The nine above-identified patent applications are hereby incorporated herein by reference.
This invention relates to signal transmissions in general, and more particularly to the transmission of optical signals.
The quality and performance of a digital fiber optic transmitter is determined by the distance over which the transmitted digital signal can propagate without severe distortions. The bit error rate (BER) of the signal is measured at a receiver after propagation through dispersive fiber and the optical power required to obtain a certain BER, typically 10−12, sometimes called the sensitivity, is determined. The difference in sensitivity at the output of the transmitter with the sensitivity after propagation is sometimes called dispersion penalty. This is typically characterized by the distance over which a dispersion penalty reaches a level of ˜1 dB. A standard 10 Gb/s optical digital transmitter, such as an externally modulated source, can typically transmit up to a distance of ˜50 km in standard single mode fiber at 1550 nm before the dispersion penalty reaches the level of ˜1 dB, which is sometimes called the dispersion limit. The dispersion limit is determined by the fundamental assumption that the digital signal is transform limited, i.e., the signal has no time varying phase across its bits and has a bit period of 100 ps, or 1/(bit rate), for the standard 10 Gb/s transmission. Another measure of the quality of a transmitter is the absolute sensitivity after fiber propagation.
Three types of optical transmitters are presently in use in prior art fiber optic systems: (i) directly modulated lasers (DML), (ii) Electroabsorption Modulated Lasers (EML), and (iii) Externally Modulated Mach Zhender (MZ) modulators. For transmission in standard single mode fiber at 10 Gb/s, and 1550 nm, it has generally been assumed that MZ modulators and EML can have the longest reach, typically reaching 80 km. Using a special coding scheme, sometimes referred to as phase shaped duobinary, MZ transmitters can reach 200 km. On the other hand, directly modulated lasers (DML) reach <5 km because their inherent time dependent chirp causes severe distortion of the signal after this distance.
By way of example, various systems for long-reach lightwave data transmission (>80 km at 10 Gb/s) through optical fibers which increase the reach of DML to >80 km at 10 Gb/s in single mode fiber are disclosed in (i) U.S. patent application Ser. No. 11/272,100, filed Nov. 8, 2005 by Daniel Mahgerefteh et al. for POWER SOURCE FOR A DISPERSION COMPENSATION FIBER OPTIC SYSTEM (Attorney's Docket No. TAYE-59474-00006 CON), (ii) U.S. patent application Ser. No. 11/441,944, filed May 26, 2006 by Daniel Mahgerefteh et al. for FLAT DISPERSION FREQUENCY DISCRIMINATOR (FDFD) (Attorney's Docket No. TAYE-59474-00009 CON) and (iii) U.S. patent application Ser. No. 10/308,522, filed Dec. 3, 2002 by Daniel Mahgerefteh et al. for HIGH-SPEED TRANSMISSION SYSTEM COMPRISING A COUPLED MULTI-CAVITY OPTICAL DISCRIMINATOR (Attorney's Docket No. TAYE-59474-00007), which patent applications are hereby incorporated herein by reference. The transmitter associated with these novel systems is sometimes referred to as a Chirp Managed Laser (CML™) by Azna LLC of Wilmington, Mass. In these new systems, a Frequency Modulated (FM) source is followed by an Optical Spectrum Reshaper (OSR) which uses the frequency modulation to increase the amplitude modulated signal and partially compensate for dispersion in the transmission fiber. In one embodiment, the frequency modulated source may comprise a Directly Modulated Laser (DML). The Optical Spectrum Reshaper (OSR), sometimes referred to as a frequency discriminator, can be formed by an appropriate optical element that has a wavelength-dependent transmission function, e.g., a filter. The OSR can be adapted to convert frequency modulation to amplitude modulation. See
In the pending patent applications identified above, we have shown that the frequency modulation of the signal should be adjusted so that it is ˜½ times the bit rate of operation, e.g., approximately 5 GHz for a 10 Gb/s digital signal, as an example for extending the reach of the chirp managed laser transmitter in dispersive fiber. This prescription ensures that the relative phase of 1 bits separated by an odd number of 0 bits is π out of phase with each other, such that the bits interfere destructively in the middle of the 0 bit after they propagate in dispersive fiber.
We have recently discovered that the overall bit error rate of the transmitted signal can be further reduced, and the transmission length through dispersive fiber can be further increased, if the frequency excursion of the modulated signal is adjusted to have the following relation to the fiber length, bit rate and dispersion:
D×L×ΔνAD˜T. (1)
Here D is the dispersion of the fiber in ps/GHz/km, L is fiber length in km, ΔνAD is the frequency excursion of the transmitted signal at the output of the chirp managed laser in GHz, and T is the bit period in picoseconds.
In one preferred embodiment of the present invention, there is provided a fiber optic communication system comprising:
In another preferred embodiment of the present invention, there is provided a fiber optic communication system comprising:
In another preferred embodiment of the present invention, there is provided a fiber optic communication system comprising:
In another preferred embodiment of the present invention, there is provided a method for transmitting a binary base signal through an optical fiber, comprising:
These and other objects, features and advantages of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
In accordance with the present invention, it has now been discovered that the overall bit error rate of the transmitted signal can be further reduced, and the transmission length through dispersive fiber can be further increased, if the frequency excursion of the modulated signal is adjusted to have the following relation to the fiber length, bit rate and dispersion:
D×L×ΔνAD˜T. (1)
Here D is the dispersion of the fiber in ps2/km, L is fiber length in km, ΔνAD is the frequency excursion of the transmitted signal at the output of the chirp managed laser in GHz, and T is the bit period in picoseconds.
The increased distance may come at the cost of reducing the bit error rate at the transmitter output. More particularly, Equation (1) states that the optimum frequency excursion for the transmitted signal is to be chosen for a particular dispersion such that the blue shifted frequency of the chirp is translated by one bit. Note that our simulations and experiments show that the transmitted signal is error free for all distances less then L. In addition, the optical eye diagram, which is a graphical representation of the integrity of the digital bit sequence, remains open and the data is recognizable for all lengths below L, as given by Equation (1). So given a particular chirp, ΔνAD, Equation (1) predicts the maximum distance that can be transmitted error free, but not necessarily the optimum distance.
The bit error rate of a random digital bit sequence is determined by the sum of the bit error rates of all of the different bit sequences. Typically certain bits have higher probability of error than other bits because of the frequency content. For example, a 1 bit in the middle of a long string of 1s, such as 1111, at 10 Gb/s tends to have a lower bit error rate than a 0 bit between two 1 bits, i.e., 101. The value of the frequency excursion (i.e., chirp) is therefore adjusted so as to reduce the error probability for the bit sequences that are most likely to produce errors. In our previous work, the condition that the chirp, ΔνAD=5 GHz (for a 10 Gb/s signal) mostly effectively reduces the error probability of the 101 bit sequence. We have found that the destructive interference in the 0 bit of the 101 bit sequence is quite tolerant to the exact value of chirp, because of the insensitivity of the cos2(φ) function, which determines the intensity of the destructive interference term, where φ is the phase difference between the 1 bits.
For longer distances, isolated 1 bits (such as 010) are more likely to generate errors. The new condition of Equation (1) is therefore designed to reduce the distortions of the isolated 1 bit (for example, in the string 010). As shown in
As an example of the application of the prescription of Equation (1), we have demonstrated in simulation that the optimum value of frequency excursion at 40 Gb/s is 12 GHz for a maximum distance of 17 km and a dispersion of 17 ps/nm/km. Similar relations as in Equation (1) hold for the case of 2.5 Gb/s and >1000 km transmission in fibers with dispersion of 17 ps/nm/km.
It will be understood that many changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the nature of the invention, may be made by those skilled in the art without departing from the principles and scope of the present invention.
This patent application: (i) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/272,100, filed Nov. 8, 2005 by Daniel Mahgerefteh et al. for POWER SOURCE FOR A DISPERSION COMPENSATION FIBER OPTIC SYSTEM (Attorney's Docket No. TAYE-59474-00006 CON); (ii) is a continuation-in-part of pending prior U.S. patent application Ser. No. 10/308,522, filed Dec. 3, 2002 by Daniel Mahgerefteh et al. for HIGH-SPEED TRANSMISSION SYSTEM COMPRISING A COUPLED MULTI-CAVITY OPTICAL DISCRIMINATOR (Attorney's Docket No. TAYE-59474-00007); (iii) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/441,944, filed May 26, 2006 by Daniel Mahgerefteh et al. for FLAT DISPERSION FREQUENCY DISCRIMINATOR (FDFD) (Attorney's Docket No. TAYE-59474-00009 CON); (iv) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/068,032, filed Feb. 28, 2005 by Daniel Mahgerefteh et al. for OPTICAL SYSTEM COMPRISING AN FM SOURCE AND A SPECTRAL RESHAPING ELEMENT (Attorney's Docket No. TAYE-31); (v) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/084,630, filed Mar. 18, 2005 by Daniel Mahgerefteh et al. for FLAT-TOPPED CHIRP INDUCED BY OPTICAL FILTER EDGE (Attorney's Docket No. TAYE-34); (vi) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/702,436, filed Feb. 5, 2007 by Kevin McCallion et al. for MULTI-RING RESONATOR IMPLEMENTATION OF OPTICAL SPECTRUM RESHAPER FOR CHIRP MANAGED LASER TECHNOLOGY (Attorney's Docket No. TAYE-23 RR CON); (vii) is a continuation-in-part of pending prior U.S. patent application Ser. No. 11/084,633, filed Mar. 18, 2005 by Daniel Mahgerefteh et al. for METHOD AND APPARATUS FOR TRANSMITTING A SIGNAL USING SIMULTANEOUS FM AND AM MODULATION (Attorney's Docket No. TAYE-33); (viii) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/853,867, filed Oct. 24, 2006 by Kevin McCallion et al. for SPECTRAL RESPONSE MODIFICATION VIA SPATIAL FILTERING WITH OPTICAL FIBER (Attorney's Docket No. TAYE-47B PROV); and (ix) claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 60/789,859, filed Apr. 8, 2006 by Yasuhiro Matsui for HUNT FOR THE BEST PULSE SHAPE (Attorney's Docket No. TAYE-72 PROV).
Number | Date | Country | |
---|---|---|---|
60853867 | Oct 2006 | US | |
60789859 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11272100 | Nov 2005 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 10308522 | Dec 2002 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 11441944 | May 2006 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 11068032 | Feb 2005 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 11084630 | Mar 2005 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 11702436 | Feb 2007 | US |
Child | 11784411 | Apr 2007 | US |
Parent | 11084633 | Mar 2005 | US |
Child | 11784411 | Apr 2007 | US |