Chromatographic data system processing apparatus

Information

  • Patent Grant
  • 11422118
  • Patent Number
    11,422,118
  • Date Filed
    Thursday, November 15, 2018
    6 years ago
  • Date Issued
    Tuesday, August 23, 2022
    2 years ago
Abstract
A chromatographic data system processing apparatus includes a liquid feeder, a sample injector, a column that separates samples, a detector, a controller that processes a detected result of the detector, and a data processor that examines and sets operations of the liquid feeder, the column and the detector, and a measurement condition. The data processor generates a three-dimensional graph having three axes related to a pressure, a time, and a number of theoretical plates based on data or variables indicating a relationship between the number of theoretical plates and a flow rate, and data or variables indicating a relationship between the pressure and the flow rate. The chromatographic data system processing apparatus can easily obtain a separation condition for obtaining performance from a three-dimensional graph including a pressure drop, a hold-up time and a number of theoretical plates.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority from Japanese Patent Application No. 2017-219707 filed on Nov. 15, 2017 and Japanese Patent Application No. 2018-225924 filed on Nov. 14, 2018, the entire subject matters of which is incorporated herein by reference.


BACKGROUND
1. Field of the Invention

The present disclosure relates to a chromatographic data system processing apparatus, and particularly to a quantitative analyzing apparatus for searching a separation condition of a liquid chromatography.


2. Background Art

Literature 1: Masahito ITO, Katutoshi SHIMIZU, and Kiyoharu NAKATANI, “ANALYTICAL SCIENCE”, The Japan Society for Analytical Chemistry, February 2018, Vol. 34, p. 137-141


Literature 2: Stephen. R. Groskreutz, and Stephen. G. Weber, “Analytical Chemistry”, ACS Publications, 2016, Vol. 88, p. 11742-11749


In order to understand a relationship between an analysis time and separation performance of HPLC (High Performance Liquid Chromatography), the shown-above Literature 1 based on WO 2014/030537 1 can be cited. A pressure drop ΔP (Pa) and a hold-up time t0 (s) are input as two independent variables, and a number of theoretical plates N is output as one function of N (ΔP, t0) or N (Π, t0). Essentially, ΔP corresponds to a next velocity length product Π (m2/s) (represented by Cf in WO 2014/030537).










Π




K
v


Δ





P

η


=


u
0


L





(

Equation





1

)







Here, KV (m2) represents a column permeability, ρ (Pa·s) represents a viscosity, u0 (m/s) represents a linear velocity of a non-retaining component, and L (m) represents a column length.


There is the shown-above Literature 2 for the same purpose. As shown in FIG. 1, the above function N on a z axis is expressed as N (u0, L) by another basal plane. FIG. 1 is a simple three-dimensional graph plotting the linear velocity u0, that is, the number of theoretical plates N obtained when feeding a mobile phase of a flow rate F, to the column length L. For example, in a case of a column with L=50 mm, an N-u0 curve indicated by a broken line is drawn. A maximum point of this curve corresponds to a so-called minimum theoretical plate equivalent height Hmin. A optimal linear velocity at which Hmin is obtained is u0,opt, and u0,opt is an intrinsic value if the separation condition of fillers etc. are kept constant. Therefore, in FIG. 1, a straight line with u0,opt=3.5 mm/s is drawn as a vertical broken line connecting the maximum point regardless of L.


An HPLC user generally determines the column length L and then searches for the separation condition by a manipulation of changing the flow rate F. The pressure drop ΔP and the hold-up time t0 are obtained as measurement results reflecting F and L of the segregation condition searched. It is considered that this separation condition F and L is a cause system. Compared to the separation condition of F and L, ΔP and t0 are considered to be result indexes obtained therefrom. As described in WO 2014/030537, for example, an analytical operator firstly expects to grasp a relationship between the result indexes ΔP and t0 and the number of theoretical plates N obtained at that time. In other words, the analytical operator expects to analyze at what degree of ΔP, N indicating a high speed t0 and separation performance can be obtained.


For another example, when identifying each separated analyte for the property of HPLC, since a retention time after establishing the separation condition is used, in actual examination of the separation condition, t0 and the retention time of each analyte are verified.


In addition, a method of searching for a condition by three-dimensional graphing ΔP, t0 and N is proposed (WO 2014/030537). As factors of the separation condition search, ΔP and t0 can be direct judgment factors, as described above. However, as a related condition examination method, quantitative analysis is difficult for the HPLC user familiar with the column length L and the flow rate F. F is a speed related index that is proportional to the aforementioned u0, and ΔP is an intensity related potential capability index that is proportional to the aforementioned velocity length product Π.


In JP-A-2009-281897, transfer methods on how to transfer from HPLC to UHPLC or vice versa are described. Although only ΔP is considered by an optimization method of L and F, there was a problem that t0 is not sufficiently considered and N cannot be calculated either.


There is also a problem that ΔP, to and N cannot be quantitatively grasped to a physiographic profile of the three-dimensional graph.


SUMMARY

In order to solve the above problems, a chromatographic data system processing apparatus is provided, which can quantitatively analyze ΔP, t0 and N by introducing an efficiency which is a new dimensionless index on a slope of a three-dimensional space representing a column length L, a linear velocity u0 and a number of theoretical plates N, and applying standardization based on an optimum linear velocity u0,opt, in other words, which can easily obtain a separation condition for obtaining performance from a three-dimensional graph including ΔP, t0 and N.


In order to solve the above problems, a chromatographic data system processing apparatus according to the present disclosure includes:


a liquid feeder configured to feed a mobile phase;


a sample injector configured to inject a sample into a mobile phase flowing path into which the mobile phase is fed;


a column configured to separate the injected sample;


a detector configured to detect the separated analytes;


a controller configured to process a detected result of the detector;


a data processor configured to examine and set operations of the liquid feeder, the column and the detector, and a measurement condition,


in which the data processor generates a three-dimensional graph having three axes related to a pressure, a time, and a number of theoretical plates based on data or variables indicating a relationship between the number of theoretical plates and a flow rate, and data or variables indicating a relationship between the pressure and the flow rate to analyze a separation condition from the generated three-dimensional graph.


In order to solve the above problems, a chromatographic data system processing apparatus, includes:


a liquid feeder configured to feed a mobile phase;


a sample injector configured to inject a sample into a mobile phase flowing path into which the mobile phase is fed;


a column configured to separate the injected sample;


a detector configured to detect the separated analytes;


a controller configured to process a detected result of the detector; and


a data processor configured to examine and set operations of the liquid feeder, the column and the detector, and a measurement condition,


in which, in a process of selecting two variables for axes from four variables related to a linear velocity, a length, a pressure and a time to analyze a separation condition, the data processor transforms the axes of the selected two variables into axes of two variables not selected.


In order to solve the above problems, a chromatographic data system processing apparatus, which analyzes and processes data of an analysis condition and a detection result of a chromatograph, outputs a three-dimensional graph having three axes related to a pressure, a time, and a number of theoretical plates based on data or variables indicating a relationship between the number of theoretical plates and a flow rate, and data or variables indicating a relationship between the pressure and the flow rate to analyze a separation condition from the output three-dimensional graph.


The present disclosure provides the chromatographic data system processing apparatus for easily transforming a representation form from a three-dimensional graph T2 (Π, t0, N) representing a result requested as a performance by a user to a causal three-dimensional graph T1 (u0, L, N) to be searched for as a separation condition. This is an LRT (Logarithmically Rotational Transformation) transformation from (Π, t0) to (u0, L) of a basal coordinate (x, y). T1 and T2 represent three-dimensional partial spaces, where T1 represents a vector space expressed by (u0, L, N), and T2 represents a vector space expressed by (Π, t0, N).


Next, the chromatographic data system processing apparatus outputs an index PAE (Pressure-Application Efficiency) that a user can quantitatively grasp whether the performance to be obtained is the performance corresponding to application of pressure or whether the inefficient pressure increases. The Pressure-Application Efficiency μN/Π (Π, t0) is standardized to 1 when the linear velocity is an optimal u0,opt. μt/Π (Π, t0) is the PAE for t0 which divides μN/Π (Π, t0) by μN/t (Π, t0). Although on a slope on a higher pressure side, i.e., a higher flow rate side than the line of u0,opt, the efficiency is 1 or less, the efficiency gradually inclines (changes) and not largely decreases. That is, an increase in number of theoretical plates per pressure can be expected with a good efficiency that is almost equal to an ideal u0,opt. For example, as one of guidelines, it is possible to search for a separation condition as a practical range of μN/Π of 0.5 or more as a practical range as long as the constant separation performance is allowed in a high-speed analysis time area which is not ideal. This is an advantage of quantitatively overlooking μN/Π in all areas on a basal coordinate (Π, t0).





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:



FIG. 1 is a diagram showing an output example of a liquid chromatographic separation condition analysis of the present disclosure in addition to the concept of a three-dimensional graph N (u0, L) in the Literature 2 having a particle diameter of 2 μm;



FIG. 2 is a diagram showing bidirectional transformation between (u0, L) and (Π, t0);



FIG. 3 is a diagram showing transformations of axis rotation and scaling in an LRT;



FIG. 4 is a diagram showing a relationship of a three-dimensional graph N (Π, t0) and KPL of a particle diameter of 2 μm and an output example of the liquid chromatographic separation condition analysis of the present disclosure;



FIG. 5 is a diagram showing a three-dimensional graph of μN/Π (in a case of a particle diameter of 2 μm) and an output example of the liquid chromatographic separation condition analysis of the present disclosure;



FIG. 6 is a diagram showing a three-dimensional graph of μt/Π (in a case of a particle diameter of 2 μm) and an output example of the liquid chromatographic separation condition analysis of the present disclosure;



FIG. 7 is a diagram showing an example of a chromatographic data processing system apparatus (a case of an LRT mechanism diagram);



FIG. 8 is a diagram showing an example of a chromatographic data processing system apparatus (a case of a PAE mechanism diagram);



FIG. 9 is a diagram showing a flow of a three-dimensional graph generation process;



FIG. 10 is a diagram showing a flow of an LRT transformation process;



FIG. 11 is a diagram showing a PAE calculation process flow;



FIG. 12 is a diagram showing an example of a liquid chromatography apparatus;



FIG. 13 is a diagram showing an example of a liquid chromatography apparatus including a liquid chromatographic data system processing apparatus of the present disclosure;



FIG. 14 is a plot showing contours;



FIG. 15 is a diagram showing extension to a (1) high Π area in speeding-up of to under a constant condition of N;



FIG. 16 is a diagram showing pressure variation along a contour of N=5,000 in the extension to the (1) high Π area in speeding-up of t0 under a constant condition of N;



FIG. 17 is a diagram showing a movement to a (2) low Π area in speeding-up of t0 under a constant condition of N;



FIG. 18 is a diagram showing pressure variation along a contour of N=5,000 in the movement to the (1) low Π area in speeding-up of t0 under a constant condition of N;



FIG. 19 is a diagram showing extension to a (1) high Π area in high separation of N under a constant condition of t0;



FIG. 20 is a diagram showing pressure variation along a horizontal line of t0=10 s in the extension to the (1) high Π area in high separation of N under a constant condition of t0;



FIG. 21 is a diagram showing a movement to a (2) low Π area in high separation of N under a constant condition of t0;



FIG. 22 is a diagram showing pressure variation along a horizontal line of t0=10 s in the movement to the (2) low Π area in high separation of N under a constant condition of t0;



FIG. 23 is a diagram showing (1) speeding-up in deployment under a Πmax upper limit pressure;



FIG. 24 is a diagram showing time variation along a vertical line of ΔP=20 MPa in the (1) speeding-up in the deployment under a Πmax upper limit pressure;



FIG. 25 is a diagram showing (1) high separation in deployment under a Πmax upper limit pressure;



FIG. 26 is a diagram showing time variation along a vertical line of ΔP=20 MPa in (1) high separation in the deployment under a Πmax upper limit pressure;



FIG. 27 is a diagram showing contours with PAC coefficients starting from N;



FIG. 28 is a diagram showing contours starting from the time t0;



FIG. 29 is a diagram showing a three-dimensional graph of a square theoretical plate number Λ;



FIG. 30 is a diagram showing a three-dimensional graph of an inverse hold-up time v0;



FIG. 31 is a diagram showing a three-dimensional graph of Λ and v0; and



FIG. 32 is a diagram showing a three-dimensional graph of resolution Rs.





DETAILED DESCRIPTION

Hereinafter, the Literature 1 and the Literature 2 will be mathematically unified, and disclosures according to an invention devised from the understanding based on the mathematical unification will be shown.


(1) Bidirectional Transformation Method LRT


As one of the disclosures, Logarithmically Rotational Transformation (LRT) based on a logarithmic axis representation such as log Π.


t0 described above is expressed by Equation 2 using the variables u0 and L in the above Equation 1.










t
0

=

L

u
0






(

Equation





2

)







The Equations 1 and 2 are logarithmic representations and can be represented into Equations 3 and 4.










log





Π

=


log






u
0


L

=


log






u
0


+

log





L







(

Equation





3

)







log






t
0


=


log


(

L

u
0


)


=



-
log







u
0


+

log





L







(

Equation





4

)







Equations 3 and 4 can be represented in a matrix notation and can be regarded as a kind of axis rotational transformation (Equation 5).











(




log





Π






log






t
0





)

=


(



1


1





-
1



1



)



(




log






u
0







log





L




)








=


2



(




cos





45

°




sin





45

°







-
sin






45

°




cos





45

°




)



(




log






u
0







log





L




)











This means that N (u0, L) can rotate to N (Π, t0) through a logarithm, that is, coordinate conversion can be performed. Since the logarithm can be returned to an antilogarithm, it is a one-to-one mapping from a basal plane (u0, L) to a basal plane (Π, t0), and vice versa. Precisely, it is a bijective linear transformation that multiplies the rotational transformation by a scalar magnification √2. It is regarded that the three-dimensional graph of N (u0, L) is different from the three-dimensional graph of N (Π, t0) only in the axis to be expressed, and contents to be expressed are equivalent. However, this relationship is an intuitive representation for the first time being represented on the logarithmic axis. Mathematically, from an idea that links a relationship of a mathematical product and a quotient between u0 and L to a relationship of a sum and a difference between them through logarithm, a representation easy to understand can be obtained. In the Literature 1, a target is considered to be a five-dimensional space V (u0, L, Π, t0, N), but according to the present disclosure, the target is divided into two three-dimensional partial spaces T1 (u0, L, N) and T2 (Π, t0, N), as shown in FIG. 2. In addition, as shown in FIG. 3, each partial space is found to be easily transferable as indicated by the LRT transformation of T1<->T2 (bidirectional transformation between T1 and T2).


As for the way to see chromatography, T1 (u0, L, N) is a space represented by a three-dimensional graph showing N obtained by first fixing separation conditions such as a mobile phase, an analytical specie and a column temperature under a precondition of an optional column filler and freely changing u0 and L. In response to this, T2 (Π, t0, N) is a transformation destination from the basal coordinate of u0 and L to the basal coordinate Π and t0. That is, two-dimensional degrees of freedom of u0 and L are inherited to all degrees of freedom of Π and t0. If there is a certain column, L is constant but u0 is variable. It is understood that, if u0 is moved, not only to but also Π changes accordingly, so that all sets of u0 and L correspond to sets of Π and t0.


WO 2014/030537 describes KPA (Kinetic Plot Analysis), that is, KPL (Kinetic Performance Limit). KPL can be regarded as representing a cross section (t0, N) at a certain Π when T2 (Π, t0, N) is cut with the certain Π. When u0 is changed using a column of a certain L, the N (u0) curve at the certain L is drawn on a (u0, N) plane of the certain L. Further, a T1 (u0, L, N) space is obtained by sweeping the above L. Since it is a surjection from T1 (u0, L, N) to T2 (Π, t0, N), it is clearly determined that a set of (u0, L) to a set of (Π, t0) is a one-to-one correspondence. That is, a two-dimensional graph (t0, N) indicated by KPL is a cross section (t0, N) of a certain Π in the (t0, N) space, and each point indicated by a curve N (t0) or t0 (N) of the specific Π expressed by KPL always goes back to coordinates somewhere in the original T1 (u0, L, N) space. The mapping point of the T2 (Π, t0, N) space never goes out of the T1 (u0, L, N) space and never duplicates. KPL is a cross section in the T2 (Π, t0, N) space at a specific Π, and original elements thereof are necessarily provided in advance in the T1 (u0, L, N) space.


In FIG. 4, a three-dimensional graph of N (Π, t0) is plotted. This is transformed from FIG. 1 by LRT. First, a constant straight line of u0,opt is drawn with a broken line on this three-dimensional graph. Next, for example, when ΔP=60 MPa, that is, Π is constant, a cross section of t0-N is cut off. This is a performance characteristic diagram of a high speed t0 and high separation performance N obtained by KPL. In other words, the three-dimensional graph of N (Π, t0) can be regarded as an extended representation of KPL as described in WO 2014/030537.


A circle shown on the three-dimensional graph in FIG. 4 represents candidate measurement conditions for efficiently proceeding measurement when a column filler has a particle diameter of 2 μm.


It can be understood that this is a reversible relationship indicating a transfer from a resultant T2 representation form required as performance to a causal representation form of T1 to be answered as a separation condition or a transfer in a reverse direction. The LRT can easily provide the basal coordinates of Π and t0, which can be obtained as a result that an analysis operator cannot immediately estimate by just looking at the cause setting variables u0 and L. Here, the basal coordinate referred to corresponds to a basal plane of a three-dimensional graph. z on a vertical axis is set as N, and the basal coordinate (x, y) is (u0, L) or (Π, t0).


Further, since the column length L available to general users is discrete as 50 mm, 100 mm, and 150 mm, there is an advantage that a cause input L of T1 can be discretely expressed and u0 can be evaluated continuously can be evaluated. Since this T1 can be LRT-transformed to a three-dimensional graph of T2, a discrete representation can correspond to the T2 graph one-to-one, as a performance result. This is a very convenient representation for the users as a real solution. The operation and representation form of a chromatography data system (CDS) related to these three-dimensional graphs can correspond not only to a bidirectional transformation of LRT but also a bidirectional transformation between a logarithm and an antilogarithm and a discrete representation of L. In addition, when the user indicates an arbitrary point on the three-dimensional graph, three sets of values of (u0, L, N) and (Π, t0, N) can be shown. When arbitrary two points are indicated, a difference between the three axial directions can also be expressed. For example, an increment of N is an increment of Π and t0.


(2) Generalized Representation Form


The logarithmically rotational transformation LRT is generalized and extended. Variables are generalized with xi and four variables of i=1, 2, 3, 4 are introduced when x1=u0, x2=L, x3=Π, and x4=t0. In the four variables, Equation 1 and Equation 2, that is, Equation 6 and Equation 7, have a subordination relationship, and since there are four variables and two equations, there two independent variables. The number of combinations of selecting two variables from the four variables is 6 of 4C2.










x
3

=


x
1



x
2






(

Equation





6

)







x
4

=



x
2


x
1




x
1

-
1




x
2






(

Equation





7

)







In addition, when making a three-dimensional graph, two independent variables can be assigned to a first dimension axis and a second dimension axis, such as a basal coordinate (xi, xj). At this time, if the order of the first dimension axis and the second dimension axis is distinguished, there are 12 combinations of the permutation number 4P2. As described above, a logarithmic representation such as log x1 can be used for the basal coordinate. Up to here, the z axis is discussed with respect to N, but other functions can be introduced as a similar basal plane approach. In order to extend to tE−1 and E−1 E−1, a zk representation wherein k=1, 2, 3, 4, . . . , etc., is introduced and it can be defined that z1=N, z2=tE−1, z3=E−1, and z4=tP−1. For example, it is represented that z1=N (x3, x4), and z2=tE−1 (x1, x2). The reason why there are indexes expressed by reciprocals is to unify and impress as an optimization problem that maximizes the axis above the objective function zk. As zk, H−1, H−2, H−3, . . . , etc., which are simply powers and reciprocals of H, H2, H3, . . . , etc., can also be adopted. Further, an arbitrary index that multiplies each of the basal coordinates xi, xj, . . . , etc., can also be adopted.










z
1

=

N
=


L

H


(

u
0

)



=



u
0



t
0



H


(

u
0

)









(

Equation





8

)










z
2

=

t
E

-
1








=


N
2


t
0








=


L
2



t
0




{

H


(

u
0

)


}

2









=



u
0
2



t
0




{

H


(

u
0

)


}

2








=



u
0


L



{

H


(

u
0

)


}

2








=

Π


{

H


(

u
0

)


}

2









(

Equation





9

)








z
3

=


E

-
1


=


K
V



{

H


(

u
0

)


}

2










E
=



{

H


(

u
0

)


}

2


K
V







(

Equation





10

)







z
4

=


t
P

-
1


=


N

t
0


=


L


t
0



H


(

u
0

)




=


u
0


H


(

u
0

)










(

Equation





11

)







From Equation 8, N is a function proportional to L, and also from the Equations 1 and 2, Π and t0 are also functions proportional to L, respectively. That is, in the three-dimensional graph (Π, t0, N), L can be regarded as one of extensive variables.


tE is a time obtained by dividing t0 by N2, and represents an impedance time, and tP is a time obtained by dividing t0 by N and represents a plate time.


(3) New Index Based on Partial Differential Coefficient


On the other hand, the slop in each direction of the basal coordinate axis, that is, the partial differential coefficient, when N (Π, t0) is represented by the curved surface of the three-dimensional graph can be taken as a specific determination evaluation index.


First, simply, the slope of N with respect to the change of Π when t0 is constant in the three-dimensional graph N (Π, t0) is a partial differential coefficient cN/Π (Equation 12). cN/Π (Π, t0) indicating a simple slop is set as a slope of the curved surface in the three-dimensional graph, which is a function in which t0 is fixed with a partial differential coefficient, an N increment per Π is denoted, and a dimension is included, and is defined over the entire basal coordinate.











c

N
/
Π




(

Π
,

t
0


)





(



N



Π


)


t
0






(

Equation





12

)







A general mathematical representation can be made as shown in Equation 13 from the properties of partial differential coefficient.









z
=



xy




(



z



x


)

y

=

y
=

z
x







(

Equation





13

)







Here, x, y, and z are variables, l, n, and m are constants, and can be similarly expanded to Equation 14.









z
=



lx
n





y
m





(



z



x


)

y


=



nlx

n
-
1




y
m


=

n


z
x








(

Equation





14

)








(4) Introduction of Impedance Time


According to the Literature 2 or the like, the impedance time tE can be introduced, and the reciprocal thereof is re-indicated here as Equation 15 as shown in Equation 9 above.











t
E

-
1





N
2



t
0

-
1




=

Π


{

H


(

u
0

)


}

2






(

Equation





15

)







On the other hand, a theoretical plate equivalent height H (u0) is obtained from a minimum and best theoretical plate equivalent height Hmin=H (u0,opt) with the optimal linear velocity u0,opt. When u0=u0,opt, Equation 16 is obtained by using this constant Hmin.

Π=Hmin2N2t0−1  (Equation 16)


As compared Equation 16 with a general formula (Equation 14), a coefficient n=2 appears and a representation of Equation 17 is obtained. Equation 11 in which the coefficient n=2 has a feature is limited when u0=u0,opt, and Hmin is offset in the calculation process.











(



Π



N


)


t
0


=


2


Π
N


=

1

c

N
/
Π








(

Equation





17

)







Here, cN/Π is a partial differential coefficient value defined by Equation 12. When cN/Π (Π, t0) is expressed as a function defined by the basal coordinates, the form of Equation 18 is obtained.










2



c

N
/
Π




(

Π
,

t
0


)



=


N


(

Π
,

t
0


)


Π





(

Equation





18

)







Here, since u0,opt constant conditions are imposed, in fact, Π and t0 cannot move on the basal plane of the whole coordinate area freely, and are constrained by the rule of Equation 19 by the L of a medium extensive variable by the Equations 1 and 2.

Πt0=L2  (Equation 19)


Up to here, although being limited to the constant Hmin under the optimal condition u0,opt, the basal coordinate must be extended to (Π, t0) the whole area in order to extend to the real solution. μN/Π as a kind of new adjustment factor devised from Equations 12 and 17 is introduced (Equation 20). μN/Π is equal to 1 for the optimal condition u0=u0,opt, but is standardized so as to be a value other than 1 in other basal coordinate areas. Accordingly, μN/Π can be used as an index such as efficiency. As a result, μN/Π is a dimensionless standardization factor and has the ability to adjust to obtain the value cN/Π of Equation 17 obtained by using Hmin only in the case of u0,opt.


(5) PAE (Pressure-Application Efficiency)


The following function μN/Π (Π, t0) is defined as a Pressure-Application Efficiency (PAE) (Equation 20). By comparing the function with Equation 18, the position of μN/Π can be understood. μN/Π (Π, t0) is a function defined by basal coordinates.










2



(



N



Π


)


t
0






μ

N
/
Π




N
Π






(

Equation





20

)







Equation 18 is an ideal equation that holds only when u0=u0,opt. That is, although Equation 18 does not hold in the case of u0 other than u0,opt, Equation 21 having a form close to Equation 18 can be expressed by introducing an adjustment factor μN/Π as a transformation of ideas.










2



c

N
/
Π




(

Π
,

t
0


)



=



μ

N
/
Π




(

Π
,

t
0


)





N


(

Π
,

t
0


)


Π






(

Equation





21

)







The way to obtain the actual μN/Π (Π, t0) is to first obtain the slope cN/Π (Π, t0) of the three-dimensional graph at each point of the basal coordinate (Π, t0), and multiply each by a coefficient 2. Next, μN/Π (Π, t0) is obtained by multiplying Π of the basal coordinate thereof and dividing by N (Π, t0) of the coordinate (Equation 21).


Similarly, the Time-Extension Efficiency (TE2) can also be defined as μN/t (Π, t0) (Equation 22).










2



(



N



Π


)

Π





μ

N
/
t




N

t
0







(

Equation





22

)







It is described that the z axis is a special direction to the basal plane, but mathematically simply expresses the slope of the curved surface in the three-dimensional graph from a different perspective. Therefore, PAE for hold-up time t0 can also be defined as μt/Π (Π, t0) (Equation 23). In other words, the above PAE is considered to be PAE for the number of theoretical plates N (Equation 20).











(




t
0




Π


)

N

=


-

μ

t
/
Π






t
0

Π






(

Equation





23

)







Here, an explanation of the doctrine of equivalents will be added. Since the pressure drop ΔP and the velocity length product Π or the general term pressure P are proportional to each other, it is considered that all the discussions around this, which are regarded as ratios, are equivalent. Similarly, the retention time tR and the hold-up time t0 have the same relationship, and can be used equivalently if careful consideration is given to the retention factor and the gradient elution. The flow rate and the linear velocity u0 can also be used equivalently as long as it is understood that the flow rate and the linear velocity u0 correspond to the porosity and cross-sectional area of the column, respectively.


In the context of the present disclosure, there is an abstract and ideal discussion modeling, and the present disclosure is built on a mathematical pressure driven HPLC model composed and defined only by H (u0) and KV.


(6) Generalization of Partial Differential Coefficient System


Representations based on the following generalization are also possible. Equation 24 holds at the time of u0,opt.











(




x
i





z
k



)


x
j


=



x
i


nz
k


=

1

c

k
/
i








(

Equation





24

)







Here, ck/j is predefined as Equation 25.










c

k
/
i





(




z
k





x
i



)


x
j






(

Equation





25

)







Next, a dimensionless efficiency μk/i is defined as Equation 26 as described above. At the time of u0,opt, μk/i is standardized to 1. The coefficient n is the degree derived from Equation 9.











n


(




z
k





x
i



)



x
j





μ

k
/
i





z
k


x
i







(

Equation





26

)







Here, when obtaining a partial differential coefficient, the variable xj of a suffix j is fixed and Equation 27 can be represented.










nc

k
/
i


=


μ

k
/
i





z
k


x
i







(

Equation





27

)







In addition, μk/i is obtained in the entire area of the basal coordinate as Equation 28.











μ

k
/
i




(


x
i

,

x
j


)


=

n



x
i


z
k





c

k
/
i




(


x
i

,

x
j


)







(

Equation





28

)







In terms of total differentiation, the function N can be represented by Equation 29 using partial differential coefficients.












dN
=






(



N



Π


)


t
0



d





Π

+



(



N




t
0



)

Π



dt
0









=





c

N
/
Π



d





Π

+


c

N
/
t




dt
0









=




n






μ

N
/
Π




N
Π


d





Π

+

m






μ

N
/
t




N

t
0




dt
0









=





1
2



μ

N
/
Π




N
Π


d





Π

+


1
2



μ

N
/
t




N

t
0




dt
0










(

Equation





29

)







Here, it is expressed as Equation 30, and n=½, and m=½.









N
=



Π

1
2




t
0

1
2




H
min






(

Equation





30

)







Since μk/j is mathematically derived from the slope of the curved surface in the three-dimensional graph, there is a relationship of Equation 31. If two independent variables and the three axes of the function z are mathematically handled without distinction, μt/Π derived from the slope obtained by fixing N can also be calculated.











μ

N
/
t




(


x
i

,

x
j


)


=



μ

N
/
Π




(


x
i

,

x
j


)




μ

t
/
Π




(


x
i

,

x
j


)







(

Equation





31

)







For example, if being locally constant, μt/Π can be integrated as shown in Equation 32.











2





N
1


N
2





1
N


dN



=


μ

N
/
Π







Π
1


Π
2





1
Π


d





Π











2





log



N
2


N
1



=


μ

N
/
Π



log



Π
2


Π
1












(


N
2


N
1


)

2

=



(


Π
2


Π
1


)


μ

N
/
Π



=


(


Δ






P
2



Δ






P
1



)


μ

N
/
Π









(

Equation





32

)







Similarly, μt/Π can also be represented exponentially (Equation 33).











t
2


t
1


=



(


Π
2


Π
1


)


-

μ

t
/
Π




=



(


Π
1


Π
2


)


μ

t
/
Π



=


(


Δ






P
1



Δ






P
2



)


μ

t
/
Π









(

Equation





33

)







Further, it is expanded to a partial differential coefficient system as a series when k of zk equals to 5, 6, 7, . . . , cN/Π to z5, μN/Π to z6 can also be expanded sequentially as a three-dimensional graph.


(7) Van Deemter Equation


The Van Deemter equation is used to demonstrate concrete calculations (Equation 34).










H


(

u
0

)


=

A
+

B


1

u
0



+

Cu
0






(

Equation





34

)







This obtains regression coefficients A, B, and C by curve-fitting several experimental values of an H-u0 plot. The H-u0 profile is generated due to factors such as physical diffusion, but in the present disclosure KV and Equation 34 are used as a curved surface profile generator for generating a three-dimensional graph.


As shown in FIG. 5, PAE for N can be expressed by A, B, and C using Equation 34.










μ

N
/
Π


=


2



(



N



Π


)


t
0




Π
N


=



Π

t
0




(



Au
0

+

2

B




Au
0
3

+

Bu
0
2

+

Cu
0
4



)


=



Au
0

+

2

B




Au
0

+
B
+

Cu
0
2









(

Equation





35

)







At the time of u0,opt, surely μN/Π=1.











μ

N
/
Π


=




Au

0
,
opt


+

2

B




Au

0
,
opt


+
B
+

C


(

B
C

)




=
1








Here
,





(

Equation





36

)







u

0
,
opt


=



B
C







is






obtained
.






(

Equation





37

)







On the other hand, PAE for t0 is shown in FIG. 6.










μ

t
/
Π


=




-
Π


t
0





(




t
0




Π


)

N


=



Π

t
0




(



Au
0

+

2

B




Au
0
3

+

2


Cu
0
4




)


=



Au
0

+

2

B




Au
0

+

2


Cu
0
2










(

Equation





38

)







At the time of u0,opt, similarly μt/Π=1.










μ

t
/
Π


=




Au

0
,
opt


+

2

B




Au

0
,
opt


+

2


C


(

B
C

)





=
1





(

Equation





39

)







All three-dimensional graphs in FIGS. 4 to 6 express the basal coordinates with zk (Π, t0), but if the LRT transformation is to be used, the representation can be converted to the representation of zk (u0, L). In addition, the reverse representation graph of zk (u0, L) can be easily converted to zk (Π, t0) by LRT.


μN/Π (Π, t0) is 1 at when the linear velocity is the optimal u0,opt. Although the slope of higher pressure is less than 1, it is not merely a gentle slope and not a large decrease in efficiency. That is, an increase in number of theoretical plates per pressure can be expected with a good efficiency that is almost equal to an ideal u0,opt. For example, as one of guidelines, it is possible to search for a separation condition as a practical range of μN/Π of 0.5 or more as a practical range as long as the separation is allowed in a high-speed analysis time area which is not ideal. This is an advantage of quantitatively overlooking using μN/Π in the basal coordinate (Π, t0).


On the other hand, the slope on the low pressure side of μN/Π (Π, t0)=1 is greater than 1, which seems to be efficient at first sight, but this is not necessarily the case. The reason for showing excessive efficiency means that it is easy to reach μN/Π (Π, t0)=1 by setting a better set of L and u0. In the case of one or more slopes, it is relatively easy to increase N more than u0,opt if it is a set of L and u0 which increases the pressure slightly.


An index such as μN/Π is a dimensionless ratio that standardizes a value at the time of u0,opt to 1. In addition, in the case of exceeding 1, it may be better to refer to a Pressure-Application Coefficient (PAC) rather than efficiency.


Examples

Examples of the present disclosure will be described in detail with reference to the drawings.


In FIG. 12, a pump 1220A that carries an eluent (mobile phase) 1210A and a pump 1210B that carries an eluent (mobile phase) 1210B are included, and the eluent 1210A and the eluate 1210B fed by the pumps are mixed by a mixer 1230. The pump 1220A and the pump 1220B can also perform gradient feeding. The eluent mixed by the mixer 1230 is fed to an analytical column 1260 together with a sample injected by an autosampler 1240. The analytical column 1260 includes a column oven 1250 that regulates the column temperature.


In the analytical column 1260, the sample is separated for each analyte and sent to a detector 1270. Light is irradiated in a cell 1280 of the detector 1270, and a waveform of the chromatogram is obtained from the signal intensity. The sample and the eluent are then sent to a waste liquid tank 1290.



FIG. 13 shows a configuration diagram of a liquid chromatography system according to an embodiment of the present disclosure. A liquid chromatography apparatus 1 corresponds to the configuration described above with reference to FIG. 12, and includes the pump 1220, the autosampler 1240, the column oven 1250, and the detector 1270. Each module in the liquid chromatography apparatus 1 is connected to a controller 1350, and data is exchanged among the modules. The processed result in the controller 1350 is displayed on an output unit 1380. In addition, the controller 1350 exchanges data with a data processor 1360. The data processor 1360 can perform processing based on the conditions input from an input unit 1370. The controller 1350 and the data processor 1360 may perform processing on the same computer. In the data processor 1360, the liquid chromatographic separation condition analysis processing according to the present disclosure is executed.


As shown in FIG. 13, the data processor 1360 is connected with each portion of the liquid chromatography system. A signal from the detector 1270 shown in FIG. 12 and information such as a measurement condition input by an operator are input through the input unit 1370.


The data processor 1360 may not be connected with the controller 1350 to be independent from the liquid chromatography system. In a case where the data processor 1360 is independent, the data processor 1360 may perform processing based on the conditions input from an input unit 1370. The data processor 1360 corresponds to the chromatographic data system processing apparatus described in the claims.



FIG. 7 shows an example of the chromatographic data processing apparatus (1360) shown in FIG. 13. Data relating to the column permeability and an H-u curve are input to a storage (710) of Kv and H-u data from the input unit (1370) in an EXCEL file or the like. The input unit (1370) can also input the regression coefficients A, B, and C of fitting curves of KV and Van Deemter equation from a keyboard or the like. The respective coordinate axes u0, L, N are set from a first to third axis setting unit (750), and N (u0, L) shown in FIG. 1, for example, is generated by a three-dimensional graph generator (720). The result is displayed on the output unit (1380) such as a display.


Alternatively, by designating the respective coordinate axes, Π, and t0, for example, from a first axis and second axis setting unit (760) after transformation, an LRT transformer (730) executes the rotation of the logarithmic axis and the scaling transformation. The result is transferred via a three-dimensional graph generator (740) after transformation to generate a three-dimensional graph, and the three-dimensional graph of N (Π, t0) shown in FIG. 4 is displayed on the output unit (1380) such a display. The result can also be printed as necessary.



FIG. 8 shows another example of the chromatographic data processing apparatus (1360). Data relating to the column permeability and an H-u curve are input to a storage (810) of Kv and H-u data from the input unit (1370) in an EXCEL file or the like. The input unit (1370) can also input the regression coefficients A, B, and C of fitting curves of KV and Van Deemter equation from a keyboard or the like. For example, the respective coordinate axes Π, t0, N are set from a first to third axis setting unit (860), and N (Π, t0) shown in FIG. 4 is generated by a three-dimensional graph generator (820). The result is output from the output unit (1380) such as a display.


By specifying, for example, Π and N respectively from the a xi, zk setting unit (870), a partial differential coefficient ck/i calculator (830) calculates the partial differential coefficient. First, the result can be displayed from the output unit (1380) in a three-dimensional graph of cN/Π (Π, t0) as necessary. Next, the result is displayed as a three-dimensional graph of μN/Π (Π, t0) shown in FIG. 5 by a standardization unit (840) for the dimensionless efficiency μk/i. The result can also be printed as necessary. Similarly, by designating t0, N from the xi, zk setting unit (870), a three-dimensional graph of μt/Π (Π, t0) shown in FIG. 6 can be output.


The flow rate F (ml/min) is proportional to the linear velocity u0 (mm/s). These correspond to a variable x1, and the cross sectional area (m2) of the inner diameter of the column is related to the porosity of the filled state. A variable x2 having a length dimension (m) is the column length L (mm). A variable x3 corresponding to the pressure is the column pressure drop ΔP (MPa), which is also proportional to Π (m2/s). Π is called the velocity length product or the pressure-driven strength. A time variable x4 is the hold-up time t t0 (s) or the retention time tR (min). The number of theoretical plates N is a variable or function of z1 and is inversely proportional to the theoretical plate equivalent height H (μm). The function z2 is the reciprocal of the impedance time tE, the function z3 is the reciprocal of the separation impedance E, and the function z4 is the reciprocal of the plate time tP.



FIG. 9 shows a flowchart of an example of a chromatographic data processing step performed by the liquid chromatographic data system processing apparatus of the present disclosure. After starting the chromatographic data processing step, Kv and H-u data are called in a calling step of Kv and H-u data (S910) and u0, L, N are set in an allocation setting step of the first to third axes x, y, z (S920), for example. The result is output as a graph shown in FIG. 1 and/or separation condition analysis in a three-dimensional graph displaying step (S930), and the chromatographic data processing step is ended.


The flowchart of FIG. 10 shows another example of the chromatographic data processing step. After starting the chromatographic data processing step, an N (u0, L) graph is read in a calling step of a three-dimensional graph before transformation (S1010). For example, Π and t0 are designated in a first axis and second axis setting step after the transformation (S1020). Based on the variable axis Π, t0, LRT transformation is executed in an LRT transformation step (S1030). In a displaying step of the three-dimensional graph after transformation, N (Π, t0) shown in FIG. 4 is output (S1040), and the chromatograph data processing step is ended.


The flowchart of FIG. 11 shows an example of the PAE as still another example of the chromatographic data processing step. After starting the chromatography data processing step, for example, an N (Π, t0) graph is read in a calling step of a three-dimensional graph (xi, xj, zk) (S1110). Here, (xi, xj, zk) correspond to (Π, t0, N), respectively. In a selection step of xi and zk, for example, N and Π are designated respectively (S1120). Calculation of the partial differential coefficient cN/Π is performed in a step of calculating the partial differential coefficient cN/Π based on the designation of the selection step of xi and zk (S1130). Next, μN/Π (Π, t0) shown in FIG. 5 is calculated in a standardization step for obtaining the dimensionless efficiency μk/i (S1140), in a displaying step of the three-dimensional graph (xi, xj, μ), μN/Π (Π, t0) is output as a three-dimensional graph and/or separation condition analysis (S1150), and the chromatographic data processing step is ended. Alternatively, μt/Π (Π, t0) shown in FIG. 6 can also be displayed and printed by the same operation.


The three-dimensional graph can also be expressed with a logarithmic axis. For example, a three-dimensional graph expressed by a logarithmic coordinate (log u0, log L) is expressed as (log Π, log u0) by LRT transformation. Further, a PAE based on the slope on N (log Π, log u0) can also be defined.


Alternatively, in obtaining a slope from the graph of function N (log Π, log u0) or defining some sort of efficiency, the PAE can be calculated on N (log Π, log u0) by LRT transformation.


In addition, these can also be generalized representation.


Next, an example of an analysis example of separation conditions using a three-dimensional graphic representation of the liquid chromatographic data system processing apparatus of the present disclosure will be described. As an example of the utilization shown in FIG. 4, a maximum pressure or a withstand pressure ΔP of the column and the HPLC system is determined first by viewing the three-dimensional graph. Next, the time t0 is changed and the number of theoretical plates N at that time is obtained. A point decided tentatively is indicated in a circle. In the example of FIG. 4, the coordinate is (45, 8, 7000). It means that ΔP and t0 are 5 MPa and 8 s respectively, and the expected N is 7,000 stages.


Next, when transforming FIG. 4 into FIG. 1, the circle corresponding to the point is output and represented as (5, 50, 7000). That is, linear velocity u0=5 mm/s and column length L=50 mm are easily obtained as separation conditions.


This designated circle is also transformed into FIG. 5 to obtain a three-dimensional coordinate (45, 8, 0.84). That is, the pressure-application coefficient μN/Π of the number of theoretical plates at that time is 0.84, which is close to a ratio of 1 obtained at the optimal linear velocity u0,opt, and a relatively good value can be obtained for high separation. On the other hand, similarly, the circle is also transformed to the pressure-application coefficient μt/Π in the time of FIG. 6, but here, it is understood that the pressure-application coefficient is somewhat inferior to 0.72 and μN/Π. That is, it can be understood that it is an effective pressure increasing condition for N, but for t0, it is a separation condition that is relatively ineffective in speeding-up even if the pressure is increased by relatively effort.


μN/Π and μt/Π are called PAC (Pressure-Application Coefficient), and μN/t is called TEC (Time-Extension Coefficient). Equations 24 to 28 are the definition equations.


The application of PAC (Pressure-Application Coefficient) and TEC (time extension coefficient) is shown in detail in the case of six approaches.



FIG. 14 is a contour plot of N (Π, t0) of a filler having a particle diameter of 2 μm, which includes a straight line indicating high-speed and high-separation performance obtained with an optimal linear velocity u0,opt. As is also found in textbooks, in order to improve N generally, a method to climb the hill along the u0,opt line is recommended (Opt method). This is because the efficient Hmin, which is a height corresponding to the minimum number of theoretical plates on the u0,opt line, is obtained.


The pressure upper limit approaches 20 MPa around N=5,000 or more and the u0,opt line cannot be climbed along. In order to further increase N from here, a KPL method is adopted which is a method of climbing a hill under a constant condition that the upper limit pressure is 20 MPa. However, it is understood that in the KPL method, the climbing method is comparatively gentle, and only about N=7,000 is obtained, so that the efficiency of increasing N is worse than the Opt method. PAC and TEC are introduced as coefficients quantitatively indicating this efficiency.


In addition, as shown in FIG. 14, there are two areas with the u0,opt line as a boundary. One area is a high Π area whose Π, i.e., pressure, is higher the u0,opt line, and the other area is a low Π area on contrary.


In the Opt method, the u0,opt line or the vicinity thereof is selected as an optimal separation condition, but the minimum Hmin is obtained the u0,opt line. Therefore, if an arbitrary L column is attached, the maximum N at this L is inevitably obtained. At the same time, t0 and Π are unambiguously calculated. That is, in a five-dimensional space (Π, t0, N, u0,opt, L), a so-called straight line u0,opt line determined by a constant u0,opt is shown. For example, if a user requests N=5,000, he or she can see contour lines on a height surface of N=5,000, i.e., on hilly slopes (FIG. 15). On the basal plane (17.5 MPa, 10 s), an intersection point of the u0,opt line and the contour line of N=5,000 is seen. Here, a pressure of 17.5 MPa is proportional to Π, and corresponds to Π=0.12×10−3 m2/s. Accordingly, it is shown that, since the way to see the contour plot of N (Π, t0), the introduction of the pressure-application coefficient PAC and the time extension coefficient TEC is effective to quantitatively optimize the separation condition next.


Hereinafter, six approaches are shown.


1. Speeding-up of t0 under constant condition of N


(1) Extension to the high Π area


(2) Low Π area (movement to upper limit pressure Πmax)


2. High separation of N under constant condition of t0


(1) Extension to the high Π area


(2) Low Π area (movement to upper limit pressure Πmax)


3. Expansion under Πm upper limit pressure


(1) Speeding-up (reduction in t0)


(2) High separation (increase in N)


Approach 1-(1) is an optimization method that aims to realize high speeding-up while ensuring a constant N (FIG. 15). The driving force for the speeding-up of to is pressure, which belongs to the high Π area. First, the method starts from the intersection point of the contour line of N=5,000 and the u0,opt line (Opt method). As described above, t0=10 s is obtained at the intersection point, and ΔP=17.5 MPa. That is, the pressure increases in the direction of 40 MPa along the contour line. Based on the coefficient value (efficiency) indicated by PAC μt/Π, it is possible to determine to how much pressure to increase is effective. On the u0,opt line, μt/Π=1.


As shown in FIG. 16, at the time of 40 MPa, although μt/Π is not good, 0.65 is acceptable. At the time of 60 MPa, when μt/Π is 0.54, efficiency gets worse. Therefore, in the approach 1-(1), while seeing at μt/Π, the pressure increase will normally be stopped around 40 MPa. Depending on the separation application, even if the pressure is not effective for speeding-up when μt/Π is 0.54, if there is an advantage that the hold-up time t0 can be reduced by about 20% from 5 s to 4 s of 40 MPa, there is also a scene of increasing the pressure to 60 MPa plus 50% with an additional pressure. The fact that μt/Π is only 0.54 corresponds to the efficiency at a pressure of 60 MPa, which is effective only for reducing the time by 0.54% even if the pressure is increased by 1%.


Approach 1-(2) corresponds to a case where an arbitrary N is expected to be obtained, and the intersection point of the u0,opt line and the contour line of N is already above the upper limit pressure. The approach 1-(2) is a method of lowering the pressure, that is, making the pressure belongs to the low Π area and securing N along the contour line while extending the time, so as to obtain this N (FIG. 17).


First, the method starts from the intersection point of the contour line of N=5,000 and the u0,opt line (Opt method). In a case where the upper limit pressure is 10 MPa, it is inevitable to lower the pressure to 10 MPa along the contour line of N=5,000. The fact that μt/Π is 1.39 means that at the intersection point of 10 MPa and the contour line, it is possible to speed up 1.39 times from the vicinity of the u0,opt line, by just increasing the pressure slightly, that is, increasing the Π increment. Conversely, the low Π area is an area where the high speed performance is inevitably extremely sacrificed when trying to obtain the high separation performance which is disproportionate. (FIG. 18)


Approach 2-(1) is an optimization method that aims to realize high separation while ensuring a constant t0 (FIG. 19). The driving force for the high separation of N is also pressure, which belongs to the high Π area. First, the method starts from an intersection point of the horizontal line of a constant t0=10 s and the u0,opt line (Opt methorid). At the intersection point, N=5,000 is obtained, and ΔP=17.5 MPa. In order to further increase N from here, the pressure is increased to the right for such as 40 MPa or 60 MPa. The KPL method simply increases the pressure to the upper limit, but in the approach 2-(1), the pressure can be determined by seeing the efficiency by PAC. An index indicating whether N corresponding to the pressure increase can be obtained by increasing the pressure is μN/Π. Since μN/Π equals to 0.80 at 40 MPa and 0.71 at 60 MPa, N can be obtained with an acceptable efficiency even at 60 MPa. Therefore, the approach 2-(1) is considered to be an effective approach method capable of achieving high separation without following the u0,opt line with μN/Π=1. (FIG. 20)


Approach 2-(2) corresponds to a case where an arbitrary t0 is expected to be obtained, and the intersection point of the u0,opt line and the horizontal line of a constant t0 is already above the upper limit pressure. The approach 2-(2) is a method of lowering the pressure, that is, making the pressure belongs to the low Π area and reaching the upper limit pressure along the t0 horizontal line while dropping N, so as to obtain this t0 (FIG. 21).


First, the method starts from an intersection point of the horizontal line projected on a basal plane with a constant t0=10 s and the u0,opt line (Opt method). In a case where the upper limit pressure is 10 MPa, it is inevitable to lower the pressure along the horizontal line of a constant t0=10 s, and the separation condition is moved to the left direction from the u0,opt line to 10 MPa.


It is means that at the time of 10 MPa, μN/Π is 1.16, and at the intersection point of 10 MPa and the horizontal line of t0=10 s, it is possible to perform high separation 1.16 times from the vicinity of the u0,opt line, by just increasing the pressure slightly, that is, increasing the Π increment. Conversely, in order to obtain the high speed performance of t0=10 s, the pressure is lowered, the pressure reduction rate is increased, and N gets worse. Therefore, the separation performance comes to be remarkably sacrificed. Since the approach 2-(2) uses the low Π area of barren area as in the approach 1-(2), it is inevitable to sacrifice the separation performance to a large extent when trying to obtain the extremely high speed performance (FIG. 22)


Approach 3 is a so-called KPL method that ensures a constant pressure. First, the approach 3-(1) is a speeding-up method (FIG. 23). Here, the separation performance is sacrificed and the high speed performance is obtained. The so-called high Π area means an area where t0 is relatively short as seen from the u0,opt line as a reference, if turned inside out. Therefore, high speed performance is achieved.


First, the method starts from an intersection point of a vertical line of ΔP=20 MPa and the u0,opt line (Opt method). At the intersection point, t0=11 s is obtained, and N=5,620 (FIG. 23). The separation condition is moved vertically downward from a start point on the u0,opt line, and although N decreases, the speeding-up of decreasing t0 can be realized. The responsiveness (latent ability) to time change can be grasped by the time extension coefficient TEC μN/t. Since other coefficients are standardized on the u0,opt line similarly, 11 s is near the u0,opt line, so that μN/t=1.01 (FIG. 24).


In a case where t0 is speeded up to 3 s, N=2,760, which is remarkably reduced, but μN/t remains at 1.18; if the sacrifice of N is acceptable, it can be said that the approach 3-(1) is a reasonable speeding-up method in which the coefficient value gets worse.


On the other hand, the approach 3-(2) is a high separation method (FIG. 25). The driving force at this time is time consumption. The low Π area means an area where t0 is relatively long with the u0,opt line as a reference.


The method starts from an intersection point of a vertical line of ΔP=20 MPa and the u0,opt line (Opt method). At the intersection point, t0=11 s is obtained, and N=5,620. In order to further increase N from here, the time is increased from the u0,opt line vertically upwards for 15 s or 20 s. Also in a case of 20 s, μN/t=0.92, it is considered that N can be increased by using time relatively efficiently, which is an example of an effective KPL method. (FIG. 26)


In fact, as for the low Π area and the high Π area, the former is an area of u0 lower than u0,opt, and the latter is an area of u0 higher than u0,opt. On the contour plot, only the u0,opt line is expressed. Since u0 is not expressed positively, the low Π area is expressed for convenience. As described above, although the speeding-up is excellent in the area of high u0, the PAC such as μN/Π and μt/Π becomes 1 or less. On contrast, the PAC exceeds 1 in the low Π area. For example, in the low Π area, when the pressure is increased just little, this ratio increases and N increases greatly. Conversely, it means that even if N is lowered, there is no effect of lowering the pressure to such an extent.


First, a to constant transformation efficiency ηt is defined.


For preparation, the numerator and denominator of Equation 20 are turned over to obtain Equation 40.











(



Π



N


)


t
0


=

2


μ

Π
/
N




Π
N






(

Equation





40

)







Therefore, μΠ/N indicates a relationship between PAC μN/Π related to N and a reciprocal, as shown in equation 41.

μΠ/N=(μN/Π)−1  (Equation 41)


The t constant transformation efficiency ηt should have a value from 0 to 1 in order to position the efficiency. Therefore, the high Π area corresponds to μN/Π, and the low Π area corresponds to μΠ/N. It is requested that the maximum efficiency value 1 on the u0,opt line. In this way, the t constant transformation efficiency ηt can be expressed by one equation using PAC μN/Π related to N (Equation 42).

log ηt=−|log μN/Π|  (Equation 42)


The above is the t0 constant transformation efficiency ηt. Similarly, an N constant transformation efficiency ηN can also be defined using PAC μt/Π related to t0 (Equation 43).

log ηN=−|log μt/Π|  (Equation 43)


In addition, a Π constant transformation efficiency ηΠ can also be defined using TEC μN/t (Equation 44).

log ηΠ=−|log μN/t|  (Equation 44)


Here, the meanings of the x constant transformation efficiencies ηN, ηt and ηΠ are looked back. The contour plot is a graph expressing three variables Π, t0, and N. Each constant transformation efficiency keeps one of the three variables constant and corresponds to the partial differential coefficient of the remaining two variables. In the high Π area, a short t0 as high speed performance or high separation performance N can be obtained under specific transformation efficiency by applying a pressure.



FIG. 15 aims to perform speeding-up in the high Π area while keeping N constant. That is, it is optimal to transform N to the high speed performance, i.e., the short t0, while consuming Π, i.e., pressure ΔP in the high Π area. The N constant conversion efficiency at this time is called ηN. If the index ηN is used, and if ΔP is increased, it is possible to quantitatively grasp how the efficiency ηN gradually decreases although the speed increases (FIG. 16).


In contrast, in FIG. 17, although N is constant, there is an advantage of lowering Π, i.e., ΔP by consuming time in the low Π area. In general, this approach is rare because the upper limit pressure is predetermined. Even in this case, if ηN is used, the efficiency of lowing Π can be measured by consuming time under a constant N. As show in FIG. 18, even if t0 is extended to 19 s, ΔP is only lowered to 10 MPa, and the efficiency ηN is 0.72, which is not good.


Similarly in FIG. 19 where t0 is constant, while considering the efficiency ηt as a quantitative index, Π is consumed to earn N in the high Π area. In contrast, FIG. 21 shows a low Π area and it is possible to lower Π by consuming N. However, as described above, this approach is generally not adopted so much because the upper limit pressure is predetermined.



FIGS. 23 and 25 with constant Π are examples in which ηΠ can be effectively used. FIG. 23 is an optimization approach which can grasp the efficiency ηΠ for transforming Π to time t0 by consuming N. In contrast, FIG. 25 is advantageous in that the efficiency ηΠ can be grasped with the approach of transforming Π to N by consuming t0 under the constant Π.


However, efficiency η system is ideal for searching for maximum value 1. To analyze the vicinity of boundary line such as the u0,opt line, the efficiency η becomes an index not monotonically increase or decrease, which is also inconvenient. Hereinafter, it returns to practical PAC and TEC.


With reference to FIGS. 27 to 31, the concept of the present disclosure will be described based on the application of PAC and TEC.


In FIG. 27, an upper limit of the pressure is 20 MPa. When an arbitrary N is to be obtained, first, a point A can be found on the u0,opt line, which may be adopted as a separation condition. Here, since the pressure is about 10 MPa, there are two ways for improving the performance by increasing the pressure. One is to achieve speeding-up by keeping N constant. Another is to further increase N starting from the point A at the same time t0 to achieve high separation. μt/Π related to the time t can be used for the PAC in the former case, and μN/Π related to N can be used for the PAC in the latter case. It is not necessary to increase the pressure up to the upper limit line of KPL, and it is possible to quantitatively achieve speeding-up or high separation while using each PAC as an index. This is the aim of the present disclosure. The triangular region surrounded by the u0,opt line and the upper limit line of KPL and the vicinity thereof are areas where speeding-up or high separation is effective by using the pressure as a driving force. PAC μt/Π or μN/Π presents at an arbitrary point within the triangular region, and the effectiveness can be quantitatively grasped. In a case where the desired N is beyond this triangular region, that is, in a case where N is desired to be higher than an intersection point of the u0,opt line and the upper limit line of KPL, N must be increased along the KPL straight line. Quantitative optimization on the KPL straight line will be described later.


Next, when an arbitrary t0 is to be obtained, first, a point B is found on the u0,opt line in FIG. 28. For example, if the point B is the same point as the point A in FIG. 27, the rest of the discussion is exactly the same. Here, since the pressure is about 10 MPa, there are two ways for improving the performance by increasing the pressure. One is to achieve high separation by keeping t0 constant. Another is to further shorten t0 starting from the point B at the same contour N to achieve speeding-up. Since each PAC can be calculated at an arbitrary point within the triangular region, the effectiveness of the pressure increase can be quantitatively understood. In a case where the specified t0 is beyond the triangular region, calculation is performed with N being the maximum N on the KPL straight line, and if N is sufficient, the speeding-up can be discussed.


Quantitative optimization on the above KPL straight line, that is, the upper limit pressure will be described in detail.


If an arbitrary N is specified and a point C having a longer time than the vertex (intersection) of the previous triangular region is found, the separation condition is adopted. Here, if N is to be increased, t0 is further extended, so that the effectiveness of time extension can be measured with reference to TEC μN/t. Even when seeing a state of TEC μN/t by adding or subtracting t0, if the interval is longer than the intersection point, the effectiveness can be grasped as TEC of 1 or less.


In a case where an arbitrary t0 is specified and a point C having a longer time than the vertex (intersection) of the above triangular region is found, it is possible to further perform the speeding-up if it is determined that N is sufficiently large. It is possible to define the time reduction coefficient in the case of moving on the KPL straight line or define the N consumption coefficient as the reciprocal of μN/t, i.e., μt/N. In a case where N is sufficiently large, first, the contour plot is referred to again with the specified N.


If it is a coefficient of the same point such as point A, the following relationship (Equation 45) holds from the definition.

μN/ΠN/tμt/Π  (Equation 45)


As can be seen, since TEC μN/t is greater than 1 at a point slightly coming into the high Π area from the point A for example, μN/Π is larger than μt/Π, and PAC is 1 or less in this high Π area. Therefore, it is more effective and easier in high separation under a constant t than the speeding-up under a constant N. On the u0,opt line including the intersection above the triangular region, μN/ΠN/tt/Π=1.


As described above, in a case where the point A (or the point B) is found on the u0,opt line by specifying N or t0, it is significant to search the separation condition for the triangular region up to the upper limit pressure. In this case, the pressure effectiveness in the triangular region can be quantitatively understood using each PAC.


In a case where the separation condition is searched on the KPL straight line of a constant pressure above the triangular region as the point C, the separation condition is adopted. If there is room to add or subtract N or t0, it is possible to quantitatively examine the effectiveness of the action t0 given to N using TEC.


In order to make it easier to understand mathematical representations and graphs, the square theoretical plate number Λ and an inverse hold-up time v0 are introduced.

Λ=N2
v0=t0−1
Π=H2Λv0=L2v0=u0L


As can be seen from the equations, by expressing with v0, the power of Π is divided by the product of Λ and v0. Since H2 is not a constant, but a ridge line is generated on the curved surface. By using the square theoretical plate number Λ instead of N on the vertical axis of the three-dimensional graph, the KPL curved surface can be expressed almost like a plane. In contrast, with respect to high speed performance, the larger the numerical value of the reverse hold-up time v0, the larger the high speed performance can be obtained.


The three-dimensional graphs are Λ (Π, t0) in FIG. 29, N (Π, v0) in FIG. 30, and Λ (Π, v0) in FIG. 31.


Commercial columns have discrete L such as 50 mm, 100 mm, and 150 mm. The variable of the present disclosure is a continuous real number representation, but in reality will be optimized with discrete L. However, the basic idea will follow even in practical application.


The present disclosure is not limited to the above embodiments, but it goes without saying that it extends to various modifications and equivalents included in the spirit and scope of the present invention.


LIST OF NUMERAL REFERENCES




  • 1 Liquid chromatography apparatus


  • 1210A Eluent (mobile phase)


  • 1210B Eluent (mobile phase)


  • 1220 pump


  • 1220A Pump


  • 1220B Pump


  • 1230 Mixer


  • 1240 Autosampler


  • 1250 Column oven


  • 1260 Analytical column


  • 1270 Detector


  • 1280 Cell


  • 1290 Waste liquid tank


  • 1350 Controller


  • 1360 Data processor


  • 1370 Input unit


  • 1380 Output unit


Claims
  • 1. A chromatographic data system processing apparatus, comprising: a liquid feeder configured to feed a mobile phase;a sample injector configured to inject a sample into a mobile phase flowing path into which the mobile phase is fed;a column configured to separate analytes from the injected sample;a detector configured to detect the separated analytes;a controller programmed to process a detected result of the detector; anda data processor programmed to examine and set operations of the liquid feeder, the column and the detector, and a measurement condition, wherein the data processor generates a three-dimensional graph having three axes related to a pressure, a time, and a number of theoretical plates based on data or variables indicating a relationship between the number of theoretical plates and a flow rate, and data or variables indicating a relationship between the pressure and the flow rate to analyze a separation condition from the generated three-dimensional graph.
  • 2. The chromatographic data system processing apparatus according to claim 1, wherein the data processor axially transforms at least one of the pressure and the time related to two axes out of the three axes to at least one of the flow rate and a length.
  • 3. The chromatographic data system processing apparatus according to claim 1, wherein the data processor represents at least one axis out of the three axes using a logarithm.
  • 4. The chromatographic data system processing apparatus according to claim 3, wherein the data processor transforms an axis in logarithmic representation to an axis in antilogarithm representation.
  • 5. The chromatographic data system processing apparatus according to claim 1, wherein the data processor transforms the three-dimensional graph having the three axes related to the pressure, the time and the number of theoretical plates to a different three-dimensional graph of three axes related to the flow rate, a length and the number of theoretical plates.
  • 6. The chromatographic data system processing apparatus according to claim 1, wherein the data processor transforms a two-dimensional graph having two axes related to the pressure and the time out of the three axes to a different two-dimensional graph having two axes related to the flow rate and a length.
  • 7. The chromatographic data system processing apparatus according to claim 1, wherein the data processor selects arbitrary two variables from four variables related to the pressure, the time, the flow rate and a length, and transforms a two-dimensional graph having two axes related to the selected variables to a different two-dimensional graph having two axes related to two variables not selected.
  • 8. The chromatographic data system processing apparatus according to claim 7, wherein the data processor selects two variables from the four variables, and outputs a partial differential coefficient in a function such as the number of theoretical plates having the two selected variables as variables.
  • 9. The chromatographic data system processing apparatus according to claim 8, wherein the data processor outputs a dimensionless efficiency standardized with using the variable to be partially differentiated based on the partial differential coefficient.
  • 10. The chromatographic data system processing apparatus according to claim 9, wherein the data processor outputs a new efficiency by multiplication and division calculation with using two or more of the dimensionless efficiencies to be output.
  • 11. The chromatographic data system processing apparatus according to claim 1, wherein the data processor uses:a linear velocity, or a reciprocal thereof as the flow rate;a column length, or a reciprocal thereof as the length;a column pressure drop, a velocity length product or pressure-driven strength, or a reciprocal thereof as the pressure;a hold-up time or a retention time, or a reciprocal thereof as the time; anda square theoretical plate number, a theoretical plate equivalent height, a square theoretical plate equivalent height, a resolution, a separation impedance, an impedance time or a plate time, or a reciprocal thereof as the number of theoretical plates.
  • 12. A chromatographic data system processing apparatus, comprising: a liquid feeder configured to feed a mobile phase;a sample injector configured to inject a sample into a mobile phase flowing path into which the mobile phase is fed;a column configured to separate the injected sample;a detector configured to detect the separated analytes;a controller configured to process a detected result of the detector; anda data processor configured to examine and set operations of the liquid feeder, the column and the detector, and a measurement condition,wherein, during a process of selecting two variables for axes from four variables related to a linear velocity, a length, a pressure and a time to analyze a separation condition, the data processor is programmed to transform the axes of the selected two variables into axes of two variables not selected.
  • 13. A chromatographic data system processing apparatus that analyzes and processes data of an analysis condition and a detection result of a chromatograph, wherein the chromatographic data system processing apparatus is programmed to output a three-dimensional graph having three axes related to a pressure, a time, and a number of theoretical plates based on data or variables indicating a relationship between the number of theoretical plates and a flow rate, and data or variables indicating a relationship between the pressure and the flow rate, and is thereby programmed to analyze a separation condition from the output three-dimensional graph.
Priority Claims (2)
Number Date Country Kind
JP2017-219707 Nov 2017 JP national
JP2018-225924 Nov 2018 JP national
US Referenced Citations (2)
Number Name Date Kind
20090288473 Suzuki et al. Nov 2009 A1
20120222470 Suzuki et al. Sep 2012 A1
Foreign Referenced Citations (2)
Number Date Country
2009-281897 Dec 2009 JP
2014-030537 Feb 2014 WO
Non-Patent Literature Citations (3)
Entry
Groskreutz et al., “Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography,” Oct. 28, 2016, Analytical Chemistry, American Chemical Society, pp. 11742-11749 + Supplemental, DOI: 10.1021/acs.analchem.6b03368. (Year: 2016).
Ito, Masahito, et al. “Three-dimensional Representation Method Using Pressure, Time, and Number of Theoretical Plates to Analyze Separation Conditions in HPLC Columns.” Analytical Sciences, vol. 34, No. 2, 2018, pp. 137-142.
Groskreutz, Stephen R., and Weber, Stephen G. “Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography.” Analytical Chemistry, vol. 88, No. 23, 2016, pp. 11742-11749.
Related Publications (1)
Number Date Country
20190145943 A1 May 2019 US