This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2013-062206, filed Mar. 25, 2013, and the entire contents of which are incorporated herein by reference.
The present invention relates to a device, a method, and a recording medium for providing instruction in playing chords on a keyboard instrument.
One of the difficulties that beginners of a musical instrument face is learning how to play chords. Especially in playing a keyboard instrument, when a player wants to play chords that are different in tonality, the player needs to arrange a pressing form of chords, in other words, form of player's fingers to press keys in completely different ways, since the keyboard instrument has black keys and white keys. Such complications make learning chords difficult. Some conventional techniques have been proposed that enable players who do not know anything about sheet music of a keyboard instrument to visually remember chords as patterns. For example, Unexamined Japanese Patent Application Kokai Publication No. 2005-84068 discloses a technique for sequentially showing circularly-arranged notes constituting one octave of a keyboard, and showing constituent notes of a target chord so as to be distinguishable from the other constituent notes.
However, the above-described conventional technique has a problem of requiring time for users to convert the circular arrangement of the notes to arrangement of a keyboard in users' heads. In addition, the technique also has a problem that only one chord can be shown at a time. For this reason, users cannot understand relationship between a major chord (major), a minor chord (minor), a seventh chord (seventh), a suspended-second chord (sus2), a suspended-fourth chord (sus4), an added-ninth chord (add9), and the like, even though the users can understand pitches corresponding to each chord.
The objective of the present invention is to provide a chord-playing instruction device, a chord-playing instruction method, and a recording medium that make it possible even for beginners to play a keyboard instrument without difficulty by looking at a chord sheet, thereby facilitating acquiring of chord-playing skills.
A chord-playing instruction device according to the present invention comprises: a chord-information storage for storing, for each chord type, chord-type information on a type of chord and relationship information indicating relationship between constituent notes including a tonic of the chord, as a set of chord information; a display controller for causing a display to show multiple music-playing operators arranged sequentially; a first instruction display for reading out a corresponding one of the sets of chord information stored in the chord-information storage when a tonic of a chord is specified, and then causing the display to show the relationship information related to constituent notes other than the tonic, in the read-out set of chord information, the chord-type information, and an indicator that indicates positional relationship between the tonic and constituent notes other than the tonic on the music-playing operators, based on a position of the specified tonic; and a second instruction display for extracting one of the sets of chord information including relationship information that matches with relationship between the specified tonic and all notes specified subsequently to the tonic, from the chord-information storage, every time a different note is specified after specification of the tonic, and causing the display to show the relationship information related to constituent notes other than the specified notes, in the extracted set of chord information, the chord-type information, and an indicator that indicates positional relationship between the tonic and constituent notes other than the specified constituent notes on the music-playing operators, based on the position of the specified tonic.
The present invention makes it possible even for beginners to play chords on a keyboard instrument without difficulty by looking at a chord sheet, which facilitates acquiring of chord-playing skills.
A more complete understanding of this application can be obtained when the following detailed description is considered in conjunction with the following drawings, in which:
In the following, an embodiment of the present invention will be described in detail with reference to the drawings.
A chord-information storage 101 stores, for each chord type, a chord type, and a size of interval from the tonic to each of the constituent notes of the corresponding chord including the tonic, or the number of semitones from the tonic to each of the constituent notes, as a set of chord information.
Upon receipt of an input (key press) for specifying a tonic of an arbitrary chord from a user, a first instruction display 102 extracts appropriate sets of chord information from the chord-information storage 101, as first chord candidates. Then, for each first chord candidate, the first instruction display 102 shows, in association with an image representing a keyboard: the smallest interval or the smallest number of semitones, among those included in the first chord candidate, other than that of the tonic; a chord type; and a position corresponding to the size of interval or the number of semitones based on the position of the specified tonic. Upon receipt of one or more inputs (key presses) each for specifying another note from the user after the input for specifying the tonic, a second instruction display 103 extracts sets of chord information each including the size of interval or the number of semitones from the tonic to each of the notes that have been specified until now, as second chord candidates by referring to the chord information stored in the chord-information storage 101. Then, for each of the second chord candidates, the second instruction display 103 shows, in association with an image representing a keyboard: the size of interval or the number of semitones that is next largest to the largest interval or the largest number of semitones among those that have been specified until now and included in the second chord candidate; a chord type; and a position corresponding to the size of interval or the number of semitones based on the position of the specified tonic.
In
Next, a process carried out by the chord-playing instruction device 100 according to the present embodiment will be described by referring to
On the keyboard 301, black keys and white keys are represented by figures of the same size, and are aligned horizontally in the same order as in an actual keyboard. In the embodiment, since the black keys and white keys are shown in the same size, users can easily understand relationship of interval between constituent notes of each chord.
Here, if a user does not specify any condition, the first instruction display 102 extracts sets of chord information in all rows (30 sets of chord information, in
Then, the first instruction display 102 shows, for each of the extracted first chord candidates, the smallest interval or the smallest number of semitones among those of notes included in the first chord candidate excluding the tonic (size of interval or the number of semitones between the tonic and a note closest to the tonic), a chord type, and a position corresponding to the size of interval or the number of semitones based on the position of the pressed tonic “C,” in association with the keyboard 301, as shown in a chord-mark group 302. In the chord-mark group 302, chords represented by “M” (major), “M7” (major seventh), “aug” (augmented), “aug7” (augmented seventh), and “alt” (altered) among chords shown as first chord candidates, correspond respectively to chords represented by chord types “X”, “XY7”, “Xaug”, “Xaug7”, and “Xalt”, indicated in
Accordingly, the first instruction display 102 shows a chord mark (having a shape of hexagon in this embodiment) extending rightward by four keys corresponding to the number of semitones “4” given above, from the position of the tonic “C” indicated by the press mark 303 on the keyboard 301. Moreover, the first instruction display 102 shows the number of semitones “4” inside the chord mark, while showing the size of interval “major third” above the chord mark. Further, the first instruction display 102 shows the chord types “M, M7, aug, aug7, alt” together on the right side of the chord mark.
In this way, a user can easily understand that a note to be played when the fourth white key to the right from the tonic “C” is pressed is a constituent note having the lowest pitch next to the tonic, for the chord types “M, M7, aug, aug7, alt”.
The same principle applies to the other first chord candidates.
Similarly to
Then, by referring to the chord information having the configuration shown in
The second instruction display 103 carries out, for example, a process for excluding chord types such as a sixth type and a ninth type to extract chords “M”, “M7”, “aug”, “aug7”, and “alt” as second chord candidates.
The second instruction display 103 then shows the size of interval or the number of semitones from the tonic, which is pressed first, to the note, which is pressed second, and a position corresponding to the size of interval or the number of semitones based on the position of the pressed tonic, in association with the keyboard 301.
For example, as shown in
Further, the second instruction display 103 shows, for each of the second chord candidates, a size of interval or the number of semitones that is next largest to that of the constituent note “E,” which has the largest interval “major third” or the largest number of semitones “4”, among those of notes that are included in the second chord candidate and have been pressed until now, and a position corresponding to the size of interval or the number of semitones based on the position of the pressed tonic “C”, in association with the keyboard 301, as shown in a chord-mark group 403.
For example, the second instruction display 103 shows a chord mark extending rightward by eight keys corresponding to the number of semitones “8”, from the position of the pressed tonic “C” on the keyboard 301. Moreover, the second instruction display 103 shows the number of semitones “8” inside the chord mark while showing the size of interval from the tonic, “augmented fifth”, above the chord mark.
Further, the second instruction display 103 shows a chord mark extending rightward by four keys corresponding to the number of semitones “4”, from the position of note “E”, which is pressed second, on the keyboard 301. The second instruction display 103 shows the number of semitones “4”, inside the chord mark while showing the size of interval from the note, which is pressed second, “major third”, above the chord mark.
Similarly to the above, the second instruction display 103 shows, as other second chord candidates, a chord mark indicating a perfect-fifth interval (seven semitones), a chord mark indicating a minor-third interval (three semitones), a chord mark indicating a diminished-fifth interval (six semitones), and a chord mark indicating a major-second interval (two semitones).
The second instruction display 103 classifies a chord type, for each of the second chord candidates, and shows the chord type in a left area 404 or a right area 405 accordingly. On the basis of the chord information shown in
More specifically, the second instruction display 103 shows, in the left area 404, a chord type “aug” consisting of the tonic “C”, which is pressed first, the note “E,” which is pressed second, and a third note corresponding to a chord mark indicating a major-third interval (four semitones).
In addition, the second instruction display 103 shows, in the right area 405, a chord type “aug7” consisting of four notes including the tonic “C”, which is pressed first, the note “E”, which is pressed second, and the third note corresponding to the above-described chord mark, as an indication related to the third note corresponding to the chord mark indicating a major-third interval (four semitones) which is the same as for the chord type “aug”. If the second chord candidates include other chords each consisting of four or more constituent notes, the second instruction display 103 may also show the chords in the right area 405.
Similarly, the second instruction display 103 shows, in the left area 404, a chord type “M” consisting of the pressed tonic “C”, the note “E”, which is pressed second, and a third note corresponding to a chord mark indicating a minor-third interval (three semitones).
In addition, the second instruction display 103 shows, in the right area 405, a chord type “M7”, which consists of four notes including the tonic “C”, which is pressed first, the note “E”, which is pressed second, and the third note corresponding to the above-described chord mark as an indication related to the third note corresponding to the chord mark indicating minor third (three semitones) which is the same as for the chord type “M”. If the second chord candidates include other chords each consisting of four or more constituent notes, the second instruction display 103 may also show the chords in the right area 405.
Further, the second instruction display 103 shows, in the left area 404, a chord type “alt” consisting of the tonic “C”, which is pressed first, the note “E”, which is pressed second, and a third note corresponding to a chord mark indicating a major-second interval (two semitones). In this case, however, since the second chord candidates do not include any chord type consisting of four or more notes related to the chord mark indicating a major-second interval (two semitones) which is the same as for the chord type “alt”, the second instruction display 103 does not show any chord type in the right area 405. By looking at the screen shown as described above, the user can easily understand how to play chords.
Similarly to
By referring to the chord information having the configuration shown in
The second instruction display 103 carries out, for example, a process for excluding chord types such as a sixth type and a ninth type to extract chords, “aug” and “aug7”, as second chord candidates.
Then, the second instruction display 103 shows the size of interval or the number of semitones from the tonic, which is pressed first, to the note, which is pressed second, at a position corresponding to the size of interval or the number of semitones based on the position of the pressed tonic, in association with the keyboard 301. Similarly, the second instruction display 103 shows the size of interval or the number of semitones from the note which is pressed second to the note which is pressed third, at a position corresponding to the size of interval or the number of semitones based on the position of the note which is pressed second.
In
Further, the second instruction display 103 shows, for each of the second chord candidates, a size of interval or the number of semitones that is next largest to the largest interval “sharp 5” (augmented fifth), or the largest number of semitones “8” of the constituent note “G sharp” among those of notes that are included in the second chord candidate and have been specified until now, a chord type, and a position corresponding to the size of interval or the number of semitones based on the position of the specified tonic “C”, in association with the keyboard 301, as shown in a chord-mark group 503.
Specifically, the second instruction display 103 shows a chord mark extending rightward by ten keys corresponding to the number of semitones “10” from the position of the tonic “C” which is pressed first, on the keyboard 301. Moreover, the second instruction display 103 shows the number of semitones “10” inside the chord mark while showing the size of interval from the tonic, “minor seventh”, above the chord mark. The second instruction display 103 also shows a chord mark extending rightward by two keys corresponding to the number of semitones “2” from the position of the note “G sharp” which is pressed third, on the keyboard 301. The second instruction display 103 shows the number of semitones “2” inside the chord mark while showing the size of interval from the note which is pressed third, “major second”, above the chord mark. On the basis of the chord information shown in
For example, in
Furthermore, when a chord is formed with three pressed notes, the second instruction display 103 may determine appropriate fingering corresponding to the chord and show a fingering instruction 506 corresponding to the determined fingering. For example, in
As a method for showing the fingering instruction 506, a technique disclosed in Japanese Patent No. 4301125 may be employed, for example.
Similarly to
On the basis of the chord information having the configuration exemplified in
The second instruction display 103 carries out, for example, a process for excluding chord types such as a sixth type and a ninth type to extract a chord type “aug7” as a second chord candidate.
The second instruction display 103 shows the size of interval or the number of semitones from the tonic which is pressed first to the note which is pressed second, at a position corresponding to the size of interval or the number of semitones based on the position of the pressed tonic, in association with the keyboard 301. Moreover, the second instruction display 103 shows the size of interval or the number of semitones from the note which is pressed second to the note which is pressed third, at a position corresponding to the size of interval or the number of semitones based on the position of the note which is pressed second. Furthermore, the second instruction display 103 shows the size of interval or the number of semitones from the note which is pressed third to the note which is pressed fourth, at a position corresponding to the size of interval or the number of semitones based on the position of the note which is pressed third.
For example, in
Here, the chord information shown in
Note that, in this embodiment, chords to be shown are narrowed down by carrying out, for example, a process for excluding chord types such as a sixth type and a ninth type, as described above. For example, complicated chords such as an augmented-ninth chord are not shown.
Moreover, when a chord is formed with relationship of size of interval (the number of semitones) between the pressed four notes, by referring to the chord information shown in
For example, in
Furthermore, when a chord is formed with the four pressed notes, the second instruction display 103 may determine appropriate fingering corresponding to the chord and show a fingering instruction 605 corresponding to the determined fingering. For example, in
The second instruction display 103 refers to the chord information having the configuration shown in
At this stage, the second instruction display 103 searches the chord information shown in
As in the case shown in
By referring to the chord information having the configuration shown in
The second instruction display 103 shows a size of interval or the number of semitones from the lowest note among those that have been pressed (that is, the bass note, specifically, the note “E”, which is pressed second, in this example) to the note that is pressed third, and a position corresponding to the size of interval or the number of semitones based on the position of the pressed bass note, in association with the keyboard 301.
For example, in
In the inversion mode, the second instruction display 103 shows, for each of the second chord candidates, a constituent note of the chord having a size of interval or the number of semitones that is next largest to the largest interval or the largest number of semitones among those included in the second chord candidate, other than the tonic, and specified until now (the constituent note “G”, which has a “major-fifth” interval or the number of semitones “7”, in
In
In the inversion mode, the second instruction display 103 may display, for each of the second chord candidates, the bass note (the note “E” in
In
Further, as shown in a chord-mark group 804, the second instruction display 103 shows a chord mark extending from the bass note “E” to the note “G”, which is pressed third (indicating a minor-third interval, three semitones), and a chord mark extending from the note “G”, which is pressed third, to the tonic “C” (indicating a perfect-fourth interval, five semitones), in association with the keyboard 301.
On the basis of the chord information shown in
On the basis of the chord information shown in
When a chord is formed with relationship of size of interval (the number of semitones) between three notes that have been pressed, the second instruction display 103 shows a corresponding chord name based on the current tonic, by referring to the chord information shown in
For example, in
When a chord is formed by three pressed notes, the second instruction display 103 may determine appropriate fingering for the chord and show a fingering instruction 809 corresponding to the determined fingering.
In
Similarly to
By referring to the chord information having the configuration shown in
The second instruction display 103 carries out, for example, a process for excluding chord types such as a sixth type and a ninth type, to extract a chord type “maj on E” as a second chord candidate.
The second instruction display 103 shows the chord-mark group 804 as in
When a chord is formed with relationship of size of interval (the number of semitones) between four pressed notes, the second instruction display 103 shows a chord name 902 “C maj on E” based on the current tonic, by referring to the chord information shown in
When a chord is formed with four pressed notes, the second instruction display 103 may determine fingering corresponding to the chord and show a fingering instruction 903 corresponding to the determined fingering.
Next, a hardware configuration of the chord-playing instruction device 100 will be described by referring to
Note data that is input to an electronic musical instrument 1008 is stored in a random access memory (RAM) 1003 via a musical instrument digital interface (MIDI I/F) 1006 and a bus 1009.
A central processing unit (CPU) 1001 executes a program stored in a read only memory (ROM) 1002 connected to the CPU 1001 via the bus 1009, and instructs a sound generator 1007 connected to the CPU 1001 via the bus 1009, to generate sound, on the basis of the note data stored in the RAM 1003.
The CPU 1001 executes a program stored in the ROM 1002, and causes a display 1005 connected to the CPU 1001 via the bus 1009, to show screens represented in
The ROM 1002 stores chord information shown in
An inputter 1004 receives, from a user, an instruction to start or terminate a chord-playing instruction, an instruction to set a condition for initializing a buffer, which is to be described later, an instruction to select chords to be shown (for example, an instruction not to show ninth chords), and the like, and then notifies the CPU 1001 of the instructions via the bus 1009. The CPU 1001 controls the chord-playing instruction on the basis of the notification.
In a note buffer area of the RAM 1003, n sets (where n is an integer larger than or equal to one) of note data (that is, from note data [0] to note data [n−1]) are stored. Each set of note data includes a note number indicating a pitch, a system time at the time of note-on, and a system time at the time of note-off. The system times are timed by the CPU 1001.
First, the CPU 1001 receives, from a user, an instruction whether to carry out initialization or not (Step S1201).
Upon receipt of an instruction to carry out initialization (YES in Step S1201), the CPU 1001 carries out the initialization (Step S1202). A user inputs, by using the inputter 1004, an instruction to set a condition for initializing the note buffer area, an instruction to select chords to be shown, and the like.
When a user sets a key, the CPU 1001 may show only candidates corresponding to chords used in the key, or when a user specifies a tune to play, the CPU 1001 may show only chords used in the tune. The CPU 1001 may show chords in a mode that a user can easily distinguish between chords to be modulated and chords not to be modulated.
The CPU 1001 may have different conditions for initializing the note buffer area depending on use of a chord instruction. For example, when a chord instruction is used to play chords, the CPU 1001 may initialize the note buffer area after elapse of a certain time period with all keys being released. When a chord instruction is used to play broken chords, the CPU 1001 may initialize the note buffer area when a note that is considerably apart from the others is pressed or when a note not included in the candidates is pressed, for example.
After Step S1202, or when the CPU 1001 does not receive any instruction to carry out initialization in Step S1201 (NO in Step S1201), the CPU 1001 determines whether or not a new note-on is received (Step S1203).
When a new note-on is received (YES in Step S1203), the CPU 1001 buffers note data newly input via the MIDI I/F 1006, in the note buffer area of the RAM 1003, as new note data (note) (Step S1204).
Then, the CPU 1001 carries out an update process for updating chord instruction data (Step S1205). The update process will be described later.
After Step S1205, or when no new note-on is received (NO in Step S1203), the CPU 1001 causes the display 1005 to show a chord instruction (Step S1206), as shown in
Subsequently, the CPU 1001 determines whether or not a condition for initializing a chord-determination buffer, the condition being set in the initialization in Step S1202, is met (Step S1207).
When the initialization condition is not met, Steps S1208 and S1209 are skipped. Then, the CPU 1001 determines whether or not the user makes an instruction to terminate the instruction process, using the inputter 1004 (Step S1210).
When no instruction to terminate the instruction process is made (NO in Step S1210), the CPU 1001 returns to the operation in Step S1201 to continue the instruction process.
Upon receipt of the instruction to terminate the instruction process (YES in Step S1210), the CPU 1001 terminates the instruction process.
On the other hand, when the initialization condition is met in Step S1207 (YES in Step S1207), the CPU 1001 initializes the chord-determination buffer (Step S1208). Through this initialization, a chord-playing instruction that is currently shown is cleared. The chord-determination buffer is used in the update process to be described later.
The CPU 1001 initializes a mode flag indicating the normal mode or the inversion mode, in the RAM 1003 (Step S1209). After the initialization, the CPU 1001 advances to the above-described operation in Step S1210.
First, the CPU 1001 shows a background (Step S1301). In the present embodiment, the keyboard 301 in
The CPU 1001 determines whether or not new note data is buffered in the note buffer area in the RAM 1003 (Step S1302).
When no new note data is buffered (NO in Step S1302), the CPU 1001 advances to Step S1315 in
When new note data is buffered (YES in Step S1302), the CPU 1001 determines whether or not the new note data is the first note data (Step S1303).
When the new note data is the first note data (YES in Step S1303), the CPU 1001 adds the note data to the chord-determination buffer in the RAM 1003 (Step S1304).
Then, the CPU 1001 decides a tonic on the basis of a note number included in the note data (Step S1305).
The CPU 1001 carries out an operation for updating a next candidate list (Step S1306), and then carries out the update operation for updating candidate lists after the next (Step S1307).
In the present embodiment, when the number of constituent notes that are pressed now is two (when the number of notes is one, the CPU 1001 only carries out Step S1306 without carrying out Step S1307), the CPU 1001 searches the chord information shown in
After the operation in Step S1307, the CPU 1001 advances to Step S1315 in
When the new note data is not the first note data in Step S1303 (NO in Step S1303), the CPU 1001 determines whether or not a pitch of the note data (note number) is lower than the tonic, which is pressed first (Step S1308).
When the pitch of the new note data is not lower than the tonic which is pressed first (NO in Step S1308), the CPU 1001 determines whether or not data indicating a chord with the pitch of the new note data in addition to the notes that have been pressed until now is included in the data stored in the chord-information storage 101 (Step S1309).
When the result of the determination in Step S1309 is YES, the CPU 1001 adds the pitch to the chord-determination buffer in the RAM 1003 (Step S1310), and thereafter advances to the above-described operation in Step S1306.
When the result of the determination in Step S1309 is NO, the CPU 1001 ignores the key press of the pitch and advances to Step S1315 in
When the pitch of the new note data is lower than the tonic which is pressed first (YES in Step S1308), the CPU 1001 determines whether or not the current mode flag stored in the RAM 1003 indicates the inversion mode (Step S1311).
When the mode flag indicates the inversion mode (YES in Step S1311), the CPU 1001 advances to Step S1309.
When the mode flag does not indicate the inversion mode (NO in Step S1311), the CPU 1001 sets the mode flag stored in the RAM 1003, at a value for indicating the inversion mode, in order to set the mode to the inversion mode. Moreover, when the mode flag is initialized in Step S1209, the mode is set to the normal mode. The CPU 1001 decides a bass note on the basis of the pitch (note) of the new note data as described in
Then, the CPU 1001 adds the new note data to the chord-determination buffer (Step S1314).
Thereafter, the CPU 1001 advances to the operation in Step S1306. After the operation in Step S1307, or when no new note data is input (NO in Step S1302) or when the determination in Step S1309 is NO, the CPU 1001 advances to Step S1315.
Moving to
When no matching chord is stored in the chord-information storage 101 (NO in Step S1315), the CPU 1001 advances to Step S1319.
When a matching chord is stored in the chord-information storage 101 (YES in Step S1315), the CPU 1001 updates the chord name (Step S1316), decides fingering (Step S1317), shows the fingering instruction 506 as shown in
After Step S1319, the CPU 1001 terminates the update process shown in the flowchart of
As described above, according to the present embodiment, even a beginner can easily play a keyboard instrument by looking at a chord sheet without any problem. In addition, a user can visually learn relationship of interval between notes constituting a chord and positions of the notes, allowing the user to easily acquire chord-playing skills.
Note that the CPU 1001 may additionally show how to read a name of each chord.
Moreover, to specify constituent notes of a chord, a user may input the notes by pressing multiple keys at the same time, or may specify the notes one by one, by pressing one key at a time in order while releasing the key before pressing a next one.
As an alternative to the input by pressing keys, a user may use, for example, a keyboard of a personal computer (PC) resembling the keyboard of a keyboard instrument, and cause the PC to show the chord on a display when notes are specified by inputting notes on the keyboard of the PC. An input device of any other type may be used instead. The above-described embodiment is based on an assumption that notes would be input in the order from the one having the lowest pitch, with respect to the chord information shown in
For example, if a note “G” is pressed after the tonic “C”, the CPU 1001 may search the chord information shown in
Alternatively, the CPU 1001 may search for all chord types including the tonic “C” and the note “G”, and show all notes that are included in any of the chord types and are not specified yet, as candidates, irrespective of the pitch.
In the above-described embodiment, in the flowchart of
This enables a user to easily cancel a note that has already been pressed and try replacing the note with another note to see what happens, for example. In this way, the chord-playing instruction device 100 can provide more interactive instructions.
Moreover, the CPU 1001 may determine which note is to be excluded, on the basis of a note-off by a user, or may determine which note is to be excluded when a user presses an exclusion button to change the mode to a mode for specifying a note to be excluded.
The mode and position for showing, on the display, each chord mark corresponding to an indicator representing a size of interval, and each interval, for example, may be changed to any form.
In the above-described embodiment, an example of showing a keyboard of a piano has been described. However, the chord-playing instruction device 100 is not limited to this, and may use music-playing operators of a different type, and a different configuration of showing relationship of pitch between notes.
It is possible for an existing personal computer, information terminal device, or the like, to function as the chord-playing instruction device 100 of this embodiment, when a program for driving the chord-playing instruction device 100 is applied on the personal computer or the like.
In this case, any method can be used to distribute such a program. For example, the program may be distributed by being stored in a computer-readable recording medium such as a compact disk read-only memory (CD-ROM), a digital versatile disk (DVD), a magneto optical disk (MO), or a memory card. Alternatively, the program may be distributed via a communication network such as the Internet.
In the above, a preferable embodiment of the present invention has been described in detail. However, the present invention is not limited to the above embodiment, and different variations can be made to the embodiment within the gist of the present invention described in the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2013-062206 | Mar 2013 | JP | national |