establishments, there is a need to reduce costs through cost savings and replacement costs due to wear and tear on equipment. Furthermore, given the desire to improve profitability and increase the speed and efficiency of game play in gaming establishments, there is a need to increase the number of rounds that may be played with gaming equipment in a selected amount of time, decrease the amount of work performed by human dealers, etc. For example, there is a need for improved chip sorting devices, which may have the same or similar profile as existing equipment to avoid retrofitting existing gaming tables and that include adjustable positioning structures to permit limited movement of the device adjacent the gaming table surface. Additionally, it may be desirable to develop improved chip sorting devices having reduced production cost, which may improve efficiency, improve reliability, reduce wear on chips and minimize noise to preserve the casino ambience. Furthermore, it may be desirable to develop improved chip sorting devices that are easily customizable to accommodate varying chip sizes. Finally, it may be desirable to develop improved chip sorting devices having jammed chip clearing features in order to improve reliability of the chip sorting devices.
This summary is provided to introduce a selection of exemplary embodiments in a simplified form. These exemplary embodiments are described in further detail in the detailed description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Some embodiments of the present disclosure include a chip sorting device. The chip sorting device may include a chip conveyor unit having at least one chip well for transporting chips, at least one chip collection tube, and at least one chip ejection unit. The at least one chip collection tube may have an inner lateral dimension defined therein for receiving at least one chip therein. The at least one chip collection tube may include at least one frame assembly; and at least one adjustable wall coupled to the at least one frame assembly and at least partially defining the inner lateral dimension of the at least one chip collection tube. At least a portion of the at least one adjustable wall may be rotatable relative to the at least one frame assembly in order to selectively increase and decrease the inner lateral dimension of the at least one chip collection tube. The at least one chip ejection unit may be configured and positioned to eject at least one chip from the at least one chip well of the chip conveyor unit into the at least one chip collection tube.
Some embodiments of the present disclosure include a chip sorting device. The chip sorting device may include a chip hopper and a chip conveyor unit. The chip hopper may include a base plate, a chip chamber mounted over the base plate and rotatable about a center axis relative to the base plate, and a relief mechanism. The chip chamber may include a separating wheel base defining a plurality of circular holes configured to receive at least one chip therein. The relief mechanism may have a top plate having a top surface oriented at least substantially flush with an upper surface of the base plate. The relief mechanism may be configured to move away from the chip chamber. The chip conveyor unit may include at least one chip well configured to receive a chip therein from the chip hopper.
Some embodiments of the present disclosure include methods of sorting chips. The methods may include inserting at least one chip into a chip chamber of a chip hopper rotatably mounted over of a base plate of the chip hopper, receiving the at least one chip into a hole of a plurality of circular holes defined in a separating wheel base of the chip chamber, transporting the at least one chip along a circumferential path on an upper surface of the base plate of the chip hopper, and increasing space between the chip chamber and a top plate of a relief mechanism by moving the top plate of the relief mechanism away from the chip chamber and relative to the base plate of the chip hopper.
Some embodiments of the present disclosure include methods of setting up a chip sorting device. The methods may include adjusting an inner lateral dimension of at least one chip collection tube of the chip sorting device to accommodate at least one chip. Adjusting an inner lateral dimension of at least one chip collection tube to accommodate at least one chip may include rotating an adjustment mechanism of the at least one chip collection tube relative to a frame assembly of the at least one chip collection tube and rotating at least one adjustable wall into an interior of the frame assembly of the at least one chip collection tube, the at least one adjustable wall defining at least a portion of the inner lateral dimension of the at least one chip collection tube.
The present disclosure may be understood more fully by reference to the following detailed description of example embodiments, which are illustrated in the accompanying figures.
The illustrations presented herein are not meant to be actual views of any particular chip sorting device, or component thereof, but are merely simplified schematic representations employed to describe illustrative embodiments of the disclosure. The drawings are not necessarily to scale.
Some embodiments of the present disclosure may include chip sorting devices having chip collection tubes having variable inner lateral dimensions or areas (e.g., diameters, cross-sectional areas, etc.). In other words, the inner diameters, or one or more components defining effective inner diameters, of the chip collection tubes may be adjusted to accommodate different sized chips. Some embodiments of the present disclosure may include sorting devices having chip collection tubes that have a plurality of adjustable walls that define the inner diameters, and the adjustable walls may be rotatable within the chip collection tubes to change the inner diameters of the chip collection tubes. Some embodiments of the present disclosure include chip sorting devices having chip hoppers, which may include relief mechanisms for clearing chips positioned (e.g., jammed) between various portions of the chip sorting device (e.g., between portions of a chip hopper. The relief mechanism may provide an increased space for the jammed chips to enable the jammed chips to be removed and delivered to a chip conveyor unit.
As used herein, any relational term, such as “first,” “second,” “over,” “beneath,” “top,” “bottom,” “underlying,” “up,” “down,” etc., is used for clarity and convenience in understanding the disclosure and accompanying drawings, and does not connote or depend on any specific preference, orientation, or order, except where the context clearly indicates otherwise. For example, these terms may refer to an orientation of elements of the chip sorting device relative to a surface of a table beneath which the chip sorting device may be positioned and operated (e.g., as illustrated in the figures).
As used herein, the terms “vertical” and “horizontal” may refer to a drawing figure as oriented on the drawing sheet, and are in no way limiting of orientation of an apparatus, or any portion thereof, unless it is apparent that a particular orientation of the apparatus is necessary or desirable for operation in view of gravitational forces. For example, when referring to elements illustrated in the figures, the terms “vertical” or “horizontal” may refer to an orientation of elements of the chip sorting device relative to a surface of a table beneath which the chip sorting device may be positioned and operated.
A perspective view of a chip sorting device 100 with portions of one or more housings of the chip sorting device 100 removed to show interior components of the chip sorting device 100 is shown in
The fixed path of the articulated conveyor 202 may enable each link unit 204, and any chips 208 that may be carried thereby, to travel along a generally straight path (i.e., a substantially linear path) when proximate to the chip hopper 104. The fixed path may enable each link unit 204, and any chips 208 that may be carried thereby, to travel along a generally curved path when proximate to the plurality of chip ejection units 108 and corresponding plurality of chip collection tubes 110. In some embodiments, a drive belt 216 of the chip conveyor unit 106 may be at least partially formed from a nonmetal material (e.g., not a metal chain drive belt). For example, the drive belt 216 may be formed from a flexible polymer material, internally fiber-reinforced as desirable, that may require little to no maintenance (e.g., may not require regularly scheduled lubrication).
In some embodiments, the chip sorting device 100 may include a lifting mechanism configured to lift chip sorting device 100 relative to a table to which the chip sorting device 100 may be positioned under. In some embodiments, the lifting mechanism may be operated pneumatically. In other embodiments, the lifting mechanism may be operated electrically.
The first tubular portion 410 may be mounted to an upper surface 418 of the upper plate 412 and may define an aperture 420 extending therethrough, which may extend in an at least substantially vertical direction. The upper plate 412 may be disposed above the lower plate 414 with the first plurality of support members 416 connected to and extending between the upper plate 412 and lower plate 414. The upper plate 412 may further have a hole 422, as shown in
The first adjustment mechanism 406 may be disposed between the upper plate 412 and lower plate 414 of the first frame assembly 402. The first adjustment mechanism 406 may include an upper plate portion 424, a lower plate portion 426, and a second plurality of support members 428. The upper plate portion 424 of the first adjustment mechanism 406 may be disposed adjacent to a lower surface of the upper plate 412 of the first frame assembly 402. The lower plate portion 426 of the first adjustment mechanism 406 may be disposed adjacent to an upper surface of the lower plate 414 of the first frame assembly 402. In some embodiments, the lower plate portion 426 may include a first plurality of guide recesses 430 defined in an upper surface thereof. Each guide recess 430 of the first plurality of guide recesses 430 may define a respective pathway in the upper surface of the lower plate portion 426 of the first adjustment mechanism 406. In some embodiments, the upper plate portion 424 of the first adjustment mechanism 406 may also include guide recesses (not shown). The second plurality of support members 428 may be connected to and may extend between the upper plate portion 424 and lower plate portion 426. The first adjustment mechanism 406 may be rotatable relative to the first frame assembly 402 of the chip collection tube 110 and about a central longitudinal axis 434 of the chip collection tube 110.
The first plurality of adjustable walls 404 may be disposed within an interior 436 of the first frame assembly 402 and may extend from the lower plate portion 426 of the first adjustment mechanism 406, through the hole 422 in the upper plate 412, and into the aperture 420 of the first tubular portion 410 of the first frame assembly 402. In some embodiments, at least a portion of the first plurality of adjustable walls 404 may extend out of an upper longitudinal end of the first tubular portion 410 of the first frame assembly 402. In other words, portions of the first plurality of adjustable walls 404 may extend above the first tubular portion 410 of the first frame assembly 402.
Each adjustable wall 404 of the first plurality of adjustable walls 404 may include a pivot side 442 and a swing side 444. Each adjustable wall 404 may further include at least one inner surface 446. The at least one inner surface 446 of each adjustable wall 404 may face the interior 436 of the first frame assembly 402 of the chip collection tube 110 and may at least partially define the inner diameter 408 of chip collection tube 110, as shown in
The pivot side 442 of each adjustable wall 404 of the first plurality of adjustable walls 404 may be rotatably mounted to the lower plate 414 of the first frame assembly 402, and each adjustable wall 404 of the first plurality of adjustable walls 404 may be rotatable about an axis that is at least substantially parallel to the central longitudinal axis 434 of the chip collection tube 110. For example, the first frame assembly 402 may include a first plurality of rod members 438 extending from the lower plate 414 to the upper plate 412 thereof, and the pivot side 442 of each adjustable wall 404 of the first plurality of adjustable walls 404 may be rotatably coupled to a respective rod member 438 of the first plurality of rod members 438, and each adjustable wall 404 of the first plurality of adjustable walls 404 may be rotatable about a respective rod member 438. Consequently, a swing side 444 of each adjustable wall 404 may be rotatable into the interior 436 of the first frame assembly 402, as shown in
In some embodiments, the at least one inner surface 446 of each adjustable wall 404 of the first plurality of adjustable walls 404 may have an at least substantially curved shape. In other words, the at least one inner surface 446 of each adjustable wall 404 may have at least some curvature (e.g., may be concave). For example, a curvature of the at least one inner surface 446 of each adjustable wall 404 may at least substantially match a curvature of a maximum inner diameter 408 of the chip collection tube 110. In other embodiments, the curvature of the at least one inner surface 446 of each adjustable wall 404 may at least substantially match a curvature of a minimum inner diameter 408 of the chip collection tube 110. In other embodiments, the curvature of the at least one inner surface 446 of each adjustable wall 404 may at least substantially match a curvature of an intermediate inner diameter 408 of the chip collection tube 110.
Referring to
Referring to
In some embodiments, when the first plurality of adjustable walls 404 is rotated into the interior 436 of the first frame assembly 402, the inner diameter 408 of the chip collection tube 110 defined by the inner surfaces 446 of the first plurality of adjustable walls 404 may not be centered about (e.g., may be offset from) the central longitudinal axis 434 of the chip collection tube 110. In other embodiments, when the first plurality of adjustable walls 404 is rotated into the interior 436 of the first frame assembly 402, the inner diameter 408 of the chip collection tube 110 may be at least substantially centered about the central longitudinal axis 434 (e.g., centerline) of the chip collection tube 110.
Referring still to
In some embodiments, the inner diameter 408 of the chip collection tube 110 may be manually adjusted by a user by rotating the first adjustment mechanism 406 relative the first frame assembly 402 and about the central longitudinal axis 434 of the chip collection tube 110. For example, the first adjustment mechanism 406 may have a plurality of positions that correlate to different chip 208 sizes, and a user can orient the first adjustment mechanism 406 in one of the plurality of positions depending on the size of the chips 208 (
It is understood that while a chip sorting device 100 (
Referring to
The second adjustment mechanism 606 may be disposed between the upper plate 612 and lower plate 614 of the second frame assembly 602. The second adjustment mechanism 606 may include a lower plate portion 626. The lower plate portion 626 of the second adjustment mechanism 606 may be disposed adjacent to an upper surface 628 of the lower plate 614 of the second frame assembly 602. In some embodiments, the lower plate portion 626 may include a second plurality of guide recesses 630 defined in an upper surface 632 thereof. Each guide recess 630 of the second plurality of guide recesses 630 may define a respective pathway in the upper surface 632 of the lower plate portion 626 of the second adjustment mechanism 606. The lower plate portion 626 may further include a hole 618c extending therethrough. The hole 618c may be at least substantially aligned with the holes 618a, 618b extending through the upper and lower plates 612, 614 of the second frame assembly 602 and the aperture 634 extending through the second tubular portion 610 of the second frame assembly 602. The lower plate portion 626 of the second adjustment mechanism 606 may include a third plurality of protrusions 636 that extend radially inward from an edge of the lower plate portion 626 defining the hole 618c extending through the lower plate portion 626. Similar to the first and second plurality of protrusions 620, 622, the third plurality of protrusions 636 may assist in preventing chips 208 (
Referring to
Referring again to
Each adjustable wall 604 of the second plurality of adjustable walls 604 may include a pivot side 648 and a swing side 650. The at least one inner surface 624 of each adjustable wall 604 may face the interior 646 of the second frame assembly 602 of the chip collection tube 110 and may at least partially define the inner diameter 408 (
The pivot side 648 of each adjustable wall 604 of the second plurality of adjustable walls 604 may be rotatably mounted to the lower plate 614 of the second frame assembly 602, and each adjustable wall 604 may be rotatable about an axis that is at least substantially parallel to the central longitudinal axis 434 (
Referring to
Referring to
In some embodiments, the first plurality of adjustable walls 404 and the second plurality of adjustable walls 604 may rotate in unison. In other words, the first plurality of adjustable walls 404 and the second plurality of adjustable walls 604 may define at least substantially the same inner diameter 408 (
In some embodiments, the chip collection tube 110 may have only a first plurality of adjustable walls 404 and may not include a second plurality of adjustable walls 604. In such embodiments, the first plurality of adjustable walls 404 may extend from the lower plate 414 of the first frame assembly 402 to the chip outlet portion 608 of the chip collection tube 110. Furthermore, in such embodiments, the chip collection tube 110 may include only a first adjustment mechanism 406.
In operation, a plurality of chips 208 may be inserted into the chip chamber 702 of the chip hopper 104 and the chip chamber 702 may rotate relative to the base plate 704. For example, the chip sorting device 100 (
The chips 208 may come to rest at a bottom of the chip chamber 702 and may be urged (e.g., by gravity and/or by a chip displacement device 738) to fall into individual circular holes 708 of the plurality of circular holes 708 of the separating wheel base 706. For example, the chip displacement device 738 may rotate relative to chip chamber 702 and separating wheel base 706 and may include displacement members 740 to move chips 208 (e.g., displace, stir, etc.) within the chip chamber 702 and urge the chips 208 into the plurality of circular holes 708 of the separating wheel base 706.
As the chips 208 are urged into the plurality of circular holes 708, the chip chamber 702 may be rotated and the separating wheel base 706 may slide the chips 208 within the plurality of circular holes 708 along a circumferential path on the upper surface 710 of the base plate 704 until the chips 208 are moved past the linear side 712 of the base plate 704 and over the chip conveyor unit 106. The chips 208 may then be delivered into a chip well 206 of an articulated link unit 204 of the chip conveyor unit 106. For example, the chips 208 may fall through the plurality of circular holes 708 and into a chip well 206 of an articulated link unit 204 of the chip conveyor unit 106. The chips 208 may then be delivered by the chip conveyor unit 106 to the plurality of chip ejection units 108 (
The relief mechanism 716 may include a top plate 718, a pusher 720, and an actuator 721. The relief mechanism 716 may act to remove chips 208 that become jammed (e.g., stuck) between the chip chamber 702 and the upper surface 710 of the base plate 704 of the chip hopper 104. For example, chips 208 may become stuck between the chip chamber 702 and the upper surface 710 of the base plate 704 by slipping at least partially beneath the chip chamber 702 and/or becoming wedged between the separating wheel base 706 and the base plate 704. Chips 208 may be caused to slip beneath the chip chamber 702 for many reasons such as, for example, when the chips 208 are misshaped due to normal wear and tear or when the chips 208 are dirty due to use. Chips 208 that become stuck between the chip chamber 702 and base plate 704 of the chip hopper 104 may continue to move with the chip chamber 702 as the chip chamber 702 rotates relative to the base plate 704 of the chip hopper 104.
The relief mechanism 716 may be oriented in the cutout 714 of the base plate 704 such that a top surface 722 of the top plate 718 of the relief mechanism 716 is as least substantially flush with the upper surface 710 of the base plate 704. The top plate 718 of the relief mechanism 716 may have substantially a same shape as the cutout 714 of the base plate 704, and the top plate 718 may at least substantially fill the cutout 714 of the base plate 704. The top plate 718 may include a base region 724, a plurality of teeth 726, and a plurality of slot voids 728 defined between the teeth 726. The plurality of teeth 726 may extend from the base region 724, and each of the plurality of slot voids 728 may be defined between adjacent teeth 726 of the plurality of teeth 726. The relief mechanism 716 may be oriented in the cutout 714 of the base plate 704 such that the teeth 726 of the top plate 718 of the relief mechanism 716 extend toward the chip conveyor unit 106 and in a direction at least generally perpendicular to the straight pathway portion of the chip conveyor unit 106. For example, the top plate 718 may have a comb-like structure.
The pusher 720 may be oriented generally beneath the top plate 718 and may include a plurality of fingers 730 that extends into the plurality of slot voids 728 between adjacent teeth 726 of the plurality of teeth 726 of the top plate 718 of the relief mechanism 716. The plurality of fingers 730 may slide along the longitudinal length of the slot voids 728 and grasp any chips 208 that may be present on the top surface 722 of the top plate 718 of the relief mechanism 716.
Referring to
In some embodiments, the top plate 718 of the relief mechanism 716 may be biased toward a position wherein the top surface 722 of the top plate 718 is at least substantially flush with the upper surface 710 of the base plate 704 of the chip hopper 104 (i.e., a non-lowered position). In such embodiments, any chips 208 that become stuck between the chip chamber 702 and the upper surface 710 of the base plate 704 of the chip hopper 104 may cause (e.g., force) the top plate 718 of the relief mechanism 716 to lower relative to the base plate 704 of the chip hopper 104. In other embodiments, the top plate 718 of the relief mechanism 716 may be lowered by the actuator 721 and the relief mechanism 716 may further include a sensor to sense when a chip 208 is stuck between the chip chamber 702 and the upper surface 710 of the base plate 704 of the chip hopper 104. In such embodiments, the actuator 721 may lower the top plate 718 of the relief mechanism 716 when the sensor senses a stuck chip 208. In yet other embodiments, the top plate 718 of the relief mechanism 716 may be biased toward a non-lowered position and may be lowered (e.g., forced downward away from the chip hopper 104) by a stuck chip 208 but may be further lowered by the actuator 721. For example, when the top plate 718 is pushed down by a stuck chip 208, the actuator 721 may cause the top plate 718 to further lower relative to the base plate 704 of the chip hopper 104. Regardless of how the top plate 718 is lowered, when a chip 208 that is stuck between the chip chamber 702 and the base plate 704 is moved over the top plate 718 of the relief mechanism 716 and the top plate 718 is lowered, the chip 208 may be moved into a chip well 206 of the chip conveyor unit 106 to avoid any further jamming of the chip chamber 702 (e.g., halting rotation of the chip chamber 702).
Furthermore, when the top plate 718 of the relief mechanism 716 is lowered, the plurality of fingers 730 of the pusher 720 may extend through the slot voids 728 of the top plate 718 and above the top surface 722 of the top plate 718 of the relief mechanism 716 in order to grasp chips 208 that may be present on the top surface 722 of the top plate 718 of the relief mechanism 716. Furthermore, when the top plate 718 of the relief mechanism 716 is lowered, the actuator 721 may move the plurality of fingers 730 of the pusher 720 along the slot voids 728 between the teeth 726 of the top plate 718 to push chips 208 across the top surface 722 of the top plate 718 and into a chip well 206 of an articulated link unit 204 of the chip conveyor unit 106. For example, the actuator 721 may move the plurality of fingers 730 of the pusher 720 through sweeping motions that include raising the plurality of fingers 730 of the pusher 720 above the top surface 722 of the top plate 718 near the base region 724 of the top plate 718, sliding the plurality of fingers 730 along the longitudinal lengths of the slot voids 728 while the plurality of fingers 730 are raised above the top surface 722 of the top plate 718, and dropping the plurality of fingers 730 beneath the top surface 722 of the top plate 718 once the plurality of fingers 730 reaches the chip conveyor unit 106, and bringing the plurality of fingers 730 back to the base region 724 of the top plate 718 while the plurality of fingers 730 is beneath the top surface 722 of the top plate 718 of the relief mechanism 716.
The embodiments of the disclosure described above and illustrated in the accompanying drawings do not limit the scope of the disclosure, which is encompassed by the scope of the appended claims and their legal equivalents. Any equivalent embodiments are within the scope of this disclosure. Indeed, various modifications of the disclosure, in addition to those shown and described herein, such as alternative useful combinations of the elements described, will become apparent to those skilled in the art from the description. Such modifications and embodiments also fall within the scope of the appended claims and equivalents.
This application is a continuation of U.S. patent application Ser. No. 15/092,427, filed Apr. 6, 2016, now U.S. Pat. No. 9,836,909, issued Dec. 5, 2017, the disclosure of which is hereby incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1200843 | Baur | Oct 1916 | A |
1241632 | Johnson | Oct 1917 | A |
1813296 | Kidwell | Jul 1931 | A |
1947456 | Bock | Feb 1934 | A |
2020293 | Adelstein | Nov 1935 | A |
2073789 | Gee | Mar 1937 | A |
2163351 | Paul | Jun 1939 | A |
2231093 | Seemel | Feb 1941 | A |
2904151 | Johnson | Sep 1959 | A |
3143118 | Haines | Aug 1964 | A |
3371761 | Ryo | Mar 1968 | A |
3387616 | Bortz et al. | Jun 1968 | A |
3435833 | Tanaka | Apr 1969 | A |
3463171 | Dolman | Aug 1969 | A |
3497047 | Mobley | Feb 1970 | A |
3583410 | Bayha et al. | Jun 1971 | A |
3625230 | Zschaeck et al. | Dec 1971 | A |
3680566 | Tanaka et al. | Aug 1972 | A |
3766452 | Burpee et al. | Oct 1973 | A |
3771538 | Reis | Nov 1973 | A |
3827582 | Lederer | Aug 1974 | A |
3902511 | Jacobs | Sep 1975 | A |
4010766 | Bowles et al. | Mar 1977 | A |
4060093 | Douno | Nov 1977 | A |
4098056 | Ozaki | Jul 1978 | A |
4102110 | Iizuka | Jul 1978 | A |
4157139 | Bjork | Jun 1979 | A |
4161381 | Sciortino | Jul 1979 | A |
4164232 | Nakai et al. | Aug 1979 | A |
4209960 | Deutschlander et al. | Jul 1980 | A |
4275751 | Bergman | Jun 1981 | A |
4360034 | Davila et al. | Nov 1982 | A |
4427389 | D'Andrade | Jan 1984 | A |
4531531 | Johnson et al. | Jul 1985 | A |
4543969 | Rasmussen | Oct 1985 | A |
4607649 | Taipale et al. | Aug 1986 | A |
4681128 | Ristvedt et al. | Jul 1987 | A |
4731043 | Ristvedt et al. | Mar 1988 | A |
4775354 | Rasmussen et al. | Oct 1988 | A |
4863414 | Ristvedt et al. | Sep 1989 | A |
4902263 | Ito et al. | Feb 1990 | A |
4966570 | Ristvedt et al. | Oct 1990 | A |
5011455 | Rasmussen | Apr 1991 | A |
5011456 | Kobayashi et al. | Apr 1991 | A |
5022889 | Ristvedt et al. | Jun 1991 | A |
5042810 | Williams | Aug 1991 | A |
5074434 | Maki | Dec 1991 | A |
5141443 | Rasmussen et al. | Aug 1992 | A |
5166502 | Rendleman et al. | Nov 1992 | A |
5207612 | Wollaston | May 1993 | A |
5277651 | Rasmussen et al. | Jan 1994 | A |
5406264 | Plonsky et al. | Apr 1995 | A |
5460295 | Law | Oct 1995 | A |
5472074 | Milcetic | Dec 1995 | A |
5531331 | Barnett | Jul 1996 | A |
5538468 | Ristvedt et al. | Jul 1996 | A |
5551542 | Stockli | Sep 1996 | A |
5607352 | Tani | Mar 1997 | A |
5624308 | Rumbach | Apr 1997 | A |
5651548 | French et al. | Jul 1997 | A |
5735742 | French | Apr 1998 | A |
5755618 | Mothwurf | May 1998 | A |
5757876 | Dam et al. | May 1998 | A |
5770533 | Franchi | Jun 1998 | A |
5781647 | Fishbine et al. | Jul 1998 | A |
5827117 | Naas | Oct 1998 | A |
5836583 | Towers | Nov 1998 | A |
5865673 | Geib et al. | Feb 1999 | A |
5895321 | Gassies et al. | Apr 1999 | A |
5931732 | Abe et al. | Aug 1999 | A |
5933244 | Kiritchenko | Aug 1999 | A |
5947257 | Schwartz | Sep 1999 | A |
5950796 | Kobayashi | Sep 1999 | A |
5957262 | Molbak et al. | Sep 1999 | A |
5957776 | Hochne | Sep 1999 | A |
6021949 | Boiron | Feb 2000 | A |
6030284 | Frank | Feb 2000 | A |
6075217 | Kiritchenko | Jun 2000 | A |
6080056 | Karlsson | Jun 2000 | A |
6099402 | Abe | Aug 2000 | A |
6139418 | Geib et al. | Oct 2000 | A |
6168001 | Davis | Jan 2001 | B1 |
6186895 | Oliver | Feb 2001 | B1 |
6193599 | Kurosawa et al. | Feb 2001 | B1 |
6260757 | Strisower | Jul 2001 | B1 |
6264109 | Chapet et al. | Jul 2001 | B1 |
6283856 | Mothwurf | Sep 2001 | B1 |
6296190 | Rendleman | Oct 2001 | B1 |
6313871 | Schubert | Nov 2001 | B1 |
6318536 | Korman | Nov 2001 | B1 |
6381294 | Britton | Apr 2002 | B1 |
6425817 | Momemy | Jul 2002 | B1 |
6464584 | Oliver | Oct 2002 | B2 |
6506115 | Mothwurf | Jan 2003 | B1 |
6532297 | Lindquist | Mar 2003 | B1 |
6540602 | Adams et al. | Apr 2003 | B2 |
6567159 | Corech | May 2003 | B1 |
6572474 | Rudd | Jun 2003 | B2 |
6581747 | Charlier et al. | Jun 2003 | B1 |
6592445 | Lee | Jul 2003 | B2 |
6629591 | Griswold et al. | Oct 2003 | B1 |
6733388 | Mothwurf | May 2004 | B2 |
6753830 | Gelbman | Jun 2004 | B2 |
6772870 | Sugai et al. | Aug 2004 | B2 |
6776702 | Ashford et al. | Aug 2004 | B1 |
6976589 | De Raedt et al. | Dec 2005 | B2 |
7004831 | Hino et al. | Feb 2006 | B2 |
7014554 | Fletcher et al. | Mar 2006 | B1 |
7028826 | De Raedt et al. | Apr 2006 | B2 |
7066335 | Aas et al. | Jun 2006 | B2 |
7201268 | DeMeutter et al. | Apr 2007 | B2 |
7244175 | Adams et al. | Jul 2007 | B2 |
7681708 | De Raedt et al. | Mar 2010 | B2 |
7704133 | Adams et al. | Apr 2010 | B2 |
7861868 | Blaha et al. | Jan 2011 | B2 |
7926638 | O'Byrne | Apr 2011 | B2 |
7934980 | Blaha et al. | May 2011 | B2 |
7992720 | Blaha et al. | Aug 2011 | B2 |
8006847 | Blaha et al. | Aug 2011 | B2 |
8202144 | Hino et al. | Jun 2012 | B2 |
8298052 | DeRaedt et al. | Oct 2012 | B2 |
8336699 | Blaha et al. | Dec 2012 | B2 |
8393942 | Blaha et al. | Mar 2013 | B2 |
8678164 | DeRaedt et al. | Mar 2014 | B2 |
8757349 | Blaha et al. | Jun 2014 | B2 |
9105140 | Enomoto | Aug 2015 | B2 |
20020061724 | Nomura | May 2002 | A1 |
20020074209 | Karlsson | Jun 2002 | A1 |
20030019716 | Sugai et al. | Jan 2003 | A1 |
20030111395 | Aas et al. | Jun 2003 | A1 |
20040149539 | De Raedt et al. | Aug 2004 | A1 |
20040238320 | Hino et al. | Dec 2004 | A1 |
20050142998 | Enomoto et al. | Jun 2005 | A1 |
20050155838 | Raedt et al. | Jul 2005 | A1 |
20050176360 | Abe | Aug 2005 | A1 |
20050280212 | Blaha et al. | Dec 2005 | A1 |
20060113161 | Umeda | Jun 2006 | A1 |
20060281397 | Sanchis Franch et al. | Dec 2006 | A1 |
20070099553 | Blaha et al. | May 2007 | A1 |
20070212996 | Ryou | Sep 2007 | A1 |
20090047899 | Adams et al. | Feb 2009 | A1 |
20100230233 | De Raedt et al. | Sep 2010 | A1 |
20110001290 | Blaha et al. | Jan 2011 | A9 |
20110105002 | Blaha et al. | May 2011 | A1 |
20110207390 | Blaha et al. | Aug 2011 | A1 |
20110306284 | Blaha et al. | Dec 2011 | A1 |
20130102236 | Blaha et al. | Apr 2013 | A1 |
20130205723 | Blake et al. | Aug 2013 | A1 |
20140170948 | Enomoto | Jun 2014 | A1 |
20140194045 | Fischer et al. | Jul 2014 | A1 |
20140202825 | DeRaedt et al. | Jul 2014 | A1 |
20140302762 | Blaha et al. | Oct 2014 | A1 |
20150140912 | Chein et al. | May 2015 | A1 |
20150302678 | Blake et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
006405 | Oct 2003 | AT |
006546 | Dec 2003 | AT |
007854 | Oct 2005 | AT |
2090073 | Aug 1994 | CA |
2229054 | Aug 1996 | CA |
2229053 | Oct 1996 | CA |
3144327 | May 1983 | DE |
4240886 | Jul 1994 | DE |
615216 | Sep 1994 | EP |
0424355 | Nov 1994 | EP |
0631260 | Dec 1994 | EP |
0757582 | Feb 1997 | EP |
0806020 | Dec 1998 | EP |
1080348 | Aug 2002 | EP |
0823041 | Sep 2002 | EP |
0950989 | Sep 2003 | EP |
1050024 | Mar 2004 | EP |
2497068 | May 2011 | EP |
2960875 | Dec 2015 | EP |
2749093 | Jul 1998 | FR |
2752078 | Oct 1998 | FR |
359036 | Oct 1931 | GB |
720707 | Dec 1954 | GB |
1255492 | Dec 1971 | GB |
1571219 | Jul 1980 | GB |
2061490 | May 1981 | GB |
2198274 | Jun 1988 | GB |
2203582 | Oct 1988 | GB |
2254419 | Oct 1992 | GB |
2333632 | Jul 1999 | GB |
1094A001040 | Dec 1994 | IT |
1999096426 | Apr 1999 | JP |
9117842 | Nov 1991 | WO |
9211953 | Jul 1992 | WO |
9528996 | Nov 1995 | WO |
9623281 | Aug 1996 | WO |
9634258 | Oct 1996 | WO |
9938126 | Jul 1999 | WO |
9960353 | Nov 1999 | WO |
03049045 | Jun 2003 | WO |
03103860 | Dec 2003 | WO |
2004009256 | Jan 2004 | WO |
2004069431 | Aug 2004 | WO |
2008046561 | Apr 2008 | WO |
2011051700 | May 2011 | WO |
Entry |
---|
Chipmaster Training handouts from Jan. 1994 (author unknown), 65 pages. |
Cover sheet of 1993 video tape describing the Chipmaster (author unknown), 1 page. |
Trial installation of Chipmaster at Holland Casinos, report by Christian Pohanka, Sep. 29, 1993, 5 pages. |
Huxley's advertisement for Chipmaster: Huxley's count on the Chipmaster deal, (“Casino World” is distributed in the U.S.) Mar. 1994 (author unknown), 1 page. |
International Search Report for International Application No. PCT/EP2017/057593, dated Oct. 4, 2017, 6 pages. |
International Written Opinion for International Application No. PCT/EP2017/057593, dated Oct. 4, 2017, 12 pages. |
Show report for Chipmaster in Monte Carlo by Christian Pohanka, Mar. 23, 1993, 4 pages. |
International Partial Search Report and Provisional Opinion for International Application No. PCT/EP2017/057593, dated Jul. 10, 2017, 13 pages. |
Photograph of first Chipmaster installation at Casino Baden (Austria), Jan. 4, 2004 (photographer unknown), 1 page. |
Photograph of first Chipmaster installation at Holland Casinos, Jan. 4, 2004 (photographer unknown), 1 page. |
Photographs of Chipmaster in Paulson Booth at Apr. 26-27, 1994 Show (photographer unknown), 4 pages. |
Photograph of first Chipmaster installation at Valencia (Spain), Jan. 4, 2004 (photographer unknown), 1 page. |
Photograph of Chipmaster production at VICOMA, Vienna, Jan. 4, 2005 (photographer unknown), 1 page. |
Report from Spain regarding Chipmaster by Christina Pohanka, Sep. 26, 1993, 5 pages. |
U.S. Appl. No. 15/092,427, filed Apr. 6, 2016, titled “Chip Sorting Devices and Related Assemblies, Components and Methods”, to Krenn, 47 pages. |
Visit report Casino Picayo—Valencia—Spain from Sep. 24, 1993, (author unknown), 2 pages. |
Number | Date | Country | |
---|---|---|---|
20180075684 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15092427 | Apr 2016 | US |
Child | 15822585 | US |