Chromatin looping directed RAG targeting during V(D)J recombination

Information

  • Research Project
  • 10099796
  • ApplicationId
    10099796
  • Core Project Number
    R01AI155775
  • Full Project Number
    1R01AI155775-01
  • Serial Number
    155775
  • FOA Number
    PA-19-056
  • Sub Project Id
  • Project Start Date
    12/1/2020 - 4 years ago
  • Project End Date
    11/30/2025 - 10 months from now
  • Program Officer Name
    LIU, QIAN
  • Budget Start Date
    12/1/2020 - 4 years ago
  • Budget End Date
    11/30/2021 - 3 years ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
  • Award Notice Date
    12/1/2020 - 4 years ago

Chromatin looping directed RAG targeting during V(D)J recombination

Project Abstract As a critical part of adaptive immunity, generation of a highly diverse antibody repertoire begins with efficient assembly of the immunoglobulin heavy chain locus (IgH) through V(D)J recombination during early B cell development. At IgH locus, hundreds of VHs are widely-spread within a 2.4 Mb upstream region and multiple DHs and JHs are located within a downstream 0.3 Mb domain. The lymphoid-specific RAG1/RAG2 (RAG) endonuclease initiates V(D)J recombination by cutting paired recombination signal sequences (RSSs) flanking V, D, and J segments. A major knowledge gap is what mechanisms bring the RSS pairs, which are widely separated in chromosomal distance, into spatial proximity for RAG cleavage. Although 3D genome topology and long-range chromatin interaction at IgH locus has been implicated to play important roles in directing RAG targeting, understanding the underlying mechanisms is greatly hindered due to lack of high-resolution chromatin interaction maps and efficient systems to comprehensively characterize the putative regulatory elements. The overall objective of this proposal is to determine the molecular mechanisms driving functional chromatin interactions mediating IgH RAG targeting. We have recently revealed a novel mechanism driving D to JH recombination, whereby cohesin-mediated chromatin loop extrusion propels RAG scanning within D-JH domain to promote physiologically deletional D-to-JH joining. With new compelling evidence, we propose that this cohesin-mediated dynamic chromatin looping also operates during V to DJH recombination to ensure generation of a diverse VH repertoire. With ultra-sensitive chromatin interaction and V(D)J recombination assays combined with comprehensive genetic studies, in Aim1, we will address the functional importance of chromatin loop extrusion in V to DJH recombination. In Aim2, we will determine the molecular mechanisms underlying cohesin-mediated IgH long-range looping. In Aim3, we will identify and characterize novel IgH cis- regulatory elements in directing RAG long-range targeting. These studies will be greatly facilitated by a novel v-Abl pro-B cell line we generated that shows efficient IgH long-range chromatin looping and diverse VH utilization across IgH locus. This will provide a flexible cell-based system to systematically characterize complex interplay between IgH cis-regulatory elements and trans-acting factors, which is difficult to achieve in animal models. Completion of this project will provide new mechanistic insights on how the dynamic 3D genome topology harnesses a major immune process for generation of diverse antibody repertoires.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    1
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    127500
  • Total Cost
    377500
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:377500\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    CMIB
  • Study Section Name
    Cellular and Molecular Immunology - B Study Section
  • Organization Name
    WESTERN MICHIGAN UNIV SCHOOL OF MEDICINE
  • Organization Department
  • Organization DUNS
    130095581
  • Organization City
    KALAMAZOO
  • Organization State
    MI
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    490088000
  • Organization District
    UNITED STATES