The present invention relates generally to oil field services and tools and, more particularly but without limitation, to methods and devices for replacing a well head blowout preventer with a Christmas tree.
Coiled tubing is increasingly favored as a method for deploying tools and performing operations downhole. For example, coiled tubing is commonly used to drill out plugs and perform perforating and fracturing (“fracing”) procedures. When these procedures are completed, the wellhead blowout preventer (“BOP”) is removed and replaced with the Christmas tree, so that production can commence or resume.
The installation of the Christmas tree typically is done using a snubbing unit. This requires oilfield workers to be physically present immediately over the wellhead. Additionally, the snubbing procedure increases the pressure present in the well. Thus, a snubbing operation is inherently hazardous.
The present invention is directed to the use of the coiled tubing injector, instead of a snubbing unit, to remove the wellhead BOP and to install the Christmas tree. This reduces the high pressure hazards inherent in snubbing. Further, since the coiled tubing injector can be controlled remotely, there is no need for oilfield workers to remain standing over the wellhead while the installation is performed. These and other advantages will become apparent from the following description of the preferred embodiments of the invention.
The present invention comprises a system for replacing a wellhead blowout preventer (“BOP”) with a Christmas tree. An exemplary system, illustrated in
In most instances, the inventive system 10 will include a blowout preventer 16 attached at the bottom of the injector head 12 in a usual manner. A spacer spool 18 may be attached to the bottom of the blowout preventer 16 for a reason that will become apparent.
The system 10 further comprises a tool string 20 for inserting the wellhead blowout prevent seal or “donut” 22 into the wellhead 24 accessing the well 26. The donut 22 is supported on the end of this tool string 20. In many cases, a well control assembly 28 is attached to the bottom of the donut 22, as described more fully below.
The dimensions, arrangements and components of the tool string 20 may vary. Since one of the advantages of the method and system of the present invention is the use of the crane and CT injector head already in place at the well site after performing another well operation, the dimensions of the tool string components should be sized for use in the CT injector head. For example, where the previous coiled tubing operation employs 2-inch coiled tubing, the components of the tool string 20 should have a 2-inch O.D.
As shown in
The donut 22, also called a “slick neck” or “wrap around,” is the seal, typically made of solid steel, that containing a removable back pressure valve. It is usually provided as part of the wellhead BOP.
Referring still to
The method of the present invention commences with the rigging up of the tool string 20. The coiled tubing injector head 12 (with the coiled tubing removed) is positioned at a workable height. As shown in
Next, the upper components of the installation tool string 20 shown in
By way of example, first the pressure shutoff valve 40 is installed on the upper end of the 2-inch OD long weight bar 44 of suitable length with the crossover sub 42 between. Then, with the CT BOP 16 in the open position, this partial tool string is inserted into the CT injector head 12. Next, the injector head 12 is operated to lift the lower end of the first weight bar 44 to a comfortable working level to support the partial tool string 20 for further assembly. The second 2-inch OD long weight bar 46 is attached to the end of the first weight bar 44.
Next, a 4-foot section of 7 1/16″ spacer spool 18 is attached to the end of the CT BOP 16, as seen in
Having attached the spool 18, the upper end of the partial tool string 20 is raised using the injector head 12. Next, the second crossover sub 48, safety union 50, the short weight bar 46, and the next crossover sub 48, if needed, are connected. Here, it should be noted that the safety union 50 comprises a swivel 70 for a purpose that will become apparent.
Now, the upper end 56 of the wellhead BOP's donut 22 (
Using the CT injector head 12, the tool string 20 is lifted again so that the donut 22 is raised above the wellhead BOP 68 again. Here, if desired, a well control assembly 26 may be attached to the bottom the donut 22. In the exemplary well control assembly 26 shown in
With the tool string 20 completed, the BOP/Christmas tree switch may be made. As shown in
After the spool 18 and CT BOP 16 are connected, the pressure above and below the wellhead BOP 68 inside the BOP stack 76 is equalized. The equalization lines (not shown) are connected and the lubricator (section of the coiled tubing unit) is pressure tested with the wellhead BOP 68 and the CT BOP 16 both in the closed position.
When the pressure above and below the wellhead BOP 68 is equalized, the wellhead BOP may be moved to the open position. Then, with the CT BOP 16 still closed, the tool string 20 is lowered using the injector head 12 until the donut 22 is “landed” or seated properly in the wellhead 24, as depicted in
Once the donut 22 is secured, sealing off the well pressure, the pressure in the tool string 20 above the donut 22 is bled off by opening the valve in the CT BOP 16. Once the pressure is zero, the spacer spool 18 is unflanged from the wellhead BOP 68. The gripper chain pressure in the injector head 12 is released to loosen the grip on the tool string 20, and then the injector head 12 is lifted until the safety union 50 is visible.
The chain pressure is applied again to hold the upper end of the tool string 20 stationary against rotation, and the nut on the safety union 50 is spun to disconnect the upper section of tools by lifting the injector head 12. After swinging the disconnected upper segment 58 of the tool string 20 to the side of the wellhead 24, the upper segment can be disassembled and the injector head 12 removed from the crane 14 (
Having installed and secured the donut 22 in the wellhead 24, the wellhead BOP 68 can be removed also using the crane 14 or other lift mechanism that previously supported the CT injector head 12. The lower segment 60 of the tool string 20 may then be removed from the upper end 56 of the donut 22. It should be noted that there still are two pressure barriers closing off the well 36—the back pressure valve (not shown) in the donut 22 and the burst disc sub 30 in the well control assembly 28 beneath the donut, as seen in
Still using the same crane 14, the Christmas tree 84 is lifted and positioned on the wellhead 24, as shown in
It will be appreciated that the present invention provides a method and system for removing the wellhead BOP and installing the Christmas tree that is both convenient and relatively inexpensive, as it employs the crane and injector head assembly already in place at the well site for deploying coiled tubing. Moreover, the remote operation of the CT injector head eliminates the need for workers to be standing immediately over the well as pressurized operations are conducted.
As used herein, phrases such as forwards, backwards, above, below, higher, lower, uphole and downhole are relative to the direction of advancement of the tool string in the well.
The embodiments shown and described above are exemplary. Many details are often found in the art and, therefore, many such details are neither shown nor described. It is not claimed that all of the details, parts, elements, or steps described and shown were invented herein. Even though numerous characteristics and advantages of the present inventions have been described in the drawings and accompanying text, the description is illustrative only. Changes may be made in the details, especially in matters of shape, size, and arrangement of the parts within the principles of the inventions to the full extent indicated by the broad meaning of the terms of the attached claims. The description and drawings of the specific embodiments herein do not point out what an infringement of this patent would be, but rather provide an example of how to use and make the invention. Likewise, the abstract is neither intended to define the invention, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way. Rather, the limits of the invention and the bounds of the patent protection are measured by and defined in the following claims.
This application is a continuation of application Ser. No. 13/179,678, entitled “Christmas Tree Installation Using Coiled Tubing Injector,” filed Jul. 11, 2011, which claims the benefit of the filing date of U.S. provisional application No. 61/423,167 filed Dec. 15, 2010, entitled “Christmas Tree Installation Using Coiled Tubing Injector.” and the contents of the prior applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4940095 | Newman | Jul 1990 | A |
5727631 | Baker et al. | Mar 1998 | A |
5975203 | Payne | Nov 1999 | A |
7111689 | Wise et al. | Sep 2006 | B2 |
7681632 | Wood | Mar 2010 | B2 |
20050247456 | Wise et al. | Nov 2005 | A1 |
20060124314 | Haheim et al. | Jun 2006 | A1 |
20070131416 | Odell, II | Jun 2007 | A1 |
20090277647 | Dallas | Nov 2009 | A1 |
20110169224 | Nguyen | Jul 2011 | A1 |
20130014947 | Wilkins et al. | Jan 2013 | A1 |
20130025848 | Schepp et al. | Jan 2013 | A1 |
20140034392 | Ganzinotti et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1724434 | Nov 2006 | EP |
Entry |
---|
International Search Report and Written Opinion issued in corresponding international application No. PCT/US2011/063916 published on Jun. 21, 2012, as WO 2012/0825514. |
Number | Date | Country | |
---|---|---|---|
20120024538 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61423167 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13179678 | Jul 2011 | US |
Child | 13267398 | US |