Choked microwave antenna

Information

  • Patent Grant
  • 12318133
  • Patent Number
    12,318,133
  • Date Filed
    Friday, August 7, 2020
    4 years ago
  • Date Issued
    Tuesday, June 3, 2025
    9 days ago
Abstract
A microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween. A radiating portion is also included having an unbalanced dipole antenna including a proximal portion and a distal portion that are of different lengths. The proximal portion includes at least a portion of the inner conductor and the inner insulator and the distal portion includes a conductive member.
Description
BACKGROUND
1. Technical Field

The present disclosure relates generally to microwave applicators used in tissue ablation procedures. More particularly, the present disclosure is directed to a microwave applicator having either a liquid or solid loaded tip dipole antenna.


2. Background of Related Art

Treatment of certain diseases requires destruction of malignant tissue growths (e.g., tumors). It is known that tumor cells denature at elevated temperatures that are slightly lower than temperatures injurious to surrounding healthy cells. Therefore, known treatment methods, such as hyperthermia therapy, heat tumor cells to temperatures above 41° C., while maintaining adjacent healthy cells at lower temperatures to avoid irreversible cell damage. Such methods involve applying electromagnetic radiation to heat tissue and include ablation and coagulation of tissue. In particular, microwave energy is used to coagulate and/or ablate tissue to denature or kill the cancerous cells.


Microwave energy is applied via microwave ablation antennas that penetrate tissue to reach tumors. There are several types of microwave antennas, such as monopole and dipole. In monopole and dipole antennas, microwave energy radiates perpendicularly from the axis of the conductor. A monopole antenna includes a single, elongated microwave conductor. Dipole antennas may have a coaxial construction including an inner conductor and an outer conductor separated by a dielectric portion. More specifically, dipole microwave antennas may have a long, thin inner conductor that extends along a longitudinal axis of the antenna and is surrounded by an outer conductor. In certain variations, a portion or portions of the outer conductor may be selectively removed to provide for more effective outward radiation of energy. This type of microwave antenna construction is typically referred to as a “leaky waveguide” or “leaky coaxial” antenna.


Conventional microwave antennas have a narrow operational bandwidth, a wavelength range at which optimal operational efficiency is achieved, and hence, are incapable of maintaining a predetermined impedance match between the microwave delivery system (e.g., generator, cable, etc.) and the tissue surrounding the microwave antenna. More specifically, as microwave energy is applied to tissue, the dielectric constant of the tissue immediately surrounding the microwave antenna decreases as the tissue is cooked. The drop causes the wavelength of the microwave energy being applied to tissue to increase beyond the bandwidth of the antenna. As a result, there is a mismatch between the bandwidth of conventional microwave antenna and the microwave energy being applied. Thus, narrow band microwave antennas may detune hindering effective energy delivery and dispersion.


SUMMARY

According to one aspect of the present disclosure a microwave antenna assembly is disclosed. The antenna assembly includes an unbalanced dipole antenna, a shorted choke having a dielectric layer extending past the conductor layer and connection hub coupled to a coolant system for circulating a dielectric coolant fluid through the antenna assembly.


According to another aspect of the present disclosure a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween. A radiating portion is included which has an unbalanced dipole antenna having a proximal portion and a distal portion that is longer than the proximal portion. The proximal portion includes at least a portion of the inner conductor and the inner insulator and the distal portion includes a conductive member. The antenna assembly also includes a choke disposed around at least a portion of the feedline. The choke includes an inner dielectric layer and an outer conductive layer, wherein the outer conductive layer is shorted to the outer conductor of the feedline and the inner dielectric layer extends past the outer conductive layer. The assembly further includes a sheath disposed over the feedline and the radiating portion, the sheath defines a chamber around the feedline and the radiating portion, the chamber being adapted to circulate dielectric coolant fluid therethrough.


According to a further aspect of the present disclosure a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including an unbalanced dipole antenna having a proximal portion and a distal portion that are of different lengths. The proximal portion includes at least a portion of the inner conductor and the inner insulator and the distal portion includes a conductive member. The antenna assembly also includes a choke disposed around at least a portion of the feedline. The choke includes an inner dielectric layer and an outer conductive layer, wherein the outer conductive layer is shorted to the outer conductor of the feedline and the inner dielectric layer extends past the outer conductive layer. The antenna assembly further includes a coolant jacket disposed over the feedline defining a proximal chamber around the feedline, the chamber being adapted to circulate dielectric coolant fluid therethrough and a solid dielectric loading having central cavity defined therein adapted to fit about the radiating portion, the solid dielectric loading extending from the coolant jacket.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic diagram of a microwave ablation system according to an embodiment of the present disclosure;



FIG. 2 is a perspective cross-sectional view of a microwave antenna assembly according to the present disclosure;



FIG. 3 is an enlarged cross-sectional of a portion of the microwave antenna assembly of FIG. 2;



FIG. 4 is an enlarged cross-sectional of a portion of the microwave antenna assembly of FIG. 2;



FIG. 5 is a side view of a distal portion of a feedline of the microwave antenna assembly of FIG. 2;



FIG. 6 is a schematic illustration of a balanced dipole antenna according to an embodiment of the present disclosure;



FIG. 7 is a schematic illustration of an unbalanced dipole antenna according to an embodiment of the present disclosure;



FIG. 8 is a side view of the unbalanced dipole antenna of the microwave antenna assembly of FIG. 2;



FIG. 9 is an enlarged cross-sectional of a distal end of the microwave antenna assembly of FIG. 2;



FIG. 10 is a side view of a radiating portion of the microwave antenna assembly of FIG. 2;



FIG. 11 is a side view of a tip and a sheath of the microwave antenna assembly of FIG. 2;



FIG. 12 is a side view of is proximal end of the feedline of the microwave antenna assembly of FIG. 2;



FIG. 13 is a cross-sectional view of the connection hub and a proximal end f the microwave antenna assembly of FIG. 2;



FIG. 14 is a schematic view of inflow tubes of the microwave antenna assembly of FIG. 2;



FIG. 15 is a side view of a microwave antenna assembly according to one embodiment of the present disclosure;



FIGS. 16 and 17 are perspective cross-sectional views of the microwave antenna of FIG. 15; and



FIG. 18 is a cross-sectional enlarged perspective view of the microwave antenna of FIG. 15.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.



FIG. 1 shows a microwave ablation system 10 that includes a microwave antenna assembly 12 coupled to a microwave generator 14 via a flexible coaxial cable 16. The generator 14 is configured to provide microwave energy at an operational frequency from about 500 MHz to about 5000 MHz.


The antenna assembly 12 is generally comprised of radiating portion 18, which may be connected by feedline 20 (or shaft) to the cable 16. More specifically, the antenna assembly 12 is coupled to the cable 16 through a connection hub 22. The connection hub 22 also includes an outlet fluid port 30 and an inlet fluid port 32 that are connected in fluid communication with a sheath 38. The sheath 38 encloses the radiating portion 18 and the feedline 20 allowing for coolant fluid from the ports 30 and 32 to be supplied and circulated around the antenna assembly 12. The ports 30 and 32 are also coupled to a supply pump 34 that is, in turn, coupled to a supply tank 36. The supply tank 36 stores the coolant fluid and maintains the fluid at a predetermined temperature. In one embodiment, the supply tank 36 may include a coolant unit which cools the returning liquid from the antenna assembly 12. In another embodiment, the coolant fluid may be a gas and/or a mixture of fluid and gas.


Assembly 12 also includes a tip 48 having a tapered end 24 that terminates, in one embodiment, at a pointed end 26 to allow for insertion into tissue with minimal resistance at a distal end of the radiating portion 18. In those cases where the radiating portion 18 is inserted into a pre-existing opening, tip 48 may be rounded or flat.



FIG. 2 illustrates the radiating portion 18 of the antenna assembly 12 having an unbalanced dipole antenna 40. The dipole antenna 40 is coupled to the feedline 20 that electrically connects antenna assembly 12 to the generator 14. As shown in FIG. 3-4, the feedline 20 includes an inner conductor 50 (e.g., wire) surrounded by an inner insulator 52, which is then surrounded by an outer conductor 56 (e.g., cylindrical conducting sheath). The inner and outer conductors may be constructed of copper, gold, stainless steel or other conductive metals with similar conductivity values. The metals may be plated with other materials, e.g., other conductive materials, to improve their properties, e.g., to improve conductivity or decrease energy loss, etc. In one embodiment, the feedline 20 may be formed from a coaxial semi-rigid or flexible cable having a wire with a 0.047″ outer diameter rated for 50 Ohms.


The dipole antenna 40 includes a proximal portion 42 and a distal portion 44 interconnected by a dielectric spacer at a feed point 46. The distal portion 44 and the proximal portion 42 are of different, unequal lengths so that the dipole antenna 40 is unbalanced. In one embodiment, as shown in FIG. 7, the distal portion 44 may be longer than the proximal portion 42. The proximal portion 42 is formed from the inner conductor 50 and the inner insulator 52 which are extended outside the outer conductor 56, as shown best in FIG. 4. In one embodiment, in which the feedline 20 is formed from a coaxial cable, the outer conductor 56 and the inner insulator 52 may be sliced off to reveal the inner conductor 50, as shown in FIG. 5.


The distal portion 44 includes a conductive member 45 that may be formed from any type of conductive material, such as metals (e.g., copper, stainless steel, tin, and various alloys thereof). The distal portion 44 may have a solid structure and may be formed from solid wire (e.g., 10 AWG). In another embodiment, the distal portion 44 may be formed from a hollow sleeve of an outer conductor of coaxial cable or another cylindrical conductor. The cylindrical conductor may then be filled with solder to convert the cylinder into a solid shaft. More specifically, the solder may be heated to a temperature sufficient to liquefy the solder within the cylindrical conductor (e.g., 500° F.) thereby creating a solid shaft.


In another embodiment, the conductive member 45 may also be formed from solid wire or a cylindrical conductor filled with solder. The conductive member 45 is thereafter coupled to the inner conductor 50, as shown in FIG. 4. This may be accomplished by soldering the conductive member 45 to the distal end of the inner conductor 50, such as by melting the solder of the conductive member 45 and inserting the inner conductor 50 therein.


In some embodiments, the unbalanced dipole antenna 40 provides for better impedance matching during ablation. Variation in tissue properties during ablation complicates real part impedance matching of microwave ablation antennas. Over the course of an ablation, a given position on the dipole varies in real impedance due to the resulting dynamic current and voltage relationship. FIG. 6 shows the difficulty in matching real part impedance using a half-wave dipole antenna which includes two portions of equal lengths, at the center of the dipole the voltage is minimized and the current is maximized. However, the real part impedance is minimized and is maximized at the ends of the proximal and distal portions 42 and 44. In contrast, the unbalanced dipole antenna 40 of the present disclosure minimizes the integration over ablation time of the difference between the feed point real part impedance and the impedance of the cable 16. As illustrated in FIG. 7, the unbalanced half-wave dipole provides a better match of initial impedance to real part impedance by placing the gap between the proximal and distal portions 42 and 44 away from the center of the dipole antenna 40. In one embodiment, the length of the distal portion 40 is about 40 mm to minimize return loss of the assembly 12.



FIG. 8 illustrates the distal portion 44 attached to the proximal portion 42. The distal portion 44 may be soldered to the inner conductor 50 of the proximal portion 42 to establish electromechanical contact therebetween. In one embodiment, where the distal portion 44 is formed from a hollow cylindrical conductor filled with a solder material, the distal portion 44 may be attached to the proximal portion 42 by liquefying the solder of the distal portion 44 and inserting the distal end of the inner conductor 50 therein. A portion of the distal end of the inner conductor 50 is inserted into the distal portion 44 such that a dipole feed gap “G” remains between the proximal and distal portions 42 and 44 at the feed point 46. The gap “G” may be from about 1 mm to about 3 mm. The dipole feed gap of the antenna is the first structure the coaxial field mode encounters upon transfer to free space. The gap therefore plays an important role in the return loss, or system-to-antenna impedance match. In one embodiment, the gap “G” is thereafter filled with a dielectric material to form the dielectric spacer at the feed point 46. In another embodiment, the inner insulator 52 is extended into the feed point 46. The dielectric material may be polytetrafluoroethylene (PTFE), such as Teflon® sold by DuPont of Willmington, DE In another embodiment, as shown in FIG. 4, the gap “G” may be coated via a dielectric seal coating as discussed in more detail below.


As shown in FIGS. 2 and 9, the distal portion 44 is coupled to the tip 48, which may be formed from a variety of heat-resistant materials suitable for penetrating tissue, such as metals (e.g., stainless steel) and various thermoplastic materials, such as poletherimide, polyamide thermoplastic resins, an example of which is Ultem® sold by General Electric Co. of Fairfield, CT. The tip 48 may be machined from various stock rods to obtain a desired shape. The tip 48 may be attached to the distal portion 44 using various adhesives, such as epoxy seal 49. If the tip 48 is metal, the tip 48 may be soldered to the distal portion 44.



FIG. 11 illustrates various shapes and forms of the tip 48, namely a stainless steel tip 48a and a dielectric tip 48b. Both tips 48a and 48b includes an insertion base 51 having an external diameter that is smaller than diameter of the tips 48a and 48b allowing for easier insertion into the sheath 38. This configuration also provides for a better seal between the tip 48 and the sheath 38 as discussed in more detail below.


With reference to FIGS. 2 and 3, the antenna assembly 12 also includes a choke 60. The choke 60 is disposed around the feedline 20 and includes an inner dielectric layer 62 and an outer conductive layer 64. In one embodiment, the choke 60 is a proximally positioned quarter-wave length shorted choke. The choke 60 is implemented as a quarter-wave length shorted by using the outer conductive layer 64 around the outer conductor 56 of the feedline 20 separated by the dielectric layer. The choke 60 is shorted to the outer conductor 56 of the feedline 20 at the proximal end of the choke 60 by soldering or other means. In one embodiment, the dielectric layer 62 is formed from a fluoropolymer, such as tetrafluorethylene, perfluorpropylene, and the like, and has a thickness of 0.005 inches. The outer conductive layer 64 may be formed from a so-called “perfect conductor” material, such as a highly conductive metal (e.g., copper).


In embodiments, the choke 60 may be a quarter-wavelength shorted choke, a half-wavelength open choke, and inverted quarter-wavelength shorted choke or a gap cancellation choke. The choke 60 confines the microwave energy from the generator 14 to the radiating portion 18 of the assembly 12, thereby limiting the microwave energy deposition zone length along the feedline 20. The choke 60 provides high impedance to microwave energy conducted down the outside of the feedline 20, thereby limiting energy deposition to the end of the antenna.


A shorted quarter-wave choke placed at the high impedance point of the proximal portion 42 on the antenna assembly 12 confines antenna currents to the radiating section 18 of the assembly 12, reducing the length and maximizing the cross sectional diameter of ablations due to nearly spherical power dissipation zones.


The dielectric of dielectric layer 62 extends past the choke conductor layer 64 toward the distal end of the assembly 12, as shown in FIG. 10. In one embodiment, the dielectric layer 62 may extend past the choke conductor layer 64 by about 6 mm. This extended dielectric improves the performance of the choke 60 by placing a capacitance between the proximal portion 42 of the dipole and the outer surface of the choke conductor layer 64 thereby blocking currents from jumping onto the choke conductor layer 64. The capacitance formed by the dielectric is a high impedance barrier to microwave currents which would otherwise jump from the proximal portion 42 to the outer surface of the choke 60 near the entrance thereof, avoiding the choke structure completely. Instead, these currents are directed into the quarter-wave choke 60 by the capacitance, improving its effectiveness.


As discussed above, the wavelength increase due to tissue desiccation causes the high impedance point on the proximal portion 42 to move proximally along the assembly 12. An effective choke must present high impedance at this variable point. The extended dielectric effectively acts as a variable position choke, covering the range over which this point shifts, maintaining choke effectiveness as long as the high impedance point of the proximal portion 42 stays within the extended dielectric boundaries. The dielectric layer 62 may be extended to any length between the choke conductive layer 64 and the feed point 46.


In one embodiment, the dielectric layer 62 may be formed by applying a dielectric shrink material, such as 5/64″ thick PTFE shrink wrap to the outer conductor 56. Once the shrink wrap material is placed around the outer conductor 56, the material is heated so that the material melts and sets about the outer conductor 56. The heating may be accomplished by hot air blowers, which can provide a hot air stream of about 750° F. Multiple layers of the PTFE shrink wrap may be applied and consecutively heated to form the dielectric layer 62 of desired thickness. In one embodiment, three or more layers of the PTFE shrink wrap are applied.


As shown in FIGS. 3 and 10, the conductor layer 64 may be formed by applying one or more layers of a conductive metal foil (e.g., copper) onto the dielectric layer 62. The foil may extend past the proximal end of the dielectric layer 62 as shown in FIG. 12. The foil may be attached to the dielectric layer 62 using various types of adhesives (e.g., ultraviolet light activated glue, epoxy, etc.). In one embodiment, the proximal end of the foil which extends past the dielectric layer 62 may be attached to the feedline 20 by means of a so-called “wire-wrap” technique to provide a good electrical connection to the foil and the feedline 20 as shown in FIG. 12. The wire is wrapped around the copper foil at the point where the foil begins to taper down past the dielectric layer 62. After the wire is wrapped, the wire is soldered to itself all along the length of the wrap to secure the wire and prevent the wire from unwrapping. In another embodiment, other means may be used to secure the foil to the feedline 20, such as a hollow cylinder may be placed around the excess foil necking down past the dielectric layer 62. In a further embodiment, the foil may be substantially the same length as the dielectric layer 62 to obviate the need for securing the proximal end of the foil to the feedline 20.


The assembly 12 also includes the connection hub 22 of FIG. 1, as shown in more detail in FIG. 13. The connection hub 22 includes a cable connector 79 and fluid ports 30 and 32. The connection hub 22 may include a three-branch luer type connector 72, with a middle finger 74 being used to house the cable connector 70 and the left and right fingers 76 and 78 to house the outlet and inlet fluid ports 30 and 32, respectively. The connection hub 22 also includes a base 81 disposed at a distal end of the middle finger 74.


The assembly 12 also includes an active coolant system as shown in FIGS. 1, 13 and 14. More specifically, the assembly 12 includes sheath 38 that encloses the feedline 20, the radiating portion 18 from the tip 48 to the base 81. The coolant is supplied by the pump 34 and is circulated in the space between the radiating portion 18, the feedline 20 and the sheath 38. Since the radiating portion 18 and the feedline 20 are in direct contact with the coolant fluid these components of the assembly 12 should be sealed to prevent any fluid seeping therein. This may be accomplished by applying any type of melt-processible polymers using conventional injection molding and screw extrusion techniques. In one embodiment, a sleeve 90 of fluorinated ethylene propylene (FEP) shrink wrap as shown in FIGS. 3 and 4 may be applied to the entire assembly 12, namely the feedline 20 and the radiating portion 18, as shown in FIG. 1. The FEP sleeve 90 is then heated to seal the feedline 20 and radiating portion 18. The resulting FEP seal prevents any coolant fluid from penetrating into the assembly 12. The FEP sleeve 90 may be applied either prior to (FIG. 3) or after applying the outer conductive layer 64. In addition, FEP may also be applied at the point where the inner conductor 50 and the inner insulator 52 are extended past the outer conductor 56, thereby creating a vacuum 53 as shown in FIG. 4.


The sheath 38 may be any type of rigid tube, such as a catheter manufactured from polyimide and other types of polymers. The sheath 38 may be assembled by initially securing the tip 48 to the distal end of the sheath 38 and then inserting the combined sheath and tip assembly onto the assembly 12. The sheath 38 is also secured to the base 81 of the connection hub 22 and the tip 48 such that the sheath 38 is in fluid communication with the connection hub 22 and defines a chamber 89 between the base 81 and the tip 48.


The inflow tube 86 may include one or more inflow tubes 86a and 86b. The inflow tubes 86a and 86b may be any type of flexible tube having an external diameter sufficient to fit inside the chamber 89 (FIGS. 4 and 9) between the feedline 20 and the sheath 38. The inflow tubes 86a and 86b are inserted through the outlet fluid port 30. More specifically, the inflow tube 86a is inserted almost to the distal end of the distal portion 44 and the inflow tube 86b is inserted approximately to the feed point 46 as shown in FIG. 14. The inflow tubes 86a and 86b are then secured to the radiating portion 18 (e.g., using epoxy, glue, etc.). The inflow tubes 86a and 86b are positioned in this configuration to provide for optimal coolant flow through the sheath 38. The fluid flow from the inflow tube 86a is ejected into the tip 48 and is reflected in the proximal direction. The fluid flow from the inflow tube 86b provides for the coolant along the radiating portion 18. During operation, the pump 34 supplies fluid to the assembly 12 through the inflow tubes 86a and 86b, thereby circulating the coolant through the entire length of the assembly 12 including the connection hub 22. The fluid is then withdrawn from the middle finger 74 and the left finger 76 through the outlet fluid port 32.


The above-discussed coolant system provides for circulation of dielectric coolant fluid (e.g., saline, deionized water, etc.) through the entire length of the antenna assembly 12. The dielectric coolant fluid removes the heat generated by the assembly 12. In addition, the dielectric coolant fluid acts as a buffer for the assembly 12 and prevents near field dielectric properties of the assembly 12 from changing due varying tissue dielectric properties. As microwave energy is applied during ablation, desiccation of the tissue around the radiating portion 18 results in a drop in tissue complex permittivity by a considerable factor (e.g., about 10). The dielectric constant (er′) drop increases the wavelength of microwave energy in the tissue, which dramatically affects the impedance of un-buffered microwave antenna assemblies, thereby mismatching the antenna assemblies from the system impedance (e.g., impedance of the cable 16 and the generator 14). The increase in wavelength also results in a power dissipation zone which is much longer in length along the assembly 12 than in cross sectional diameter. The decrease in tissue conductivity (er″) also affects the real part of the impedance of the assembly 12. The fluid dielectric buffering according to the present disclosure also moderates the increase in wavelength of the delivered energy and drop in conductivity of the near field, thereby reducing the change in impedance of the assembly 12, allowing for more consistent antenna-to-system impedance match and spherical power dissipation zone despite tissue behavior.


The buffering of wavelength variation also allows for a more effective choking network. The choke must be placed at the low current point, or high impedance point, on the end of the proximal portion 42. With wavelength buffering in the choked wet tip, the half wavelength current pattern on the dipole radiating section is maintained, making the position of the high impedance point less variable and therefore allowing for a more effective choke network. Together, the cable cooling and the dielectric buffering allow for targeted and efficient energy delivery to the tissue to enable nearly spherical ablation zones and fast ablation times. Either saline or deionized water can be used with the assembly 12.



FIGS. 15-18 illustrate another embodiment of a microwave antenna assembly 112 of having a radiating portion 118 and a feedline 120 which couples the assembly 112 to the cable 16. More specifically, the antenna assembly 112 is coupled to the cable 16 through a connection hub 122 that includes an outlet fluid port 130 and an inlet fluid port 132.



FIGS. 16 and 17 illustrate the radiating portion 118 of the antenna assembly 112 having an unbalanced dipole antenna 140 in which the sheath 38 is replaced by a metallic conduit (e.g., coolant jacket 200) and a solid dielectric loading 190. The dipole antenna 140 is coupled to the feedline 120, which electrically connects antenna assembly 112 to the generator 14. As shown in FIG. 18, similar to the feedline 20, the feedline 120 includes an inner conductor 150 (e.g., wire) surrounded by an inner 152 insulator which is then surrounded by an outer conductor 156 (e.g., cylindrical conducting sheath).


The dipole antenna 140 includes a proximal portion 142 and a distal portion 144 interconnected by a dielectric spacer at a feed point 146. The distal portion 144 includes a conductive member 145. The distal portion 144 and the proximal portion 142 are of different, unequal lengths so that the dipole antenna 40 is unbalanced. The proximal portion 142 is formed from the inner conductor 150 and the inner insulator 152 which are extended outside the outer conductor 156. In one embodiment, in which the feedline 120 is formed from a coaxial cable, the outer conductor 156 and the inner insulator 152 may be sliced off to reveal the inner conductor 150 as shown in FIG. 18.


The distal portion 144 may be formed from any type of conductive material such as metals (e.g., copper, stainless steel, tin, and various alloys thereof. The portion 144 may have a solid structure and may be formed from solid wire (e.g., 10 AWG) or a cylindrical conductor filled with solder similar to the portion 44 of the assembly 12. The proximal portion 144 is thereafter coupled to the inner conductor 150.


With reference to FIGS. 16-18, the antenna assembly 112 also includes a choke 160. The choke 160 is disposed around the feedline 120 and includes an inner dielectric layer 162 and an outer conductive layer 164. In one embodiment, the choke 160 is a proximally positioned quarter-wave shorted choke that is shorted to the outer conductor 156 of the feedline 120 at the proximal end of the choke 160 by soldering or other means. The dielectric of dielectric layer 162 extends past the choke conductor layer 164 toward the distal end of the assembly 112.


The assembly 112 also includes the connection hub 122, as shown in FIG. 15. The connection hub 122 includes a cable connector 179 and the fluid ports 130 and 132. The connection hub 122 may include a three-branch luer type connector 172, with a middle finger 174 being used to house the cable connector 179 and the left and right fingers 176 and 178 to house the outlet and inlet fluid ports 130 and 132, respectively. The cable connector 179 is coupled to the inner conductor 152 and outer conductor 156 that are extended outside the outer conductor 156 at the proximal end of the feedline 120. The connection hub 122 also includes a base 181 disposed at a distal end of the middle finger 174. In one embodiment, the assembly 112 includes one or more inflow tubes 186 which are fed through the right finger 178.


The assembly 112 includes a solid dielectric loading 190 disposed over the dipole antenna 140 replacing the liquid dielectric material of assembly 112. The solid dielectric loading 190 extend from the point of termination of the choke conductor layer 164. More specifically, the assembly 112 includes a fluid seal 192 over the distal end of the choke conductor layer 164. In one embodiment, the loading 190 may be attached to the seal 192 via glue and other means.


The loading 190 may be cylinder-shaped having a central cavity 198 defined therein suitable for insertion over the antenna 140. The loading 190 may also have a tapered end 194 with a pointed tip 196, thereby obviating the need for the tip 48. The loading 190 may also be attached to the distal end of the antenna 140 (e.g., at the distal portion 144 thereof) within the cavity 198. The cavity 198 may have a substantially cylindrical shape suitable to fit over the antenna 140 depending on the cross-sectional shape thereof. In addition, the cavity 198 includes a proximal portion 197 and a distal portion 199 with the proximal portion 197 having a larger inner diameter than the distal portion 199 to accommodate the choke dielectric layer 162. The choke layer 162 may be extended to any length between the choke conductive layer 164 and the feed point 146. To accommodate the extended choke layer 162 the depth of the proximal portion 197 varies accordingly.


The loading 190 has an outer diameter being substantially equal to the thickness of the feedline 120 and the inner diameter being substantially equal to the diameter of the dipole antenna 140. Since the loading 190 is disposed on the dipole antenna 140 and no coolant fluid is going to be in contact therewith, the antenna 140 may not be coated in dielectric shrink wrap to seal its components.


In one embodiment, the dielectric material of the loading 90 may have a dielectric constant of from about 2.5 and 150 and may be made from a ceramic material, such as alumina ceramic or a plastic material, such as a polyamide plastic (e.g., VESPEL® available from DuPont of Wilmington, Delaware). The loading 190 acts as a dielectric buffer between the radiating portion 118 and the tissue so that as the electrical properties of the tissue change during ablation the antenna assembly 112 remains halfwave resonant and impedance-matched to the energy delivery system (e.g., the generator 14, the cable 16, etc.) throughout the ablation.


The antenna assembly 112 also includes a coolant jacket 200 disposed between the base 181 and the seal 192. The coolant jacket 200 maybe formed from stainless steel or other suitable medical grade metals. The coolant jacket 200 defines a proximal chamber 201 between the choke conductor layer 164 and the coolant jacket 200 into which a dielectric coolant fluid is supplied through the connection hub 122. More specifically, one or more inflow tube 186 similar to the tubes 86a and 86b may extend into the chamber 201 to circulate the dielectric coolant fluid through the coolant jacket 200. The seal 192 is disposed between the coolant jacket 200 and the choke conductor layer 164 at the distal ends thereof. The seal 192 may be formed from any type of dielectric (e.g., elastomer) and/or conductive material suitable for sealing the chamber 201 from the loading 190.


The described embodiments of the present disclosure are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present disclosure. Various modifications and variations can be made without departing from the spirit or scope of the disclosure as set forth in the following claims both literally and in equivalents recognized in law.

Claims
  • 1. A microwave antenna assembly, comprising: a feedline including an inner conductor, an outer conductor, and an insulator disposed between the inner and outer conductors, the insulator extending distally from a distal-most end of the outer conductor;a radiating portion having a proximal portion and a distal conductive portion, the proximal portion including at least a portion of the inner conductor and the insulator;a choke including an outer conductive layer and an inner dielectric layer extending distally past the outer conductive layer, wherein a distal end of the choke is disposed proximal to the radiating portion; anda dielectric material directly coupled to an outer surface of the outer conductor and the radiating portion, wherein the dielectric material extends distally from the distal-most end of the outer conductor.
  • 2. The microwave antenna assembly according to claim 1, further comprising: a connection hub including a cable connector coupled to the feedline;an inlet fluid port;an outlet fluid port; anda jacket defining a chamber around the feedline, the chamber configured to receive a cooling fluid.
  • 3. The microwave antenna assembly according to claim 2, further comprising: an inflow tube coupled to the inlet fluid port for supplying the cooling fluid to the chamber; andan outflow tube coupled to the outlet fluid port and in fluid communication with the chamber for withdrawing the cooling fluid from the chamber.
  • 4. The microwave antenna assembly according to claim 2, wherein the jacket is a polyimide catheter.
  • 5. The microwave antenna assembly according to claim 2, wherein the jacket is formed from a metal.
  • 6. The microwave antenna assembly according to claim 1, wherein the outer conductive layer is shorted to the outer conductor of the feedline.
  • 7. The microwave antenna assembly according to claim 1, wherein the inner dielectric layer is selected from the group consisting of a tetrafluorethylene and a perfluorpropylene.
  • 8. The microwave antenna assembly according to claim 1, further comprising: a seal disposed around a distal end of the outer conductive layer of the choke.
  • 9. The microwave antenna assembly according to claim 1, wherein the dielectric material extends from the choke to a distal end of the radiating portion.
  • 10. The microwave antenna assembly according to claim 1, wherein the dielectric material defines a central cavity configured to fit about the radiating portion.
  • 11. The microwave antenna assembly according to claim 1, wherein the dielectric material has a dielectric constant from about 2.5 to about 150.
  • 12. The microwave antenna assembly according to claim 1, further comprising a tip disposed at a distal end of the radiating portion, the tip having a tapered portion and a pointed distal end.
  • 13. A microwave antenna assembly, comprising: a feedline including an inner conductor coaxially disposed within an outer conductor and an insulator disposed between the inner and outer conductors, the insulator extending distally from a distal-most end of the outer conductor;a radiating portion having a proximal portion and a distal portion, the proximal portion including at least a portion of the inner conductor;a choke including an outer conductive layer and an inner dielectric layer extending distally past the outer conductive layer, wherein a distal end of the choke is disposed proximal to the radiating portion; anda dielectric material directly coupled to an outer surface of the outer conductor and the radiating portion, wherein the dielectric material extends distally from the distal-most end of the outer conductor.
  • 14. The microwave antenna assembly according to claim 13, further comprising: a connection hub including a cable connector coupled to the feedline;an inlet fluid port;an outlet fluid port; anda coolant jacket defining a chamber around the feedline configured to receive a cooling fluid.
  • 15. The microwave antenna assembly according to claim 14, further comprising: an inflow tube coupled to the inlet fluid port for supplying the cooling fluid to the chamber; andan outflow tube coupled to the outlet fluid port and in fluid communication with the chamber for withdrawing the cooling fluid from the chamber.
  • 16. The microwave antenna assembly according to claim 13, wherein the dielectric material extends from the choke to a distal end of the radiating portion.
  • 17. A microwave antenna assembly, comprising: a feedline including an inner conductor surrounded by an outer conductor and an insulator disposed between the inner and outer conductors, the insulator extending distally from a distal-most end of the outer conductor;a radiating portion configured to deliver microwave energy to tissue;a choke including an outer conductive layer and an inner dielectric layer, the choke having a distal end disposed proximal to the radiating portion; anda dielectric material directly coupled to an outer surface of the outer conductor and the radiating portion, wherein the dielectric material extends distally from the distal-most end of the outer conductor.
  • 18. The microwave antenna assembly according to claim 17, further comprising: a connection hub including a cable connector coupled to the feedline;an inlet fluid port;an outlet fluid port; anda coolant jacket defining a chamber around the feedline configured to receive a cooling fluid.
  • 19. The microwave antenna assembly according to claim 18, further comprising: an inflow tube coupled to the inlet fluid port for supplying the cooling fluid to the chamber; andan outflow tube coupled to the outlet fluid port and in fluid communication with the chamber for withdrawing the cooling fluid from the chamber.
  • 20. The microwave antenna assembly according to claim 17, wherein the dielectric material extends from the choke to a distal end of the radiating portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/113,540 filed on Aug. 27, 2018, now U.S. Pat. No. 10,743,934, which is a continuation of U.S. patent application Ser. No. 14/599,619 filed on Jan. 19, 2015, now U.S. Pat. No. 10,058,384, which is a continuation of U.S. patent application Ser. No. 13/444,496 filed on Apr. 11, 2012, now U.S. Pat. No. 9,861,439, which is a continuation of U.S. patent application Ser. No. 12/350,292 filed on Jan. 8, 2009, now U.S. Pat. No. 8,945,111, which claims the benefit of the filing date of provisional U.S. Patent Application No. 61/023,031, filed on Jan. 23, 2008.

US Referenced Citations (142)
Number Name Date Kind
3631363 Miller Dec 1971 A
4140130 Storm, III Feb 1979 A
4375220 Matvias Mar 1983 A
4397313 Vaguine Aug 1983 A
4442438 Siwiak et al. Apr 1984 A
4462412 Turner Jul 1984 A
4572190 Azam et al. Feb 1986 A
4658836 Turner Apr 1987 A
4662383 Sogawa et al. May 1987 A
4798215 Turner Jan 1989 A
4823812 Eshel et al. Apr 1989 A
5097844 Turner Mar 1992 A
5234004 Hascoet et al. Aug 1993 A
5275597 Higgins Jan 1994 A
5344435 Turner et al. Sep 1994 A
5370676 Sozanski et al. Dec 1994 A
5413588 Rudie et al. May 1995 A
5417210 Funda et al. May 1995 A
5417686 Peterson et al. May 1995 A
5464445 Rudie et al. Nov 1995 A
5480417 Hascoet et al. Jan 1996 A
5509929 Hascoet et al. Apr 1996 A
5545137 Rudie et al. Aug 1996 A
5592183 Henf Jan 1997 A
5599295 Rosen et al. Feb 1997 A
5628770 Thome et al. May 1997 A
5755754 Rudie et al. May 1998 A
5776176 Rudie Jul 1998 A
5800486 Thome et al. Sep 1998 A
5829519 Uthe Nov 1998 A
5843144 Rudie et al. Dec 1998 A
5861021 Thome et al. Jan 1999 A
5904709 Arndt et al. May 1999 A
5916240 Rudie et al. Jun 1999 A
5916241 Rudie et al. Jun 1999 A
5931860 Reid et al. Aug 1999 A
5938692 Rudie Aug 1999 A
5944749 Fenn Aug 1999 A
5951546 Lorentzen Sep 1999 A
6007571 Neilson et al. Dec 1999 A
6031375 Atalar et al. Feb 2000 A
6032078 Rudie Feb 2000 A
6059780 Gough et al. May 2000 A
6097985 Kasevich et al. Aug 2000 A
6134476 Arndt et al. Oct 2000 A
6161049 Rudie et al. Dec 2000 A
6181970 Kasevich Jan 2001 B1
6230060 Mawhinney May 2001 B1
6233490 Kasevich May 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6289249 Arndt et al. Sep 2001 B1
6364876 Erb et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6440158 Saab Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6470217 Fenn et al. Oct 2002 B1
6485486 Trembly et al. Nov 2002 B1
6496737 Rudie et al. Dec 2002 B2
6512956 Arndt et al. Jan 2003 B2
6592579 Arndt et al. Jul 2003 B2
6603994 Wallace et al. Aug 2003 B2
6610054 Edwards et al. Aug 2003 B1
6675050 Arndt et al. Jan 2004 B2
6725080 Melkent et al. Apr 2004 B2
6725095 Fenn et al. Apr 2004 B2
6847848 Sterzer et al. Jan 2005 B2
6849063 Eshel et al. Feb 2005 B1
6866624 Chornenky et al. Mar 2005 B2
6944504 Arndt et al. Sep 2005 B1
7244254 Brace et al. Jul 2007 B2
7271363 Lee et al. Sep 2007 B2
7276061 Schaer et al. Oct 2007 B2
7311703 Turovskiy et al. Dec 2007 B2
7387627 Erb et al. Jun 2008 B2
7439736 Meaney et al. Oct 2008 B2
7467015 van der Weide Dec 2008 B2
7565207 Turner et al. Jul 2009 B2
7642451 Bonn Jan 2010 B2
7875024 Turovskiy et al. Jan 2011 B2
8035570 Prakash et al. Oct 2011 B2
8059059 Bonn Nov 2011 B2
8118808 Smith et al. Feb 2012 B2
8182480 Huseman May 2012 B2
8192427 Buysse Jun 2012 B2
8197473 Rossetto et al. Jun 2012 B2
8202270 Rossetto et al. Jun 2012 B2
8211098 Paulus Jul 2012 B2
8211099 Buysse et al. Jul 2012 B2
8216227 Podhajsky Jul 2012 B2
8221418 Prakash et al. Jul 2012 B2
8235981 Prakash et al. Aug 2012 B2
8246614 DeCarlo Aug 2012 B2
8251987 Willyard Aug 2012 B2
8262703 Prakash et al. Sep 2012 B2
8292880 Prakash et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8353902 Prakash Jan 2013 B2
8353903 Podhajsky Jan 2013 B2
8394086 Behnke et al. Mar 2013 B2
8435237 Bahney May 2013 B2
8463396 Podhajsky Jun 2013 B2
8512328 Rossetto et al. Aug 2013 B2
8834409 Manley Sep 2014 B2
8834460 Peterson Sep 2014 B2
8945111 Brannan Feb 2015 B2
8965536 Bonn et al. Feb 2015 B2
9113924 Brannan et al. Aug 2015 B2
9198723 Paulus et al. Dec 2015 B2
9277969 Brannan et al. Mar 2016 B2
9375272 Rossetto et al. Jun 2016 B2
9700366 Paulus Jul 2017 B2
9861439 Brannan Jan 2018 B2
9949794 Rusin et al. Apr 2018 B2
10045819 Jensen et al. Aug 2018 B2
10058384 Brannan Aug 2018 B2
10743934 Brannan Aug 2020 B2
20020022836 Goble et al. Feb 2002 A1
20030032951 Rittman et al. Feb 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030088242 Prakash May 2003 A1
20030100894 Mahon et al. May 2003 A1
20040049254 Longo Mar 2004 A1
20040097805 Verard et al. May 2004 A1
20040242992 Hareyama Dec 2004 A1
20050015081 Turovskiy Jan 2005 A1
20050113893 Saab May 2005 A1
20050149010 Turovskiy et al. Jul 2005 A1
20050245920 Vitullo et al. Nov 2005 A1
20060259024 Turovskiy et al. Nov 2006 A1
20070016180 Lee et al. Jan 2007 A1
20070016181 van der Weide et al. Jan 2007 A1
20070106332 Denker May 2007 A1
20070185554 Appling et al. Aug 2007 A1
20070203551 Cronin Aug 2007 A1
20070233057 Konishi Oct 2007 A1
20080308256 Deborski et al. Dec 2008 A1
20090005766 Brannan Jan 2009 A1
20090131926 Rusin May 2009 A1
20100030206 Brannan et al. Feb 2010 A1
20100045559 Rossetto Feb 2010 A1
20100076422 Podhajsky Mar 2010 A1
20100087808 Paulus Apr 2010 A1
Foreign Referenced Citations (102)
Number Date Country
390937 Mar 1924 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2415263 Oct 1975 DE
2429021 Jan 1976 DE
2460481 Jun 1976 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2627679 Jan 1977 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
8712328 Feb 1988 DE
3711511 Jun 1988 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4238263 May 1993 DE
04303882 Feb 1995 DE
4339049 May 1995 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19717411 Nov 1998 DE
19751108 May 1999 DE
19801173 Jul 1999 DE
19848540 May 2000 DE
10224154 Dec 2003 DE
10328514 Mar 2005 DE
102004022206 Dec 2005 DE
202005015147 Feb 2006 DE
0246350 Nov 1987 EP
0481685 Apr 1992 EP
0521264 Jan 1993 EP
0556705 Aug 1993 EP
0558429 Sep 1993 EP
0572131 Dec 1993 EP
0541930 Mar 1998 EP
0836868 Apr 1998 EP
1278007 Jan 2003 EP
1159926 Mar 2003 EP
1723922 Nov 2006 EP
1810627 Jul 2007 EP
179 607 Nov 1906 FR
1275415 Nov 1961 FR
1347865 Jan 1964 FR
2 235 669 Jan 1975 FR
2 276 027 Jan 1976 FR
2313708 Dec 1976 FR
2502935 Oct 1982 FR
2517953 Jun 1983 FR
2573301 May 1986 FR
2 862 813 May 2005 FR
2 864 439 Jul 2005 FR
2415630 Jan 2006 GB
55106 Jan 1993 JP
0540112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
166452 Nov 1964 SU
401367 Oct 1973 SU
727201 Apr 1980 SU
9618349 Jun 1996 WO
9741924 Nov 1997 WO
9743971 Nov 1997 WO
9748449 Dec 1997 WO
9748450 Dec 1997 WO
9748451 Dec 1997 WO
0048672 Aug 2000 WO
0051513 Sep 2000 WO
0057811 Oct 2000 WO
0101847 Jan 2001 WO
0174252 Oct 2001 WO
0245790 Jun 2002 WO
2002061880 Aug 2002 WO
03039385 May 2003 WO
2004112628 Dec 2004 WO
2005011049 Feb 2005 WO
2005016119 Feb 2005 WO
2007024878 Mar 2007 WO
2007076924 Jul 2007 WO
2007112081 Oct 2007 WO
Non-Patent Literature Citations (232)
Entry
European Search Report EP 09156861.8 dated Aug. 4, 2009.
European Search Report EP 09161502.1 dated Sep. 2, 2009.
European Search Report EP 09166708 dated Oct. 15, 2009.
International Search Report PCT/US05/36168 dated Aug. 28, 2006.
International Search Report PCT/US08/052460 dated Apr. 24, 2008.
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995.
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993.
Search Report EP 05021935 dated Jan. 27, 2006.
Search Report EP 05021936.9 dated Feb. 6, 2006.
Search Report EP 05021937.7 dated Jan. 23, 2006.
Search Report EP 05021939 dated Jan. 27, 2006.
Search Report EP 05021944.3 dated Jan. 25, 2006.
Search Report EP 05022350.2 dated Jan. 30, 2006.
Search Report EP 05023017.6 dated Feb. 24, 2006.
Search Report EP 05025423.4 dated Jan. 19, 2007.
Search Report EP 05025424 dated Jan. 30, 2007.
European Search Report EP 06000708.5 dated May 15, 2006.
European Search Report EP 06002279.5 dated Mar. 30, 2006.
European Search Report EP 06005185.1 dated May 10, 2006.
European Search Report EP 06005540 dated Sep. 24, 2007.
European Search Report EP 06006717.0 dated Aug. 11, 2006.
European Search Report EP 06006961 dated Oct. 22, 2007.
European Search Report EP 06006963 dated Jul. 25, 2006.
European Search Report EP 06008779.8 dated Jul. 13, 2006.
European Search Report EP 06009435 dated Jul. 13, 2006.
European Search Report EP 06010499.9 dated Jan. 29, 2008.
European Search Report EP 06014461.5 dated Oct. 31, 2006.
Extended European Search Report from Appl. No. 15201968.3 dated May 2, 2016.
Chinese Office Action issued in Appl. No. CN 2016108042707 dated Feb. 24, 2018, together with English language translation (21 pages).
European Search Report EP 07013779.9 dated Oct. 26, 2007.
European Search Report EP 07015191.5 dated Jan. 23, 2007.
Office Action dated Oct. 24, 2018 issued in corresponding CN Appln. No. 2016108042707.
Jarrett et al., “Use of the LigaSure.™ Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Johnson, “Evaluation of the LigaSure.™ Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000).
Johnson, “Use of the LigaSure.™ Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Joseph G. Andriole, M.D., et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983.
Joseph Ortenberg, “LigaSure.™ System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1970.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878.
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizer: Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
LigaSure.™ Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004.
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, pp. 205-210.
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008.
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May-Jun. 1982.
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246.
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue In Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65.
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page.
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page.
Medtrex Brochure “The O.R. Pro 300” 1 page; Sep. 1998.
Michael Choti, “Abdominoperineal Resection with the LigaSure.™ Vessel Sealing System and LigaSure.™ Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure.™ Vessel Sealing System” Innovations That Work. LJ, Sep. 1999.
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164.
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184.
Ogden, “Goertzel Alternative to the Fourier Transform”: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687.
Olsson M.D et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Organ, L W., “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77).
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320.
Palazzo et al., “Randomized clinical trial of LigaSure.™ versus open haemorrhoidectomy” British Journal of Surgery 2002,89, 154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699.
Valleylab Brochure. “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001.
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr).
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989.
Rothenberg et al., “Use of the LigaSure.™ Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (I PEG) 2000.
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001)71.9 pp. 538-540.
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166.
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Stuart W. Young, Nuclear Magnetic Resonance Imaging—Basic Principles, Raven Press, New York, 1984.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995.
T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 410-415, 1997.
T. Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817-825.
S. Humphries Jr. et al., “Finite-Element Codes to Model Electrical Heating and Non-L1near Thermal Transport in Biological Media”, Proc. ASME HTD-355, 131 (1997).
Urologix, Inc.—Medical Professionals: Targis.™ Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com!medicaUtechnology.html > last visited on Apr. 27, 2001, 3 pages.
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169(3):845-847.
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995.
Search Report EP 07015601.3 dated Jan. 4, 2007.
Search Report EP 07015602.1 dated Dec. 20, 2007.
Search Report EP 07018375.1 dated Jan. 8, 2008.
Search Report EP 07018821 dated Jan. 14, 2008.
Search Report EP 07019173.9 dated Feb. 12, 2008.
Search Report EP 07019174.7 dated Jan. 29, 2008.
Search Report EP 07019178.8 dated Feb. 12, 2008.
Search Report EP 07020283.3 dated Feb. 5, 2008.
Search Report EP 07253835.8 dated Dec. 20, 2007.
European Search Report EP 08001019 dated Sep. 23, 2008.
European Search Report EP 08004975 dated Jul. 24, 2008.
European Search Report EP 08006731.7 dated Jul. 29, 2008.
European Search Report EP 08006733 dated Jul. 7, 2008.
European Search Report EP 08006734.1 dated Aug. 18, 2008.
European Search Report EP 08006735.8 dated Jan. 8, 2009.
European Search Report EP 08015842 dated Dec. 5, 2008.
European Search Report EP 98300964.8 dated Dec. 13, 2000.
European Search Report EP 98944778 dated Nov. 7, 2000.
European Search Report EP 98958575.7 dated Oct. 29, 2002.
International Search Report PCT/US01/11218 dated Aug. 14, 2001.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy”, Journal Neurosurgery, 83; (1995) pp. 271-276.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307.
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product Instructions), 2 pages.
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages.
Anonymous. (1987) Homer Mammalok.™ Breast Lesion Needle/Wire Localizer, Namic.RTM. Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages.
Anonymous. (1999) MIBB Site Marker, United States Surgical (Sales brochure), 4 pages.
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division. (Products Price List), one page, Jul. 19, 2000.
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000.
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management. Feb. 2003.
B. Levy M.D.. “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology. vol. 102, No. 1, Jul. 2003.
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565.
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41.
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990.
C. H. Durney et al.. “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40. Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee.
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.™ Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, CarolinasMedicalCenter, Charlotte, NC 2003.
Carus et al., “Initial Experience With the LigaSure.™ Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52. No. 3.
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure.™” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003.
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone”, Neurosurgery 15: (1984) pp. 945-950.
Cosman et al., “Methods of Making Nervous System Lesions”, In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Crawford et al., “Use of the LigaSure.™ Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Esterline, “Light Key Projection Keyboard” 2004 Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> last visited on Feb. 10, 2005.
Geddes et al. “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032.
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure.™ Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands. vol. 4; No. 1. pp. 307-320.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation—'COA-COMP” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
W. Scott Helton, “LigaSure™ Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264.
European Search Report EP 03721482 dated Feb. 6, 2006.
European Search Report EP 04009964 dated Jul. 28, 2004.
European Search Report EP 04013772 dated Apr. 11, 2005.
European Search Report EP 04015980 dated Nov. 3, 2004.
European Search Report EP 04015981.6 dated Oct. 25, 2004.
European Search Report EP 04027314 dated Mar. 31, 2005.
European Search Report EP 04027479 dated Mar. 17, 2005.
European Search Report EP 04027705 dated Feb. 10, 2005.
European Search Report EP 04710258 dated Oct. 15, 2004.
European Search Report EP 04752343.6 dated Jul. 31, 2007.
European Search Report EP 05002027.0 dated May 12, 2005.
European Search Report EP 05002769.7 dated Jun. 19, 2006.
European Search Report EP 05013463.4 dated Oct. 7, 2005.
European Search Report EP 05013895 dated Oct. 21, 2005.
European Search Report EP 05014156.3 dated Jan. 4, 2006.
European Search Report EP 05016399 dated Jan. 13, 2006.
European Search Report EP 05017281 dated Nov. 24, 2005.
European Search Report EP 05019130.3 dated Oct. 27, 2005.
European Search Report EP 05019882 dated Feb. 16, 2006.
European Search Report EP 05020665.5 dated Feb. 27, 2006.
European Search Report EP 05020666.3 dated Feb. 27, 2006.
European Search Report EP 05021025.1 dated Mar. 13, 2006.
European Search Report EP 05021197.8 dated Feb. 20, 2006.
European Search Report EP 05021777 dated Feb. 23, 2006.
European Search Report EP 05021779.3 dated Feb. 2, 2006.
European Search Report EP 05021780.1 dated Feb. 23, 2006.
International Search Report PCT/US09/31658 dated Mar. 11, 2009.
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”. Nov. 1, 2003; 4 pages.
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf Germany; Dec. 8, 1994; pp. 729-731.
Search Report EP 08011282 dated Aug. 14, 2009.
Search Report EP 04778192.7 dated Jul. 1, 2009.
Search Report EP 05810523 dated Jan. 29, 2009.
Search Report EP 08011705 dated Aug. 20, 2009.
Search Report EP 08012829.1 dated Oct. 29, 2008.
European Search Report EP 08019920.1 dated Mar. 27, 2009.
European Search Report EP 08169973.8 dated Apr. 6, 2009.
U.S. Appl. No. 16/113,540, filed Aug. 27, 2018, Patented, U.S. Pat. No. 10,743,934.
U.S. Appl. No. 14/599,619, filed Jan. 19, 2015, Patented, U.S. Appl. No. 10,058,384.
U.S. Appl. No. 13/444,496, filed Apr. 11, 2012, Patented, U.S. Pat. No. 9,861,439.
U.S. Appl. No. 12/350,292, filed Jan. 8, 2009, Patented, U.S. Pat. No. 8,945,111.
U.S. Pat. No. 5,326,343 A, Jul. 1994, Rudie et al. (withdrawn).
https://www.ipolymer.com/pdf/FEP.pdf (Year: 2019).
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999.
International Search Report PCT/US01/11224 dated Nov. 13, 2001.
International Search Report PCT/US01/11340 dated Aug. 16, 2001.
International Search Report PCT/US01/11420 dated Oct. 16, 2001.
International Search Report PCT/US02/01890 dated Jul. 25, 2002.
International Search Report PCT/US02/11100 dated Jul. 16, 2002.
International Search Report PCT/US03/09483 dated Aug. 13, 2003.
International Search Report PCT/US03/22900 dated Dec. 2, 2003.
International Search Report PCT/US03/37110 dated Jul. 25, 2005.
International Search Report PCT/US03/37111 dated Jul. 28, 2004.
International Search Report PCT/US03/37310 dated Aug. 13, 2004.
International Search Report PCT/USO4/04685 dated Aug. 27, 2004.
International Search Report PCT/US04/13273 dated Dec. 15, 2004.
International Search Report PCT/US04/15311 dated Jan. 12, 2004.
International Search Report PCT/US98/18640 dated Jan. 29, 1998.
International Search Report PCT/US98/23950 dated Jan. 14, 1998.
International Search Report PCT/US99/24869 dated Feb. 11, 2000.
Extended European Search Report from Appl. No. EP 09704429.1 dated Mar. 23, 2011.
ESR14154455.1 European Search Report dated Apr. 30, 2014.
Extended European Search Report corresponding to European Application No. EP 14 153 419.8, dated Apr. 15, 2014; 6 pages.
European Search Report EP 06018206.0 dated Oct. 20, 2006.
European Search Report EP 06019768 dated Jan. 17, 2007.
European Search Report EP 06020574.7 dated Oct. 2, 2007.
European Search Report EP 06020583.8 dated Feb. 7, 2007.
European Search Report EP 06020584.6 dated Feb. 1, 2007.
European Search Report EP 06020756.0 dated Feb. 16, 2007.
European Search Report EP 06022028.2 dated Feb. 13, 2007.
European Search Report EP 06023756.7 dated Feb. 21, 2008.
European Search Report EP 06024122.1 dated Apr. 16, 2007.
European Search Report EP 06024123.9 dated Mar. 6, 2007.
European Search Report EP 06025700.3 dated Apr. 12, 2007.
European Search Report EP 07000885.9 dated May 15, 2007.
European Search Report EP 07001480.8 dated Apr. 19, 2007.
European Search Report EP 07001481.6 dated May 2, 2007.
European Search Report EP 07001485.7 dated May 23, 2007.
European Search Report EP 07001488.1 dated Jun. 5, 2007.
European Search Report EP 07001489.9 dated Dec. 20, 2007.
European Search Report EP 07001491 dated Jun. 6, 2007.
European Search Report EP 07001527.6 dated May 18, 2007.
European Search Report EP 07007783.9 dated Aug. 14, 2007.
European Search Report EP 07008207.8 dated Sep. 13, 2007.
European Search Report EP 07009026.1 dated Oct. 8, 2007.
European Search Report EP 07009028 dated Jul. 16, 2007.
European Search Report EP 07009029.5 dated Jul. 20, 2007.
European Search Report EP 07009321.6 dated Aug. 28, 2007.
European Search Report EP 07009322.4 dated Jan. 14, 2008.
European Search Report EP 07010672.9 dated Oct. 16, 2007.
European Search Report EP 07010673.7 dated Oct. 5, 2007.
Related Publications (1)
Number Date Country
20200360087 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
61023031 Jan 2008 US
Continuations (4)
Number Date Country
Parent 16113540 Aug 2018 US
Child 16987476 US
Parent 14599619 Jan 2015 US
Child 16113540 US
Parent 13444496 Apr 2012 US
Child 14599619 US
Parent 12350292 Jan 2009 US
Child 13444496 US