Choroidal Blood Flow Imaging with Spectral Domain OCT

Information

  • Research Project
  • 8780425
  • ApplicationId
    8780425
  • Core Project Number
    R43EY023863
  • Full Project Number
    1R43EY023863-01A1
  • Serial Number
    023863
  • FOA Number
    PA-13-234
  • Sub Project Id
  • Project Start Date
    9/1/2014 - 10 years ago
  • Project End Date
    8/31/2015 - 9 years ago
  • Program Officer Name
    WUJEK, JEROME R
  • Budget Start Date
    9/1/2014 - 10 years ago
  • Budget End Date
    8/31/2015 - 9 years ago
  • Fiscal Year
    2014
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    8/25/2014 - 10 years ago
Organizations

Choroidal Blood Flow Imaging with Spectral Domain OCT

DESCRIPTION (provided by applicant): Ophthalmic vascular diseases impact millions of Americans. Age-related macular degeneration and diabetic retinopathy are the two major diseases with a well- known vascular factor. The role of the vascular system in glaucoma and retinopathy of prematurity is more insidious. The vascular theory of glaucoma suggests that the blood supply to the eye is a contributory factor in glaucoma. Advanced retinopathy of prematurity is characterized vascular tortuosity, but the study of developmental vascularity in the pre-term and neonatal eye is in its infancy. The development of a clinical diagnostic to quantify blood flow in the two distinct circulatory systems of the eye (uveal and retinal) is essential to te research and differential diagnosis of these eye diseases. Bioptigen has been at the forefront of pediatric OCT, receiving the first explicit pediatric OCT FDA clearance in 2012. Bioptigen also commercialized the first Doppler OCT software in 2006, under exclusive license from CWRU. Current systems operate in the 800 nm band at 32 kHz, limiting visualization of structure and flow in the choroid. A new long-wave InGaAs line scan camera and novel blood flow analysis algorithms developed by Bioptigen can now be adapted to a new class of spectral domain OCT for imaging structure and flow in the retina and choroid. In this Phase I application we propose to develop a spectral domain OCT system operating at 1020 nm, with 5 mm image depth, 5 um axial resolution, and 70 kHz acquisition speed for full range retinal imaging including the choroid. Bioptigen's quantitative Doppler flow algorithms will be validated for accuracy, precision and maximum measureable flow rate using a benchtop flow phantom. Preliminary clinical data will be collected on healthy and glaucomatous adult subjects and on infants with and without diagnosed retinopathy of prematurity to determine ability to obtain differential vascular flow rate in choroid and retina, and to distinguish between glaucomatous and healthy adults, and ROP and healthy newborns. Upon successful conclusion of the Phase I program, we expect to be prepared to design a protocol and pilot clinical trial to assess the diagnostic capability of long wave Doppler OCT for glaucoma and retinopathy of prematurity.

IC Name
NATIONAL EYE INSTITUTE
  • Activity
    R43
  • Administering IC
    EY
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    223583
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    867
  • Ed Inst. Type
  • Funding ICs
    NEI:223583\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    BIOPTIGEN, INC.
  • Organization Department
  • Organization DUNS
    361420040
  • Organization City
    DURHAM
  • Organization State
    NC
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    277093569
  • Organization District
    UNITED STATES