This invention relates to a choke valve particularly suited for use in sub-sea applications, having temperature sensing transmitters.
A choke valve is a throttling device. It is commonly used as part of an oil or gas field wellhead. It functions to reduce the pressure of the fluid flowing through the valve. Choke valves are placed on the production “tree” of an oil or gas wellhead assembly to control the flow of produced fluid from a reservoir into the production flow line. They are used on wellheads located on land and offshore, as well as on wellheads located beneath the surface of the ocean.
Choke valves common to oil and gas field use are generally described in U.S. Pat. No. 4,540,022, issued Sep. 10, 1985, to Cove and U.S. Pat. No. 5,431,188, issued Jul. 11, 1995 to Cove. Both patents are commonly owned by Master Flo Valve, Inc., the assignee of the present application.
In general, chokes involve:
There are four main types of flow trim commonly used in commercial chokes. Each flow trim involves a port-defining member, a movable member for throttling the port, and seal means for implementing a total shut-off. These four types of flow trim can be characterized as follows:
In each of the above, the flow trim is positioned within the choke valve at the intersection of the choke valve's inlet and outlet. In most of the valves, the flow trim includes a stationary tubular cylinder referred to as a “cage”, positioned transverse to the inlet and having its bore axially aligned with the outlet. The cage has restrictive flow ports extending through its sidewall. Fluid enters the cage from the choke valve inlet, passes through the ports and changes direction to leave the cage bore through the valve outlet.
Such a flow trim also includes a tubular throttling sleeve that slides over the cage. The sleeve acts to reduce or increase the area of the ports. An actuator, such as a threaded stem assembly, is provided to bias the sleeve back and forth along the cage. The rate that fluid passes through the flow trim is dependent on the relative position of the sleeve on the cage and the amount of port area that is revealed by the sleeve.
Maintenance on the deep sub-sea wellhead assemblies cannot be performed manually. An unmanned, remotely operated vehicle, referred to as an “ROV”, is used to approach the wellhead and carry out maintenance functions. To aid in servicing sub-sea choke valves, choke valves have their internal components, including the flow trim, assembled into a modular sub-assembly. The sub-assembly is referred to as an “insert assembly” and is inserted into the choke valve body and clamped into position.
A typical prior art sub-sea choke valve 1 is shown in
The choke valve “sees” or experiences relatively high and relatively low fluid pressures. More particularly, the fluid flowing in through the valve body inlet 4 from the well (not shown) has a high pressure. When the fluid passes through the restrictive cage ports 16, it undergoes a considerable pressure drop. Thus, the fluid passing through the cage bore 17 and the valve body outlet 5 is at a lower pressure than that in the body inlet 4.
When the flow trim 10 becomes worn beyond its useful service life due to erosion and corrosion caused by particles and corrosive agents in the produced substances, an ROV is used to approach the choke valve 1, unclamp the insert assembly 7 from the choke valve body 2 and attach a cable to the insert assembly 7, so that it may be raised to the surface for replacement or repair. The ROV then installs a new insert assembly 7 and clamps it into position. This procedure eliminates the need to raise the whole wellhead assembly to the surface to service a worn choke valve.
In order to efficiently produce a reservoir, it is necessary to monitor the flow rate of the production fluid. This is done to ensure that damage to the formation does not occur and to ensure that well production is maximized. This process has been, historically, accomplished through the installation of pressure and temperature transmitters into the flow lines upstream and downstream of the choke valve. The sensor information is then sent to a remote location for monitoring, so that a choke valve controller can remotely bias the flow trim to affect the desired flow rate. The controller sends electrical signals to means, associated with the choke valve, for adjusting the flow trim.
A problem exists with this process due to the unreliable nature of these electronic sensors, which have a limited service life. Replacing the sensors after they have served their useful life has heretofore required that the whole wellhead assembly be raised to the surface. This is a time-consuming and costly operation that shuts down well production for the duration of the repair.
When dealing with 100 percent liquid flow upstream and downstream pressure data, combined with a calibrated choke valve is sufficient to determine flow rate. This is not the case when considering gaseous production fluids. Due to the highly compressible nature of gasses, temperature data is also required in order to determine the production flow rate. Currently, temperature sensors and transmitters for sub-sea choke valves are located somewhat distant (i.e., upstream and/or downstream) of the choke valve itself. U.S. Pat. No. 6,460,621, issued Oct. 8, 2002 to Fenton et al., describes a sub-sea wellhead which uses pressure and temperature sensors located upstream and downstream of the choke valve.
U.S. patent application Ser. No. 10/060,559/published as 2003/0141072 on Jul. 31, 2003, and assigned to Master Flo Valve Inc., describes a sub-sea choke valve with pressure transmitters. As indicated above, it is advantageous to also measure temperature at the choke valve in order to calculate the flow rate when considering gas flows.
There is still a need for a choke valve that eliminates the need to raise the sub-sea wellhead assembly to the surface to replace or repair temperature transmitters.
The invention provides a choke valve useful for sub-sea application, of the type having a valve body forming a bore extending therethrough which provides a body inlet, a body outlet and an insert chamber therebetween, and a removable insert assembly positioned in the insert chamber. The insert assembly includes a tubular cartridge having a side wall forming an internal bore and having a port communicating with the body inlet, whereby high pressure fluid enters through the body inlet; a bonnet connected with and closing the upper ends of the cartridge and the body, the bonnet being disengagably connected with the body, and a pressure reducing flow trim positioned in the cartridge bore, the flow trim having a restrictive opening whereby fluid from the body inlet may enter the flow trim at reduced pressure and pass through the body outlet. The valve further includes at least one temperature transmitter carried by the tubular cartridge, and having a temperature sensing component for measuring the temperature at a location in the tubular cartridge and for transmitting signals indicative thereof.
Preferably, the choke valve includes two temperature transmitters, a first temperature transmitter located within the tubular cartridge and having a temperature sensing component located adjacent the body inlet, for measuring the temperature at body inlet and for transmitting signals indicative thereof; and a second temperature transmitter located within the tubular cartridge and having a temperature sensing component located adjacent the body outlet, for measuring the temperature at the body outlet and for transmitting signals indicative thereof.
Most preferably, the choke valve further comprises one or more pressure transmitters for measuring the pressure across the choke valve.
Having reference to
The choke valve of the present invention includes at least one, and preferably two, temperature transmitters 23, 24 carried on the tubular cartridge 8, to measure and transmit temperatures at those locations on the cartridge 8. Most preferably, the invention includes an upstream temperature transmitter 23 and a downstream temperature transmitter 24, with the temperature sensors being located adjacent the body inlet and the body outlet respectively.
The temperature transmitters 23, 24 include temperature sensors 25 such as any standard temperature probe, thermocouples, resistance temperature devices (RTD's), integrated circuits, thermistors etc., with signal conducting wires that are encased in a corrosion resistant metallic sheath 26. Thus the transmitters 23, 24 are functional to both measure the temperature and convert to a signal which is transmitted to the surface for remote monitoring. Exemplary temperature transmitters are available from Conax Buffalo Technologies, Buffalo, N.Y., U.S.A.
The temperature sensors 23, 24 are carried by the cartridge 8 to predetermined locations adjacent to one or both of the body inlet 4 and the body outlet 5 or other points, most preferably directly adjacent the inlet 4 and/or outlet 5, in order to measure the temperature directly at locations within the choke valve 1, and thus provide the most reliable and useful temperature information. These metallic sheaths 26 run the length of the cartridge 8 and extend up to the wetted surface of the bonnet 14. Because the cartridge 8 is part of the retrievable insert 7 and the sensors 25 are embedded in this component, the whole temperature probe system becomes retrievable. The sheaths 26 run through high pressure metal compression fittings in order to preserve the valve bonnet environmental seal. Each sheath 26 runs though the bonnet 14 and terminates shortly after exiting the bonnet 14, thus leaving only shielded conducting wires to transmit temperature signals the remaining distance to a local receiving unit. This manner of locating the temperature transmitters 23, 24 within directly on the cartridge 8 itself also maintains the transmitters 23, 24, as far as possible, away from the eroding, high pressure fluid moving through the valve 1. Also, by locating the temperature transmitters 23, 24 on the cartridge 8, they can be easily retrieved with the rest of the choke insert 7. This ensures that they can be replaced or repaired economically by bringing the choke insert 7 to the surface.
The choke valve of the present invention preferably includes one or more pressure transmitters (not shown) located to measure and transmit the pressure at the choke valve in order to provide meaningful measurements to calculate the flow rate in the choke valve. The pressure transmitters are most preferably as described and as located in published U.S. patent application Ser. No. 10/060,559, published as U.S. 2003/0141072 on Jul. 31, 2003, and commonly owned by the assignee of this patent application.
While the present invention has been described with reference to a particular sub-sea choke valve that includes a cage with external sleeve flow trim, it has broad application to other styles of choke valves, including needle and seat flow trim, cage with internal plug flow trim and multiple port disc flow trim when in an insert retrievable configuration. All of these valves include a tubular cage or cartridge, in which the temperature transmitters can be located, as described hereinabove. Thus, it should be understood that the claims of the present invention, which refer to a tubular cartridge and external sleeve flow trim, are meant to encompass such other type of valves.
All publications mentioned in this specification are indicative of the level of skill in the art of this invention. All publications are herein incorporated by reference to the same extent as if each publication was specifically and individually indicated to be incorporated by reference.
The terms and expressions in this specification are, unless otherwise specifically defined herein, used as terms of description and not of limitation. There is no intention, in using such terms and expressions, of excluding equivalents of the features illustrated and described, it being recognized that the scope of the invention is defined and limited only by the claims which follow.