Chronic total occlusion crossing devices with imaging

Information

  • Patent Grant
  • 11890076
  • Patent Number
    11,890,076
  • Date Filed
    Tuesday, July 28, 2020
    3 years ago
  • Date Issued
    Tuesday, February 6, 2024
    2 months ago
Abstract
An imaging device includes a hollow flexible shaft having a central longitudinal axis and an imaging window therein. An optical fiber extends within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is attached to the hollow flexible shaft and aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window. A handle is attached to the hollow flexible shaft configured rotate the hollow flexible shaft at speeds of greater than 1,000 rpm.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Peripheral artery disease (PAD) and coronary artery disease (CAD) affect millions of people in the United States alone. PAD and CAD are silent, dangerous diseases that can have catastrophic consequences when left untreated. CAD is the leading cause of death for in the United States while PAD is the leading cause of amputation in patients over 50 and is responsible for approximately 160,000 amputations in the United States each year.


Coronary artery disease (CAD) and Peripheral artery disease (PAD) are both caused by the progressive narrowing of the blood vessels most often caused by atherosclerosis, the collection of plaque or a fatty substance along the inner lining of the artery wall. Over time, this substance hardens and thickens, which may interfere with blood circulation to the arms, legs, stomach and kidneys. This narrowing forms an occlusion, completely or partially restricting flow through the artery. Blood circulation to the brain and heart may be reduced, increasing the risk for stroke and heart disease.


Interventional treatments for CAD and PAD may include endarterectomy and/or atherectomy. Endarterectomy is surgical removal of plaque from the blocked artery to restore or improve blood flow. Endovascular therapies such as atherectomy are typically minimally invasive techniques that open or widen arteries that have become narrowed or blocked. Other treatments may include angioplasty to open the artery. For example, a balloon angioplasty typically involves insertion of a catheter into a leg or arm artery and positioning the catheter such that the balloon resides within the blockage. The balloon, connected to the catheter, is expanded to open the artery. Surgeons may then place a wire mesh tube, called a stent, at the area of blockage to keep the artery open.


Such minimally invasive techniques (e.g., atherectomy, angioplasty, etc.) typically involve the placement of a guidewire through the occlusion. Using the guidewire, one or more interventional devices may be positioned to remove or displace the occlusion. Unfortunately, placement of the guidewire, while critical for effective treatment, may be difficult. In particular, when placing a guidewire across an occlusion, it may be difficult to pass the guidewire through the occlusion while avoiding damage to the artery. For example, it is often difficult to prevent the guidewire from directing out of the lumen into the adventitia and surrounding tissues, potentially damaging the vessel and preventing effective treatment of the occlusion.


As a result, occlusion-crossing devices, intended to assist in the passing of the guidewire through the occlusion, have been developed. Many of the devices, however, are ill equipped to be used with imaging, thereby making placement of the guidewire cumbersome and difficult. Moreover, many of the occlusion-crossing devices are too large to be used in small-diameter peripheral arteries or in coronary arteries.


Accordingly, occlusion crossing catheter devices designed to address some of these concerns are described herein.


SUMMARY OF THE DISCLOSURE

Described herein are occlusion-crossing devices having a low profile so as to be usable in small vessels, such as coronary arteries.


In general, in one embodiment, an imaging device includes a hollow flexible shaft having a central longitudinal axis and an imaging window therein. An optical fiber extends within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is attached to the hollow flexible shaft and aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window. A handle is attached to the hollow flexible shaft configured rotate the hollow flexible shaft at speeds of greater than 1,000 rpm.


This and other embodiments may include one or more of the following features. The optical fiber can extend substantially along the central axis for the entire length of the fiber. The device can be less than 0.1 inches, 0.08 inches, or 0.05 inches in diameter. The hollow flexible shaft can be made of tungsten. The hollow flexible shaft can be made of multiple layers of wound filars. The filars can be counterwound. The hollow flexible shaft can further include a mirror therein configured to reflect light from the optical fiber into adjacent tissue. The device can include an outer sheath extending around the hollow flexible shaft. The outer sheath can include an optically clear annular section at the distal end thereof.


In general, in one embodiment, an imaging assembly includes a catheter having a cutter and a lumen extending the length of the catheter. A hollow flexible shaft is configured to be inserted within the lumen of the catheter. The hollow flexible shaft includes a central longitudinal axis and an imaging window therein. An optical fiber extends within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is attached to the hollow flexible shaft and aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window.


This and other embodiments can include one or more of the following features. The catheter can include a cutter at a distal end. The hollow flexible shaft can further include a handle attached thereto configured rotate the hollow flexible shaft at speeds of greater than 1,000 rpm. The optical fiber can extend substantially along the central axis for the entire length of the fiber. The imaging assembly can further include an outer sheath extending around the hollow flexible shaft. The outer sheath can include an optically clear annular section at the distal end thereof. The hollow flexible shaft can be made of tungsten. The hollow flexible shaft can be made of multiple layers of wound filars. The filars can be counterwound. The hollow flexible shaft can further include a mirror attached to the distal end configured to reflect light from the optical fiber into adjacent tissue.


In general, in one embodiment, a method of imaging a body lumen includes: inserting a catheter into the body lumen; inserting an imaging device into a lumen of the catheter, the imaging device including a hollow flexible shaft having a central longitudinal axis with an imaging window therein and an optical fiber extending within the hollow flexible shaft and attached to the hollow flexible shaft, the optical fiber extending substantially along the central longitudinal axis; rotating the hollow flexible shaft within the lumen of the catheter; and collecting images of the body lumen through the imaging window with the optical fiber.


This and other embodiments can include one or more of the following features. Rotating the hollow flexible shaft within the lumen can include rotating the hollow flexible shaft at speeds of greater than 1,000 rpm. Collecting images of the body lumen can include collecting images of the body lumen at rates of greater than 10 frames per minute. The body lumen can be a coronary artery or a peripheral artery. The catheter can include a cutter thereon, and the method can further include cutting tissue of the body lumen with the catheter to pass through an occlusion in the body lumen. The method can further include removing the imaging device from the lumen of the catheter and advancing a guidewire through the lumen of the catheter after passing the cutter through the occlusion.


In general, in one embodiment, an occlusion crossing device includes a rotatable hollow flexible shaft having a central longitudinal axis and an imaging window therein. The occlusion crossing device further includes an optical fiber extending within the hollow flexible shaft substantially along the central axis. A distal tip of the optical fiber is aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window. A cutter is attached to a distal end of the hollow flexible shaft.


This and other embodiments can include one or more of the following features. The optical fiber can extend substantially along the central axis for the entire length of the fiber. The occlusion crossing device can further include an outer sheath extending around the hollow flexible shaft. A monorail guidewire can be attached to the outer sheath. The outer sheath can include an optically clear annular section at the distal end thereof. The hollow flexible shaft can be made of tungsten. The hollow flexible shaft can be made of multiple layers of wound filars. The filars can be counterwound. The device can be less than 0.1, less than 0.08, or less than 0.05 inches in diameter. The cutter can include a fluted distal end. The cutter can further include a slanted proximal end and a mirror attached to the proximal end configured to reflect light from the optical fiber into adjacent tissue. The optical fiber can be configured to remain stationary relative to the hollow flexible shaft. The optical fiber can be attached to the hollow flexible shaft and configured to rotate therewith. The occlusion crossing device can further include a handle attached to the flexible shaft configured to rotate the hollow flexible shaft at speeds of greater than 1,000 rpm.


In general, in one embodiment, a method of crossing an occlusion in a blood vessel includes: inserting an occlusion crossing device into the vessel, the occlusion crossing device including a hollow flexible shaft having a central longitudinal axis and an imaging window therein, an optical fiber extending within the hollow flexible shaft substantially along the central axis to transfer an optical coherence tomography signal, and a cutter attached to a distal end of the hollow flexible shaft; rotating the hollow flexible shaft and cutter so as to separate tissue of the occlusion; collecting images of the vessel through the imaging window with the optical fiber; and passing the cutter through the occlusion.


This and other embodiments can include one or more of the following features. Rotating the flexible shaft and cutter can include rotating at speeds of greater than 1,000 rpm. Collecting images of the vessel can include collecting images at rates of greater than 10 frames per minute. The method can further include rotating the optical fiber with the hollow flexible shaft. Rotating the hollow flexible shaft can include rotating the imaging shaft while keeping the fiber rotationally fixed. The vessel can be a coronary artery or a peripheral artery.


In general, in one embodiment, an occlusion crossing device includes an elongate body and a drive shaft extending through the elongate body having a perforating tip attached thereto. The occlusion crossing device further includes a deflectable tip having a wedged distal end attached to the elongate body and a guidewire lumen extending through the deflectable tip.


This and other embodiments can include one or more of the following features. The occlusion crossing device can further include an imaging element attached to the drive shaft. The imaging element can be an optical coherence tomography imaging element. The deflectable tip can be configured to be deflected by axial movement of the drive shaft. The device can be less than 0.1 inches, less than 0.08 inches, or less than 0.05 inches in diameter.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-1C show an occlusion crossing device having an optical fiber for imaging running down the center of the device. FIG. 1A shows an outer view of the device. FIG. 1B shows a close-up of the imaging and cutting portion of the device of FIG. 1A. FIG. 1C is a cross-section of the device of FIG. 1A.



FIGS. 1D-1E show exemplary cutting tips for use with the device of FIG. 1A.



FIG. 2A shows placement of the device of FIGS. 1A-1C in a passive configuration in a vessel. FIG. 2B shows placement of the device of FIGS. 1A-1C in an active configuration in a vessel.



FIGS. 3A-3B show a handle for use with the device of FIGS. 1A-1C. FIG. 3A is an outer view of the handle. FIG. 3B is a cross-section of the handle.



FIG. 4A shows a cross-section of an exemplary occlusion crossing device having a stationary optical fiber and rotating outer sheath. FIG. 4B shows the device of FIG. 4A with an outer sheath therearound.



FIGS. 5A-5E show an exemplary occlusion crossing device with a deflectable wedged distal tip. FIG. 5A shows a cross-section of the device with the deflectable tip in a closed configuration. FIG. 5B shows a cross-section of the device with the deflectable tip in an open configuration. FIG. 5C shows a cross-section of the device with the deflectable tip in an open configuration and the cutting edge extended distally. FIG. 5D is an end-view of the deflectable tip.



FIG. 5E is an isometric view of the deflectable tip.





DETAILED DESCRIPTION

Described herein are occlusion-crossing devices having a low profile so as to be usable in small-diameter arteries and coronary arteries. In general, the devices described herein can have on-board imaging, such as optical coherence tomography (OCT) imaging. The optical fiber for the OCT imaging can substantially along the central of the device, thereby decreasing the profile of the device and allowing for single direction rotation at high speeds. A monorail guidewire lumen can be attached to the devices described herein.


In some embodiments, a catheter device, such as an occlusion-crossing device, can include an imaging shaft with a fiber running down the center of the catheter. The fiber can be rotated with a fiber optic junction so as to rotatable at high speeds in a single direction. A monorail guidewire lumen can extend along the outside of the device parallel to the central axis of the catheter.


Referring to FIGS. 1A-1C, an exemplary catheter device 100 is shown. The catheter device 100 can include an imaging shaft 122. The imaging shaft 122 can be hollow and can have an inner diameter of approximately 0.005″ to 0.010″, e.g., 0.009″ or 0.008″. The imaging shaft 122 could have an outer diameter of approximately 0.01-0.038″. Further, the imaging shaft 122 can be sized to work inside the lumen of another catheter, e.g., a catheter having a lumen diameter of 0.014″, 0.018″, or 0.035″. In some embodiments, the imaging shaft 122 can be made of a wire material, such as stainless steel or tungsten, or, alternatively can be made from a flexible tube such as a plastic or laser cut tube. Further, in some embodiments, the imaging shaft 122 can include multiple filar layers. For example, the imaging shaft 122 can include two layers of 8 counterwound filars per layer or three layers of 12 counterwound filars per layer or the number of filars could vary by layer (e.g., 12 filars over 8 filars). Advantageously, by using multiple layers of filars, the imaging shaft 122 can be configured to rotate at speeds of over 1,000 rpm.


The catheter 100 can further include an imaging element. Thus, an optical fiber 197 can extend through the hollow imaging shaft 122 such that the optical fiber 197 runs substantially along the central axis of the catheter for the entire length of the fiber 197. The fiber 197 can be attached at the distal end of the imaging shaft 122 (such as in the bulb 198 described below), but can be otherwise free to float within the imaging shaft 122. The imaging fiber 197 can transfer an optical coherence tomography (OCT) signal for imaging of the vessel in which the device 100 is placed. In some embodiments, the imaging fiber 197 can have a polyimide coating therearound within the length of the shaft 122 to support and protect the fiber 197 as it spins within the shaft 122.


The optical fiber 197 can end in a hollow bulb 198 at the end of the imaging shaft 122. The bulb 198 can be made of the same material as the imaging shaft 122, such as stainless steel. The bulb 198 can include a mirror 199 oriented at an angle (such as a 30-60 degree angle, e.g., 45 degrees) with respect to the central axis of the fiber 197 such that light coming out of the fiber 197 will bounce off the mirror 197 and into the adjacent tissue. The bulb 198 can include glue therein to hold the distal end of the optical fiber 197 in place. The glue can have a refractive index configured to be appropriately mismatched with the refractive index of the fiber, as described in U.S. patent application Ser. No. 12/790,703, titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” filed May 28, 2010, Publication No. US-2010-0305452-A1; and International Patent Application titled “OPTICAL COHERENCE TOMOGRAPHY WITH GRADED INDEX FIBER FOR BIOLOGICAL IMAGING,” filed herewith, both of which are incorporated by reference in their entireties. Further, the glue can have a meniscus shape along its outer edge, as described in International Patent Application titled “OPTICAL COHERENCE TOMOGRAPHY WITH GRADED INDEX FIBER FOR BIOLOGICAL IMAGING,” filed herewith, already incorporated by reference herein. The meniscus shape can advantageously ensure that the light reflected back from the surface of the glue and back into the fiber 197 is significantly less than the light referenced.


The bulb 198 can further include an imaging window 107 therein aligned with the mirror 199 such that the light bouncing off the mirror can travel therethrough into the tissue. In some embodiments, the bulb 198 can include a second hole 189 therein that is proximal to the window 107. The second hole 189 can be configured to allow for the placement of additional glue to hold the fiber 197 in place.


Referring to FIGS. 1B and 1D-E, in some embodiments, the bulb 198 can include a cutter 103 connected to the distal end thereof. The cutter can be configured, for example, to separate, dissect, or shred tissue. As shown in FIG. 1B, the cutter 103 can have proximal end oriented an angle so as to support the angled mirror 199. Further, the cutter 103 can have a distal sharp cutting edge that extends out of a distal hole 171 in the bulb 198. In some embodiments, the cutter 103 can include multiple sharp flutes that come to a point in the center of the device. Two exemplary cutters 103a, 103b are shown in FIGS. 1D and 1E. The cutter 103a of FIG. 1D includes two spiral flutes while the cutter 103b of FIG. 1D includes four spiral flutes.


The imaging shaft 122, and thus the optical fiber 197, can be configured to rotate at high speeds, such as greater than 1,000 rpm, in a single direction to provide OCT imaging around the inner circumference of the vessel. Such high speed rotation in a single direction (as opposed to requiring rotation alternately in both directions to manage the optical fiber) allows for the gathering of image data more quickly, thereby providing more accurate and up-to-date images during use of the device 100. For example, images can be generated at a rate of greater than 10 frames per section (fps), such as greater than 10 fps, such as approximately 16.67 fps. In an exemplary embodiment, the rate of Laser sweep, such as approximately 20 KHz, can be configured to keep up with at 16.67 frames per second with about 1200 lines per frame.


The catheter 100 can further include a sheath 111, such as a sheath that is less than 0.060″ in diameter, such as less than 0.050″ in diameter. The sheath 111 can extend annularly around the imaging shaft 197. The sheath 111 can include an optically clear annular section 121 (e.g., optically transparent at a wavelength of 1300 nm) at the distal end thereof, as shown in FIGS. 2A-2B. The optically clear annular section 121 can be made, for example, of tecothane or fluorinated ethylene propylene (FEP). In some embodiments, the optically clear annular section 121 can have a refractive index of between 1.35 and 1.45 that is close to the refractive index of saline, thereby reducing the back-reflection caused when saline is flushed through the sheath 111. The optically clear annular section 121 can advantageously allow for imaging with the OCT fiber 197 without extending the imaging shaft 122 out of the sheath 111, thereby allowing for imaging without cutting. Thus, the imaging shaft 197 can rotate within the sheath 111 and move axially (proximally and distally) within the sheath 111. Allowing the imaging shaft 122 to rotate and translate within the sheath 111 advantageously allows such actions to occur without changing the position of the sheath 111 when in use within a vessel.


Referring to FIGS. 2A-2B, the catheter 100 can further include a guidewire lumen 180, which can be a monorail extending along the distal end of the sheath 111. The guidewire lumen 180 can have an inner diameter, for example, of 0.010″ to 0.020″, such as approximately 0.016″ in diameter, such as to hold, for example, a 0.014″ guidewire. The guidewire lumen 180 can be made, for example, of polyimide. In other embodiments, the catheter 100 can be fabricated or used without a guidewire lumen. For example, the catheter 100 (including the sheath 111) can be inserted into the vessel, tunneled through an occlusion through the use of the cutter 103, and then the imaging shaft 122 can be removed, leaving the sheath in place. A guidewire could then be inserted through the sheath 111 to get the guidewire across the occlusion.


Advantageously, because the optical fiber 197 runs through the center of the device 100, the device 100 can be small in diameter. For example, the outer diameter of the device 100 (including the sheath and monorail) can be less than 0.10″, such as less than 0.08″, such as less than 0.07″, less than 0.06″, or less than 0.05″. Accordingly, the device 100 can advantageously be used in small-diameter peripheral arteries and coronary arteries.


Referring to FIGS. 2A-2B, in use, the device 100 can be inserted into a vessel 215 in a passive configuration where the imaging shaft 122 and cutter 103 are entirely within the sheath 111 (as shown in FIG. 2A). To do so, the device 100 can be extended over a guidewire that has been placed within the vessel (i.e., the guidewire lumen 180 can extend over the guidewire). The imaging shaft 122 can be rotated, thereby obtaining an image with the fiber 197 through the clear annular section 121 of the sheath 111.


In some embodiments, the resulting image will have a wire artifact caused by the guidewire obstructing the OCT beam as the imaging shaft 122 is rotated. The wire artifact in the image can be used to determine the direction to point or orient the catheter. That is, in some embodiments, the wire artifact can be used to align the device 100 with a fluoroscopic image and/or to orient a fixed jog or deflection point in the catheter that has a set orientation relative to the guidewire lumen. Alignment of markers with fluoroscope images and orientation of jogged portions of a catheter using markers is described further in U.S. patent application Ser. No. 13/433,049, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012, Publication No. US-2012-0253186-A1, the entirety of which is incorporated herein by reference.


The guidewire can then be retracted until the wire artifact in the image is gone, thereby fully removing the guidewire from potential entanglement with the rotating cutter 103.


The imaging shaft 122 can then be extended distally, thereby extending the cutter 103 distally until the cutter 103 is past the distal end of the sheath 111 such that the device 100 takes an active configuration (as shown in FIG. 2B). The imaging shaft 122 can then be rotated, thereby both imaging the vessel and cutting through plaque or tissue in the vessel. The imaging shaft 122 can then be retracted into the sheath 111. The guidewire can then be advanced, and the process repeated until the device 100 has crossed the occlusion.


The rotation or translation of the imaging shaft 122 can be controlled through a handle attached the device 100. An exemplary handle 300 is shown in FIGS. 3A-3B. The handle 300 can include a rotational torque knob 311 attachable to the sheath 111 and configured to provide torque to the sheath 111. In some embodiments, the handle 300 can include a flush port, such as an RHV style flush port. The handle 300 can further include a mechanism, such as a fiber optic rotary junction, therein configured to allow for rotation of the shaft 122 and optical fiber 197 without rotating the fiber from the light source. Further, the handle 300 (or the catheter 100) can be configured to be attached to a drive system, such as through an optical connector 313. The drive system can include a rotary optical junction configured to rotate the fiber. Exemplary drive systems that could be used in conjunction with the devices herein are described in U.S. patent application Ser. No. 13/654,357, titled “ATHERECTOMY CATHETERS AND NON-CONTACT ACTUATION MECHANISM FOR CATHETERS,” filed Oct. 17, 2012 and International Patent Application titled “ATHERECTOMY CATHETER DRIVE ASSEMBLIES,” filed herewith, each incorporated herein by reference in its entirety.


In some embodiments, the device 100 can be fabricated without the cutter 103, and the device 100 can instead be used as an imaging guidewire, imaging wire, or imaging component that can be placed within another device, such as an occlusion crossing device, atherectomy device, guide catheter, guiding sheath, over-the-wire balloon catheter, or support catheter, to provide imaging during procedures. In such instances, the device 100 could be used with the sheath 111 or without (and the device in which device 100 is inserted could act as a sheath). Further, in such instances, the catheter within which the device 100 is placed can include a cutter. Exemplary devices with which the device 100 could be used as an imaging guidewire or imaging component are described in: U.S. patent application Ser. No. 12/689,748, titled “GUIDEWIRE POSITIONING CATHETER,” filed Jan. 19, 2010, Publication No. US-2010-0274270-A1; U.S. patent application Ser. No. 12/108,433, titled “CATHETER SYSTEM AND METHOD FOR BORING THROUGH BLOCKED VASCULAR PASSAGES,” filed Apr. 23, 2008, now U.S. Pat. No. 8,062,316; U.S. patent application Ser. No. 12/829,267, titled “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” filed Jul. 1, 2010, Publication No. US-2010-0021926-A1; U.S. patent application Ser. No. 13/433,049, titled “OCCLUSION-CROSSING DEVICES, IMAGING, AND ATHERECTOMY DEVICES,” filed Mar. 28, 2012, Publication No. US-2012-0253186-A1; International Patent Application titled “OCCLUSION-CROSSING DEVICES,” filed herewith; U.S. patent application Ser. No. 12/829,277, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” filed Jul. 1, 2010, Publication No. US-2011-0004107-A1; U.S. patent application Ser. No. 13/175,232, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed Jul. 1, 2011, Publication No. US-2012-0046679-A1; U.S. patent application Ser. No. 13/654,357, titled “ATHERECTOMY CATHETERS AND NON-CONTACT ACTUATION MECHANISM FOR CATHETERS,” filed Oct. 17, 2012; U.S. patent application Ser. No. 13/675,867, titled “OCCLUSION-CROSSING DEVICES, ATHERECTOMY DEVICES, AND IMAGING,” filed Nov. 13, 2012; International Patent Application titled “ATHERECTOMY CATHETERS WITH IMAGING,” filed herewith; International Patent Application titled “BALLOON ATHERECTOMY CATHETERS WITH IMAGING,” filed herewith, the entireties of which are incorporated herein by reference.


In some embodiments, an occlusion crossing device can include a stationary optical fiber for optical coherence tomography imaging.


For example, referring to FIG. 4A, an occlusion crossing device 400 can include a hollow rotatable imaging shaft 422. The rotatable imaging shaft 422 can be made of a coiled structure that can be optimized (such as the number of filars or the filar size) to provide the desired stiffness.


The occlusion crossing device 400 can further include an imaging element. Thus, an optical fiber 497 can extend through the hollow rotatable imaging shaft 422 so as to extend substantially along the central axis of the device 400. The optical fiber 497 can be configured to as to stay stationary during rotation of the imaging shaft 422. For example, the optical fiber 492 can be attached to a bearing at the distal end of the imaging shaft 422.


A cutter 403 can be attached to the imaging shaft 422, such as through a connecting collar 433. The cutter 403 can include a fluted distal end 412 configured to bore through tissue. Further, the cutter 403 can include a mirror 499 affixed to the proximal end thereof at an angle, such as between 35 and 55 degrees, e.g., 45 degrees, relative to the central axis of the fiber 497.


The imaging shaft 422 can further include an imaging window 407 therein. The imaging window 407 can be placed in such a location as to allow the light deflected off of the mirror 499 to travel through the window 407 into adjacent tissue.


The imaging shaft 422 can be configured to rotate, thereby rotating the cutter 403, including the distal cutting edge 412 (to cut tissue) as well as the mirror 499. By rotating the mirror 499, the beam traveling through the fiber 497 will bounce off the mirror 499 and be sent into, and received back from, areas all around the circumference of the vessel in which the device 400 is placed.


Advantageously, by rotating the mirror 499 rather than the optical fiber 497, complicated fiber management mechanisms are eliminated. Moreover, the imaging shaft 422 can be rotated at high speeds, such as greater than 1,000 rpm, to provide better drilling with the cutting edge 412 as well as higher imaging rates, such as rates of greater than 10 frames per section (fps), such as greater than 10 fps, such as approximately 16.67 fps. In an exemplary embodiment, the rate of Laser sweep, such as approximately 20 KHz, can be configured to keep up with at 16.67 frames per second with about 1200 lines per frame. Furthermore, by having the fiber 497 extend through the center of the device 400, the device 400 can advantageously be less than 0.03″ in diameter, such as less than 0.02″ in diameter, such as approximately 0.018″ in diameter. Accordingly, the device 400 can advantageously be used in small-diameter peripheral arteries and coronary arteries.


In some embodiments, referring to FIG. 4A, the device 400 can include an outer sheath 411 therearound. The outer sheath 411 can be stationary relative to the rotatable imaging shaft 422, thereby making it easier for a user to hold onto the device. In some embodiments, the outer sheath can be attached to the imaging shaft 422, such as through a bearing. In other embodiments, the outer sheath 411 can be unattached to the remainder of the device. In some embodiments, the outer sheath 411 can include a clear annular section similar to the annular section 121 described above with respect to FIGS. 1A-2B.


In some embodiments, the device 400 can further include a monorail guidewire lumen similar to the device 100 described above.


The device 400 can be attached to a drive system to provide a light source for OCT imaging and/or to provide torque for rotation of the imaging shaft.


In some embodiments, an occlusion-crossing device can include a deflectable tip configured to protect the distal tip when in use.


For example, referring to FIGS. 5A-5E, an occlusion-crossing device 500 can include a catheter body 501, a cutter 503, and a deflectable distal tip 505 at the distal end. The catheter body 501 can include an outer shaft 511 and an imaging shaft 513 extending therein. As described above with respect to devices 100 and 400, the device 500 can include an imaging element 492, such as an optical fiber extending through the imaging shaft 513 so as to run substantially along the central axis of the catheter body 501. A mirror 599 oriented at 35-55 degrees, such as 45 degrees, can be configured to project the light into the tissue at a 90 degree angle relative to the optical fiber. The cutter 503 can be attached to the imaging shaft 513. The cutter 503 can include a perforating tip 572 extending off of the distal end thereof. The perforating tip 572 can be configured to penetrate tissue as it is advanced and/or rotated. For example, the perforating tip 572 can be shaped as a fluted end mill or drill or a plurality of shape-set sharp whiskers. The perforating tip 472 can have a diameter that is smaller than the diameter of the rest of the cutter 503 and/or the elongate body 501, thereby advantageously providing a sharper or more pronounced point for drilling. The size of the perforating tip 572 can further be approximately the size of the guidewire 590, thereby helping to provide a hole through which the guidewire can extend.


In some embodiments, a guidewire lumen 580, such as a monorail guidewire lumen 580 can run along the outside of the device to hold a guidewire 590. Further, in some embodiments, as shown in FIGS. 5A-5C, the guidewire lumen 580 can extend through the distal tip 505 and extend out of the distal-most end 551 of the distal tip 505.


The deflectable distal tip 505 can be attached to the outer shaft 511 at a hinge point 583, such as at a hinge pin. The deflectable distal tip 505 can have a wedged distal edge 555, best shown in FIGS. 5D-5E. The wedged distal edge 555 can advantageously be aligned with a hard or dense occlusion such that the distal-most end 551 of the distal tip 505 is oriented partially around the occlusion (along the side of the vessel). When the distal tip 505 is deflected, this position can be enhanced, allowing the guidewire lumen 550 and guidewire 590 to aim around the occlusion. Using a guidewire 590 having a curved distal end, as shown in FIGS. 59, can help the guidewire slide along the occlusion even as the distal-most edge 551 of the tip 505 (and thus the guidewire lumen 580) is pointed towards the vessel wall.


Further, the deflectable distal tip can have a cut-out 587 configured to house the perforating tip 572 therein. The deflectable distal tip can be deflected, for example, by pulling or pushing on the drive shaft 513, similar to embodiments described in International Patent Application titled “BALLOON ATHERECTOMY CATHETERS WITH IMAGING,” filed herewith; U.S. patent application Ser. No. 13/175,232, titled “ATHERECTOMY CATHETERS WITH LONGITUDINALLY DISPLACEABLE DRIVE SHAFTS,” filed Jul. 1, 2011, Publication No. US-2012-0046679-A1; U.S. patent application Ser. No. 12/829,277, titled “ATHERECTOMY CATHETER WITH LATERALLY-DISPLACEABLE TIP,” filed Jul. 1, 2010, Publication No. US-2011-0004107-A1; International Patent Application titled “ATHERECTOMY CATHETERS WITH IMAGING,” all of which are incorporated by reference herein. The deflectable distal tip 505 can thus have a closed configuration, as shown in FIG. 5A, wherein the deflectable tip 505 covers the perforating tip 572, and an open configuration where the deflectable tip 505 exposes the perforating tip 572.


In some embodiments, the imaging shaft 513 can be moved proximally and distally. Distal extension of the imaging shaft 513 when the deflectable distal tip 505 is deflected can advantageously extend the perforating tip 572 past the distal end of the tip 505 to provide for drilling with the deflectable tip 572 out of the way.


Because the optical fiber runs through the center of the device, the imaging shaft 513 can advantageously be rotated at high speeds in a single direction, such as greater than 1,000 rpm, to provide better drilling with the cutting edge 412 as well as higher imaging rates, as described above with respect to devices 100 and 400. Furthermore, by having the fiber of the imaging sensor 592 extend through the center of the device 500, the device 500 can advantageously be less than 0.10″, such as less than 0.08″, such as less than 0.07″, less than 0.06″, or less than 0.05″. Accordingly, the device 500 can advantageously be used in small-diameter peripheral arteries and coronary arteries.


In operation, the device 500 can be advanced through the vasculature with the tip 505 in the non-deflected position (shown in FIG. 5A). At the target lesion or CTO, the device 500 can continue to be advanced until an obstruction is encountered that cannot be passed by the device 500. At this point, the imaging sensor 592 can be used to identify structures in the vessel that could potentially be easier to pass through (non-ossified material). The device 500 can then be re-oriented the tip 505 deflected (as shown in FIG. 5C) to facilitate ‘aiming’ the guide wire lumen 580 in the direction of the more penetrable structure. The guide wire 590 can then be advanced along a new trajectory while being supported by the guide wire lumen 580. Once the guide wire 590 has traversed some distance through the obstacle, the tip 505 of the device can be returned to the normal (non-deflected) position to facilitate passage over the guide wire. If further obstacles are encountered, the process can be repeated until complete passage of the lesion or CTO had been achieved. In embodiments where the distal tip 503 includes a perforating tip 572, a hole can be created in the occlusion to help pass the guidewire therethrough.


Any of the catheters described herein can be shape-set or include shape-set features to enhance trackability and navigability.


As used herein, an imaging element can include the OCT optical fiber, such as the distal end of the optical fiber, as well as the mirror and adhesive used to hold the mirror and optical fiber in place.


As described above, the catheters described herein can include optical coherence tomography imaging, such as common path OCT. Such OCT systems are described in U.S. patent application Ser. No. 12/829,267, titled “CATHETER-BASED OFF-AXIS OPTICAL COHERENCE TOMOGRAPHY IMAGING SYSTEM,” filed Jul. 1, 2010, Publication No. US-2010-0021926-A1; U.S. patent application Ser. No. 12/790,703, titled “OPTICAL COHERENCE TOMOGRAPHY FOR BIOLOGICAL IMAGING,” filed May 28, 2010, Publication No. US-2010-0305452-A1; and International Patent Application titled “OPTICAL COHERENCE TOMOGRAPHY WITH GRADED INDEX FIBER FOR BIOLOGICAL IMAGING,” filed herewith, all of which are incorporated by reference in their entireties. Alternatively, other types of imaging could be used with the catheters described herein. For example, the devices described herein could be configured to work with infrared spectroscopy or ultrasound.


Additional details pertinent to the present invention, including materials and manufacturing techniques, may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are a plurality of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements, these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.

Claims
  • 1. An occlusion crossing device comprising: a rotatable hollow flexible shaft having a central longitudinal axis and an imaging window therein;an optical fiber extending within the rotatable hollow flexible shaft substantially along the central longitudinal axis of the hollow flexible shaft, a distal tip of the optical fiber aligned with the imaging window so as to transfer an optical coherence tomography signal through the imaging window; anda cutter attached to a distal end of the hollow flexible shaft.
  • 2. The occlusion crossing device of claim 1, wherein the optical fiber extends substantially along the central longitudinal axis of the hollow flexible shaft for the entire length of the optical fiber.
  • 3. The occlusion crossing device of claim 1, further comprising an outer sheath extending around the hollow flexible shaft.
  • 4. The occlusion crossing device of claim 3, further comprising a monorail guidewire lumen attached to the outer sheath.
  • 5. The occlusion crossing device of claim 3, wherein the rotatable hollow flexible shaft is configured to rotate within the outer sheath.
  • 6. The occlusion crossing device of claim 3, wherein the outer sheath is attached to the rotatable hollow flexible shaft.
  • 7. The occlusion crossing device of claim 1, wherein the cutter further includes a slanted proximal end and a mirror attached to the slanted proximal end, the mirror configured to reflect light from the optical fiber into adjacent tissue.
  • 8. The occlusion crossing device of claim 1, wherein the optical fiber is attached to the hollow flexible shaft and configured to rotate therewith.
  • 9. The occlusion crossing device of claim 1, further comprising a handle attached to the rotatable hollow flexible shaft configured to rotate the hollow flexible shaft at speeds of greater than 1,000 rpm.
  • 10. The occlusion crossing device of claim 1, wherein the occlusion crossing device is less than 0.1 inches in diameter.
  • 11. The occlusion crossing device of claim 1, wherein the cutter includes a fluted distal end.
  • 12. A method of crossing an occlusion in a blood vessel, the method comprising: inserting an occlusion crossing device into the blood vessel, the occlusion crossing device including a hollow flexible shaft having a central longitudinal axis and an imaging window therein, an optical fiber extending within the hollow flexible shaft substantially along the central longitudinal axis of the hollow flexible shaft to transfer an optical coherence tomography signal, and a cutter attached to a distal end of the hollow flexible shaft;rotating the hollow flexible shaft and the cutter so as to separate tissue of the occlusion;collecting images of the blood vessel through the imaging window with the optical fiber; andpassing the cutter through the occlusion.
  • 13. The method of claim 12, wherein rotating the hollow flexible shaft and the cutter comprises rotating at speeds of greater than 1,000 rpm.
  • 14. The method of claim 12, wherein collecting images of the blood vessel comprises collecting the images at rates of greater than 10 frames per minute.
  • 15. The method of claim 12, further comprising rotating the optical fiber with the hollow flexible shaft.
  • 16. The method of claim 12, wherein the occlusion crossing device further comprises an outer sheath, and wherein rotating the hollow flexible shaft and the cutter comprises rotating within the outer sheath.
  • 17. The method of claim 12, wherein the blood vessel is a coronary artery.
  • 18. The method of claim 12, wherein the blood vessel is a peripheral artery.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/854,579, filed Dec. 26, 2017, titled “CHRONIC TOTAL OCCLUSION CROSSING DEVICES WITH IMAGING,” which is a continuation of U.S. patent application Ser. No. 14/776,750, filed Sep. 15, 2015, titled “CHRONIC TOTAL OCCLUSION CROSSING DEVICES WITH IMAGING,” now U.S. Pat. No. 9,854,979, which is a 371 of International Patent Application No. PCT/US2013/032679, filed Mar. 15, 2013, titled “CHRONIC TOTAL OCCLUSION CROSSING DEVICES WITH IMAGING,” now PCT Publication No. WO 2014/143064, each of which is herein incorporated by reference in its entirety.

US Referenced Citations (569)
Number Name Date Kind
3367727 Ward et al. Feb 1968 A
3908637 Doroshow Sep 1975 A
4178935 Gekhaman et al. Dec 1979 A
4487206 Aagard Dec 1984 A
4527553 Upsher Jul 1985 A
4552554 Gould et al. Nov 1985 A
4578061 Lemelson Mar 1986 A
4598710 Kleinberg et al. Jul 1986 A
4611600 Cohen Sep 1986 A
4621353 Hazel et al. Nov 1986 A
4639091 Huignard et al. Jan 1987 A
4651753 Lifton Mar 1987 A
4654024 Crittenden et al. Mar 1987 A
4681106 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4691708 Kane Sep 1987 A
4729763 Henrie Mar 1988 A
4771774 Simpson et al. Sep 1988 A
4781186 Simpson et al. Nov 1988 A
4841977 Griffith et al. Jun 1989 A
4842578 Johnson et al. Jun 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4857046 Stevens et al. Aug 1989 A
4920961 Grossi et al. May 1990 A
4926858 Gifford, III et al. May 1990 A
5000185 Yock Mar 1991 A
5002560 Machold et al. Mar 1991 A
5018529 Tenerz et al. May 1991 A
5041082 Shiber Aug 1991 A
5047040 Simpson et al. Sep 1991 A
5085662 Willard Feb 1992 A
5099850 Matsui et al. Mar 1992 A
5178153 Einzig Jan 1993 A
5182291 Gubin et al. Jan 1993 A
5190050 Nitzsche Mar 1993 A
5192291 Pannek, Jr. Mar 1993 A
5217479 Shuler Jun 1993 A
5312415 Palermo May 1994 A
5312425 Evans et al. May 1994 A
5321501 Swanson et al. Jun 1994 A
5333142 Scheps Jul 1994 A
5358472 Vance et al. Oct 1994 A
5366464 Belknap Nov 1994 A
5372601 Lary Dec 1994 A
5383460 Jang et al. Jan 1995 A
5383467 Auer et al. Jan 1995 A
5425273 Chevalier Jun 1995 A
5425371 Mischenko Jun 1995 A
5429136 Milo et al. Jul 1995 A
5431673 Summers et al. Jul 1995 A
5437284 Trimble Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5459570 Swanson et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5465147 Swanson Nov 1995 A
5507725 Savage et al. Apr 1996 A
5507760 Wynne et al. Apr 1996 A
5507795 Chiang et al. Apr 1996 A
5517998 Madison May 1996 A
5529580 Kusunok et al. Jun 1996 A
5556405 Lary Sep 1996 A
5607394 Andersen et al. Mar 1997 A
5613981 Boyle et al. Mar 1997 A
5620426 Braithwaite Apr 1997 A
5632754 Farley et al. May 1997 A
5632755 Nordgren et al. May 1997 A
5674232 Halliburton Oct 1997 A
5676012 Ceriale Oct 1997 A
5681336 Clement et al. Oct 1997 A
5690634 Muller et al. Nov 1997 A
5722403 McGee et al. Mar 1998 A
5728148 Bostrom et al. Mar 1998 A
5749846 Edwards et al. May 1998 A
5795295 Hellmuth et al. Aug 1998 A
5807339 Bostrom et al. Sep 1998 A
5830145 Tenhoff Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843103 Wulfman Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5868778 Gershony et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5904651 Swanson et al. May 1999 A
5907425 Dickensheets et al. May 1999 A
5935075 Casscells et al. Aug 1999 A
5935139 Bates Aug 1999 A
5938602 Lloyd Aug 1999 A
5938671 Katoh et al. Aug 1999 A
5951482 Winston et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5951583 Jensen et al. Sep 1999 A
5956355 Swanson et al. Sep 1999 A
5957952 Gershony et al. Sep 1999 A
5987995 Sawatari et al. Nov 1999 A
5997558 Nash Dec 1999 A
6001112 Taylor Dec 1999 A
6007530 Dornhofer et al. Dec 1999 A
6010449 Selmon et al. Jan 2000 A
6013072 Winston et al. Jan 2000 A
6017359 Gershony et al. Jan 2000 A
6027514 Stine et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6048349 Winston et al. Apr 2000 A
6080170 Nash et al. Jun 2000 A
6106515 Winston et al. Aug 2000 A
6110164 Vidlund Aug 2000 A
6120515 Rogers et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6134002 Stimson et al. Oct 2000 A
6134003 Tearney et al. Oct 2000 A
6152938 Curry Nov 2000 A
6152951 Hashimoto et al. Nov 2000 A
6160826 Swanson et al. Dec 2000 A
6175669 Colston et al. Jan 2001 B1
6176871 Pathak et al. Jan 2001 B1
6183432 Milo Feb 2001 B1
6193676 Winston et al. Feb 2001 B1
6206898 Honeycutt et al. Mar 2001 B1
6228076 Winston et al. May 2001 B1
6241744 Imran et al. Jun 2001 B1
6283957 Hashimoto et al. Sep 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6290668 Gregory et al. Sep 2001 B1
6294775 Seibel et al. Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6307985 Murakami et al. Oct 2001 B1
6375615 Flaherty et al. Apr 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6416527 Berg et al. Jul 2002 B1
6445939 Swanson et al. Sep 2002 B1
6445944 Ostrovsky Sep 2002 B1
6447525 Follmer et al. Sep 2002 B2
6451009 Dasilva et al. Sep 2002 B1
6451036 Heitzmann et al. Sep 2002 B1
6454717 Pantages et al. Sep 2002 B1
6454779 Taylor Sep 2002 B1
6482216 Hiblar et al. Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6497649 Parker et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6503261 Bruneau et al. Jan 2003 B1
6511458 Milo et al. Jan 2003 B2
6517528 Pantages et al. Feb 2003 B1
6542665 Reed et al. Apr 2003 B2
6544230 Flaherty et al. Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6563105 Seibel et al. May 2003 B2
6564087 Pitris et al. May 2003 B1
6565588 Clement et al. May 2003 B1
6572563 Ouchi et al. Jun 2003 B2
6572643 Gharibadeh Jun 2003 B1
6575995 Huter et al. Jun 2003 B1
6579298 Bruneau et al. Jun 2003 B1
6599296 Gillick et al. Jul 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6629953 Boyd Oct 2003 B1
6638233 Corvi et al. Oct 2003 B2
6645217 MacKinnon et al. Nov 2003 B1
6657727 Izatt et al. Dec 2003 B1
6666874 Heitzmann et al. Dec 2003 B2
6673042 Samson et al. Jan 2004 B1
6687010 Horii Feb 2004 B1
6728571 Barbato Apr 2004 B1
D489973 Root et al. May 2004 S
6730063 Delaney et al. May 2004 B2
6758854 Butler et al. Jul 2004 B1
6760112 Reed et al. Jul 2004 B2
6800085 Selmon et al. Oct 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6824550 Noriega et al. Nov 2004 B1
6830577 Nash et al. Dec 2004 B2
6845190 Smithwick et al. Jan 2005 B1
6852109 Winston et al. Feb 2005 B2
6853457 Bjarklev et al. Feb 2005 B2
6856712 Fauver et al. Feb 2005 B2
6867753 Chinthammit et al. Mar 2005 B2
6879851 McNamara et al. Apr 2005 B2
6947787 Webler Sep 2005 B2
6961123 Wang et al. Nov 2005 B1
6970732 Winston et al. Nov 2005 B2
6975898 Seibel Dec 2005 B2
7068878 Crossman-Bosworth et al. Jun 2006 B2
7074231 Jang Jul 2006 B2
7126693 Everett et al. Oct 2006 B2
7172610 Heitzmann et al. Feb 2007 B2
7242480 Alphonse Jul 2007 B2
7261687 Yang Aug 2007 B2
7288087 Winston et al. Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7311723 Seibel et al. Dec 2007 B2
7344546 Wulfman et al. Mar 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7426036 Feldchtein et al. Sep 2008 B2
7428001 Schowengerdt et al. Sep 2008 B2
7428053 Feldchtein et al. Sep 2008 B2
7455649 Root et al. Nov 2008 B2
7474407 Gutin Jan 2009 B2
7485127 Nistal Feb 2009 B2
7488340 Kauphusman et al. Feb 2009 B2
7530948 Seibel et al. May 2009 B2
7530976 MacMahon et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7538886 Feldchtein May 2009 B2
7539362 Teramura May 2009 B2
7542145 Toida et al. Jun 2009 B2
7544162 Ohkubo Jun 2009 B2
7545504 Buckland et al. Jun 2009 B2
7555333 Wang et al. Jun 2009 B2
7577471 Camus et al. Aug 2009 B2
7583872 Seibel et al. Sep 2009 B2
7616986 Seibel et al. Nov 2009 B2
7637885 Maschke Dec 2009 B2
7674253 Fisher et al. Mar 2010 B2
7682319 Martin et al. Mar 2010 B2
7706863 Imanishi et al. Apr 2010 B2
7728985 Feldchtein et al. Jun 2010 B2
7729745 Maschke Jun 2010 B2
7734332 Sher Jun 2010 B2
7738945 Fauver et al. Jun 2010 B2
7753852 Maschke Jul 2010 B2
7771425 Dycus et al. Aug 2010 B2
7776062 Bessellink et al. Aug 2010 B2
7785286 Magnin et al. Aug 2010 B2
7813609 Petersen et al. Oct 2010 B2
7821643 Amazeen et al. Oct 2010 B2
7824089 Charles Nov 2010 B2
7840283 Bush et al. Nov 2010 B1
7944568 Teramura et al. May 2011 B2
7952718 Li et al. May 2011 B2
7972299 Carter et al. Jul 2011 B2
8002763 Berthiaume et al. Aug 2011 B2
8059274 Splinter Nov 2011 B2
8062316 Patel et al. Nov 2011 B2
8068921 Prakash et al. Nov 2011 B2
8313493 Fisher Nov 2012 B2
8361097 Patel et al. Jan 2013 B2
8548571 He et al. Oct 2013 B2
8548603 Swoyer et al. Oct 2013 B2
8632557 Thatcher et al. Jan 2014 B2
8644913 Simpson et al. Feb 2014 B2
8647335 Markus Feb 2014 B2
8696695 Patel et al. Apr 2014 B2
8911459 Simpson et al. Dec 2014 B2
9119662 Moberg Sep 2015 B2
9125562 Spencer et al. Sep 2015 B2
9333007 Escudero et al. May 2016 B2
9345398 Tachibana et al. May 2016 B2
9345406 Spencer et al. May 2016 B2
9345510 Patel et al. May 2016 B2
9345511 Smith et al. May 2016 B2
9351757 Kusleika May 2016 B2
9498247 Patel et al. Nov 2016 B2
9498600 Rosenthal et al. Nov 2016 B2
9557156 Kankaria Jan 2017 B2
9572492 Simpson et al. Feb 2017 B2
9579157 Moberg Feb 2017 B2
9592075 Simpson et al. Mar 2017 B2
9642646 Patel et al. May 2017 B2
9788790 Black et al. Oct 2017 B2
9854979 Smith Jan 2018 B2
9918734 Patel et al. Mar 2018 B2
9949754 Newhauser et al. Apr 2018 B2
10052125 Rosenthal et al. Aug 2018 B2
10130386 Simpson et al. Nov 2018 B2
10244934 Tachibana et al. Apr 2019 B2
10335173 Carver et al. Jul 2019 B2
10342491 Black et al. Jul 2019 B2
10349974 Patel et al. Jul 2019 B2
10357277 Patel et al. Jul 2019 B2
10363062 Spencer et al. Jul 2019 B2
10406316 Garvey et al. Sep 2019 B2
10470795 Patel et al. Nov 2019 B2
10548478 Simpson et al. Feb 2020 B2
10568520 Patel et al. Feb 2020 B2
10568655 Simpson et al. Feb 2020 B2
10722121 Smith Jul 2020 B2
10729326 Spencer et al. Aug 2020 B2
10860484 Simpson et al. Oct 2020 B2
10869685 Patel et al. Dec 2020 B2
20010005788 McGuckin, Jr. Jun 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020072706 Hiblar et al. Jun 2002 A1
20020082585 Carroll et al. Jun 2002 A1
20020082626 Donohoe et al. Jun 2002 A1
20020097400 Jung et al. Jul 2002 A1
20020111548 Swanson et al. Aug 2002 A1
20020115931 Strauss et al. Aug 2002 A1
20020138091 Pflueger Sep 2002 A1
20020147459 Bashiri et al. Oct 2002 A1
20020158547 Wood Oct 2002 A1
20030002038 Mawatari Jan 2003 A1
20030028100 Tearney et al. Feb 2003 A1
20030032880 Moore Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030095248 Frot May 2003 A1
20030097044 Rovegno May 2003 A1
20030120150 Govari Jun 2003 A1
20030120295 Simpson et al. Jun 2003 A1
20030125756 Shturman et al. Jul 2003 A1
20030125757 Patel et al. Jul 2003 A1
20030125758 Simpson et al. Jul 2003 A1
20030139751 Evans et al. Jul 2003 A1
20030181855 Simpson et al. Sep 2003 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040039371 Tockman et al. Feb 2004 A1
20040057667 Yamada et al. Mar 2004 A1
20040059257 Gaber Mar 2004 A1
20040082850 Bonner et al. Apr 2004 A1
20040092915 Levatter May 2004 A1
20040093001 Hamada May 2004 A1
20040147934 Kiester Jul 2004 A1
20040167553 Simpson et al. Aug 2004 A1
20040167554 Simpson et al. Aug 2004 A1
20040181249 Torrance et al. Sep 2004 A1
20040186368 Ramzipoor et al. Sep 2004 A1
20040193140 Griffin et al. Sep 2004 A1
20040202418 Ghiron et al. Oct 2004 A1
20040220519 Wulfman et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040236312 Nistal et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20040254599 Lipoma et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050020925 Kleen et al. Jan 2005 A1
20050021075 Bonnette et al. Jan 2005 A1
20050027199 Clarke Feb 2005 A1
20050043614 Huizenga et al. Feb 2005 A1
20050054947 Goldenberg Mar 2005 A1
20050075660 Chu et al. Apr 2005 A1
20050085708 Fauver et al. Apr 2005 A1
20050085721 Fauver et al. Apr 2005 A1
20050105097 Fang-Yen et al. May 2005 A1
20050141843 Warden et al. Jun 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050154407 Simpson Jul 2005 A1
20050159712 Andersen Jul 2005 A1
20050159731 Lee Jul 2005 A1
20050171478 Selmon et al. Aug 2005 A1
20050177068 Simpson Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050187571 Maschke Aug 2005 A1
20050192496 Maschke Sep 2005 A1
20050197623 Leeflang et al. Sep 2005 A1
20050201662 Petersen et al. Sep 2005 A1
20050203553 Maschke Sep 2005 A1
20050222519 Simpson Oct 2005 A1
20050222663 Simpson et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20060011820 Chow-Shing et al. Jan 2006 A1
20060032508 Simpson Feb 2006 A1
20060046235 Alexander Mar 2006 A1
20060049587 Cornwell Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060084911 Belef et al. Apr 2006 A1
20060109478 Tearney et al. May 2006 A1
20060135870 Webler Jun 2006 A1
20060173475 Lafontaine et al. Aug 2006 A1
20060229646 Sparks Oct 2006 A1
20060229659 Gifford et al. Oct 2006 A1
20060235262 Arnal et al. Oct 2006 A1
20060235366 Simpson Oct 2006 A1
20060236019 Soito et al. Oct 2006 A1
20060239982 Simpson Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060264741 Prince Nov 2006 A1
20060264743 Kleen et al. Nov 2006 A1
20060264907 Eskridge et al. Nov 2006 A1
20070010840 Rosenthal et al. Jan 2007 A1
20070015969 Feldman et al. Jan 2007 A1
20070015979 Redel Jan 2007 A1
20070035855 Dickensheets Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038125 Kleen et al. Feb 2007 A1
20070038173 Simpson Feb 2007 A1
20070050019 Hyde Mar 2007 A1
20070078469 Soito et al. Apr 2007 A1
20070078500 Ryan et al. Apr 2007 A1
20070081166 Brown et al. Apr 2007 A1
20070088230 Terashi et al. Apr 2007 A1
20070106155 Goodnow et al. May 2007 A1
20070135712 Maschke Jun 2007 A1
20070167710 Unal et al. Jul 2007 A1
20070196926 Soito et al. Aug 2007 A1
20070213618 Li et al. Sep 2007 A1
20070219484 Straub Sep 2007 A1
20070250080 Jones et al. Oct 2007 A1
20070255252 Mehta Nov 2007 A1
20070270647 Nahen et al. Nov 2007 A1
20070276419 Rosenthal Nov 2007 A1
20070288036 Seshadri Dec 2007 A1
20070299309 Seibel et al. Dec 2007 A1
20080004643 To et al. Jan 2008 A1
20080004644 To et al. Jan 2008 A1
20080004645 To et al. Jan 2008 A1
20080004646 To et al. Jan 2008 A1
20080015491 Bei et al. Jan 2008 A1
20080015618 Sonnenschein et al. Jan 2008 A1
20080027334 Langston Jan 2008 A1
20080033396 Danek et al. Feb 2008 A1
20080045986 To et al. Feb 2008 A1
20080049234 Seitz Feb 2008 A1
20080058629 Seibel et al. Mar 2008 A1
20080065124 Olson Mar 2008 A1
20080065125 Olson Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080095421 Sun et al. Apr 2008 A1
20080103439 Torrance et al. May 2008 A1
20080103446 Torrance et al. May 2008 A1
20080103516 Wulfman et al. May 2008 A1
20080132929 O'Sullivan et al. Jun 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080146942 Dala-Krishna Jun 2008 A1
20080147000 Seibel et al. Jun 2008 A1
20080154293 Taylor et al. Jun 2008 A1
20080154296 Taylor et al. Jun 2008 A1
20080177138 Courtney et al. Jul 2008 A1
20080186501 Xie Aug 2008 A1
20080207996 Tsai Aug 2008 A1
20080221388 Seibel et al. Sep 2008 A1
20080228033 Tumlinson et al. Sep 2008 A1
20080243030 Seibel et al. Oct 2008 A1
20080243031 Seibel et al. Oct 2008 A1
20080262312 Carroll et al. Oct 2008 A1
20080275485 Bonnette et al. Nov 2008 A1
20080287795 Klingensmith et al. Nov 2008 A1
20090018565 To et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090018567 Escudero et al. Jan 2009 A1
20090024084 Khosla et al. Jan 2009 A1
20090024085 To et al. Jan 2009 A1
20090024191 Seibel et al. Jan 2009 A1
20090028407 Seibel et al. Jan 2009 A1
20090028507 Jones et al. Jan 2009 A1
20090043191 Castella et al. Feb 2009 A1
20090073444 Wang Mar 2009 A1
20090073455 Onimura Mar 2009 A1
20090076447 Casas et al. Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090099641 Wu et al. Apr 2009 A1
20090125019 Douglass et al. May 2009 A1
20090135280 Johnston et al. May 2009 A1
20090137893 Seibel et al. May 2009 A1
20090152664 Tian et al. Jun 2009 A1
20090185135 Volk Jul 2009 A1
20090196477 Cense et al. Aug 2009 A1
20090196554 Irisawa Aug 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090208143 Yoon et al. Aug 2009 A1
20090216180 Lee et al. Aug 2009 A1
20090221904 Shealy et al. Sep 2009 A1
20090221920 Boppart et al. Sep 2009 A1
20090234220 Maschke Sep 2009 A1
20090235396 Wang et al. Sep 2009 A1
20090244485 Walsh et al. Oct 2009 A1
20090244547 Ozawa Oct 2009 A1
20090264826 Thompson Oct 2009 A1
20090268159 Xu et al. Oct 2009 A1
20090275966 Mitusina Nov 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090292199 Bielewicz et al. Nov 2009 A1
20090306520 Schmitt et al. Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090318862 Ali et al. Dec 2009 A1
20100004544 Toida Jan 2010 A1
20100021926 Noordin Jan 2010 A1
20100049225 To et al. Feb 2010 A1
20100080016 Fukui et al. Apr 2010 A1
20100082000 Honeck et al. Apr 2010 A1
20100125253 Olson May 2010 A1
20100130996 Doud et al. May 2010 A1
20100198081 Hanlin et al. Aug 2010 A1
20100217245 Prescott Aug 2010 A1
20100241147 Maschke Sep 2010 A1
20100253949 Adler et al. Oct 2010 A1
20100292539 Lankenau et al. Nov 2010 A1
20100292721 Moberg Nov 2010 A1
20100312263 Moberg et al. Dec 2010 A1
20100317973 Nita Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110023617 Yo et al. Feb 2011 A1
20110028977 Rauscher et al. Feb 2011 A1
20110040238 Wulfman et al. Feb 2011 A1
20110058250 Liu et al. Mar 2011 A1
20110060186 Tilson et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110092955 Purdy et al. Apr 2011 A1
20110106004 Eubanks et al. May 2011 A1
20110118660 Torrance et al. May 2011 A1
20110130777 Zhang et al. Jun 2011 A1
20110137140 Tearney et al. Jun 2011 A1
20110144673 Zhang et al. Jun 2011 A1
20110201924 Tearney et al. Aug 2011 A1
20110208222 Ljahnicky et al. Aug 2011 A1
20110257478 Kleiner et al. Oct 2011 A1
20110264125 Wilson et al. Oct 2011 A1
20110270187 Nelson Nov 2011 A1
20110295148 Destoumieux et al. Dec 2011 A1
20110301625 Mauch et al. Dec 2011 A1
20110319905 Palme et al. Dec 2011 A1
20120002928 Irisawa Jan 2012 A1
20120004506 Tearney et al. Jan 2012 A1
20120123352 Fruland et al. May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120203230 Adams Aug 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20120259337 del Rio et al. Oct 2012 A1
20120277730 Salahich et al. Nov 2012 A1
20120289971 Segermark et al. Nov 2012 A1
20130023865 Steinke et al. Jan 2013 A1
20130035692 Sorensen et al. Feb 2013 A1
20130072787 Wallace et al. Mar 2013 A1
20130184549 Avitall et al. Jul 2013 A1
20130211221 Sunnarborg et al. Aug 2013 A1
20130223798 Jenner et al. Aug 2013 A1
20130223801 Bhagavatula et al. Aug 2013 A1
20130255069 Higashi et al. Oct 2013 A1
20130266259 Bhagavatula et al. Oct 2013 A1
20130287282 Yokota et al. Oct 2013 A1
20130317519 Romo et al. Nov 2013 A1
20130325003 Kapur et al. Dec 2013 A1
20130331819 Rosenman et al. Dec 2013 A1
20140005534 He et al. Jan 2014 A1
20140046250 Jain et al. Feb 2014 A1
20140128893 Guggenheimer et al. May 2014 A1
20140187949 Zhao et al. Jul 2014 A1
20140222042 Kessler et al. Aug 2014 A1
20140222047 Vreeman Aug 2014 A1
20140275996 Stigall Sep 2014 A1
20140291985 Cabrera et al. Oct 2014 A1
20140371718 Alvarez et al. Dec 2014 A1
20150025310 Everingham et al. Jan 2015 A1
20150141816 Gupta et al. May 2015 A1
20150320975 Simpson et al. Nov 2015 A1
20150327866 Eckhouse et al. Nov 2015 A1
20160008025 Gupta et al. Jan 2016 A1
20160038030 Smith et al. Feb 2016 A1
20160144155 Simpson et al. May 2016 A1
20160262839 Spencer et al. Sep 2016 A1
20170238803 Kankaria Aug 2017 A1
20170238808 Simpson et al. Aug 2017 A1
20180042520 Patel et al. Feb 2018 A1
20180207417 Zung et al. Jul 2018 A1
20190021679 Christensen Jan 2019 A1
20190021760 Newhauser et al. Jan 2019 A1
20190029714 Patel et al. Jan 2019 A1
20190110809 Rosenthal et al. Apr 2019 A1
20190209206 Patel et al. Jul 2019 A1
20190313941 Radjabi Oct 2019 A1
20200029801 Tachibana et al. Jan 2020 A1
20200060718 Patel et al. Feb 2020 A1
20200069253 Black et al. Mar 2020 A1
20200069327 Patel et al. Mar 2020 A1
20200315654 Patel et al. Oct 2020 A1
20200323553 Fernandez et al. Oct 2020 A1
20210177262 Spencer et al. Jun 2021 A1
20210345903 Patel et al. Nov 2021 A1
20220039828 Patel et al. Feb 2022 A1
20220168011 Patel et al. Jun 2022 A1
20220273336 Fernandez et al. Sep 2022 A1
20220273337 Patel et al. Sep 2022 A1
20230225616 Patel et al. Jul 2023 A1
Foreign Referenced Citations (94)
Number Date Country
1875242 Dec 2006 CN
1947652 Apr 2007 CN
101601581 Dec 2009 CN
103027727 Apr 2013 CN
104968285 Oct 2015 CN
202006018883.5 Feb 2007 DE
0347098 Dec 1989 EP
0808638 Nov 1997 EP
0845692 Nov 2005 EP
1859732 Nov 2007 EP
2090245 Aug 2009 EP
2353526 Sep 2013 EP
3446648 Feb 2019 EP
S62-275425 Nov 1987 JP
03502060 Feb 1990 JP
H05501065 Mar 1993 JP
05103763 Apr 1993 JP
06027343 Feb 1994 JP
H07184888 Jul 1995 JP
07308393 Nov 1995 JP
2002214127 Jul 2002 JP
2004509695 Apr 2004 JP
2004516073 Jun 2004 JP
2005114473 Apr 2005 JP
2005230550 Sep 2005 JP
2005249704 Sep 2005 JP
2005533533 Nov 2005 JP
2008175698 Jul 2006 JP
2006288775 Oct 2006 JP
2006313158 Nov 2006 JP
2006526790 Nov 2006 JP
2006326157 Dec 2006 JP
200783053 Apr 2007 JP
200783057 Apr 2007 JP
2007225349 Sep 2007 JP
2007533361 Nov 2007 JP
2008023627 Feb 2008 JP
2008128708 Jun 2008 JP
2008145376 Jun 2008 JP
2008183208 Aug 2008 JP
2008253492 Oct 2008 JP
200914751 Jan 2009 JP
2009509690 Mar 2009 JP
200978150 Apr 2009 JP
2009066252 Apr 2009 JP
2009201969 Sep 2009 JP
2010042182 Feb 2010 JP
2010518900 Jun 2010 JP
2011521747 Jul 2011 JP
2012143558 Aug 2012 JP
2012229976 Nov 2012 JP
2012533353 Dec 2012 JP
2013512736 Apr 2013 JP
2013524930 Jun 2013 JP
2015533584 Nov 2015 JP
2016508758 Mar 2016 JP
20070047221 May 2007 KR
2185859 Jul 2002 RU
2218191 Dec 2003 RU
WO9117698 Nov 1991 WO
WO9923958 May 1999 WO
WO0054659 Sep 2000 WO
WO0115609 Mar 2001 WO
WO0176680 Oct 2001 WO
WO2006133030 Dec 2006 WO
WO2008005888 Jan 2008 WO
WO2008029506 Mar 2008 WO
WO2008042987 Apr 2008 WO
WO2008051951 May 2008 WO
WO2008065600 Jun 2008 WO
WO2008086613 Jul 2008 WO
WO2008087613 Jul 2008 WO
WO2008151155 Dec 2008 WO
WO2009005779 Jan 2009 WO
WO2009006335 Jan 2009 WO
WO2009009799 Jan 2009 WO
WO2009009802 Jan 2009 WO
WO2009023635 Feb 2009 WO
WO2009024344 Feb 2009 WO
WO2009094341 Jul 2009 WO
WO2009140617 Nov 2009 WO
WO2009148317 Dec 2009 WO
WO2010039464 Apr 2010 WO
WO2010056771 May 2010 WO
WO2011044387 Apr 2011 WO
WO2011062087 May 2011 WO
WO2012057940 May 2012 WO
WO2012061935 May 2012 WO
WO2012123737 Sep 2012 WO
WO2012166332 Dec 2012 WO
WO2013033490 Mar 2013 WO
WO2013056262 Apr 2013 WO
WO2014077870 May 2014 WO
WO2014093148 Jun 2014 WO
Non-Patent Literature Citations (39)
Entry
Tachibana et al.; U.S. Appl. No. 17/645,722 entitled “Atherectomy catheter drive assemblies,” filed Dec. 22, 2021.
Black et al.; U.S. Appl. No. 17/652,073 entitled “Optical coherence tomography for biological imaging,” filed Feb. 22, 2022.
Patel et al.; U.S. Appl. No. 17/762,815 entitled “Atherectomy catheter with shapeable distal tip,” filed Mar. 23, 2022.
Patel et al.; U.S. Appl. No. 17/763,810 entitled “Occlusion-crossing devices,” filed Mar. 25, 2022.
Patel et al.; U.S. Appl. No. 17/816,673 entitled “Atherectomy catheter with serrated cutter,” filed Aug. 1, 2022.
Aziz et al.; Chronic total occlusions—a stiff challege requiring a major breakthrough: is there light at the end of the tunnel?; Heart; vol. 91; suppl. III; pp. 42-48; Jun. 2005.
Bayer Material Science: ; Snap-Fit Joints for Plastics; 26 pages; retrieved from the Internet: ( https://web.archive.org/web/20121119232733if_/http://fab.cba.mit.edu:80/classes/S62.12/people/vemelle.noel/Plastic_ Snap_fit_design.pdf) on Sep. 26, 2018.
Choma et al.; Sensitivity advantage of swept source and fourier domain optical coherence tomography; Optics Express; 11(18); pp. 2183-2189; Sep. 8, 2003.
De Boer et al.; Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography; Optics Letters; 28(21); pp. 2067-2069; Nov. 2003.
Emkey et al.; Analysis and evaluation of graded-index fiber-lenses; Journal of Lightwave Technology; vol. LT-5; No. 9; pp. 1156-1164; Sep. 1987.
Gonzalo et al.; Optical coherence tomography patterns of stent restenosis; Am. Heart J.; 158(2); pp. 284-293; Aug. 2009.
Han et al.; In situ Frog Retina Imaging Using Common-Path OCT with a Gold-Coated Bare Fiber Probe; CFM6; San Jose, California; CLEO, May 4, 2008; 2 pages.
Leitgeb et al.; Performance of fourier domain vs time domain optical coherence tomography; Optics Express; 11(8); pp. 889-894; Apr. 21, 2003.
Linares et al.; Arbitrary single-mode coupling by tapered and nontapered grin fiber lenses; Applied Optics; vol. 29; No. 28; pp. 4003-4007; Oct. 1, 1990.
Muller et al.; Time-gated infrared fourier-domain optical coherence tomography; CFM5; San Jose, California; CLEO May 4, 2008; 2 pages.
Rollins et al.; Optimal interferometer designs for optical coherence tomography; Optics Letters; 24(21); pp. 1484-1486; Nov. 1999.
Schmitt et al.; A new rotational thrombectomy catheter: System design and first clinical experiences; Cardiovascular and Interventional Radiology; Springer-Verlag; 22(6); pp. 504-509; Nov. 1, 1999.
Sharma et al.; Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography; Rev. Sci. Instrum.; vol. 78; 113102; 5 pages; Nov. 6, 2007.
Sharma et al.; Optical coherence tomography based on an all-fiber autocorrelator using probe-end reflection as reference; CWJ13; San Francisco, California; CLEO May 16, 2004; 4 pages.
Shinkle et al.; Evaluation of stent placement and outcomes with optical coherence tomography; Interv. Cardiol.; 2(4); pp. 535-543; (manuscript version, 12 pages); Aug. 2010.
Stamper et al.; Plaque characterization with optical coherence tomography. Journal of the American College of Cardiology. 47(8); pp. 69-79; Apr. 18, 2006.
Suparno et al.; Light scattering with single-mode fiber collimators; Applied Optics; vol. 33; No. 30; pp. 7200-7205; Oct. 20, 1994.
Tanaka et al.; Challenges on the frontier of intracoronary imaging: atherosclerotic plaque macrophage measurement by optical coherence tomography; Journal of Biomedical Optics; 15(1); pp. (011104-1)-(011104-8); Jan.-Feb. 2010.
Wang et al.; Common-path endoscopic Fourier domain OCT with a reference Michelson interferometer; Proceedings of the SPIE; vol. 7566; pp. 75660L-75660L-7; Jan. 2010.
Patel et al.; U.S. Appl. No. 16/801,047 entitled “Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters,” filed Feb. 25, 2020.
Spencer et al.; U.S. Appl. No. 16/943,446 entitled “Catheter-based off-axis optical coherence tomography imaging system,” filed Jul. 30, 2020.
Patel et al.; U.S. Appl. No. 17/046,066 entitled “Occlusion-crossing devices,” filed Oct. 8, 2020.
Simpson et al.; U.S. Appl. No. 17/075,548 entitled “Identification of elastic lamina to guide interventional therapy,” filed Oct. 20, 2020.
Patel et al.; U.S. Appl. No. 17/347,419 entitled “Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters,” filed Jun. 14, 2021.
Gupta et al.; U.S. Appl. No. 17/445,648 entitled “Tissue collection device for catheter,” filed Aug. 23, 2021.
Simpson et al.; U.S. Appl. No. 17/449,867 entitled “Occlusion-crossing devices, imaging, and atherectomy devices,” filed Oct. 4, 2021.
Spencer et al.; U.S. Appl. No. 17/449,895 entitled “Occlusion-crossing devices, atherectomy devices, and imaging,” filed Oct. 4, 2021.
Patel et al.; U.S. Appl. No. 17/455,655 entitled “Atherectomy catheter with shapeable distal tip,” filed Nov. 18, 2021.
Merriam Webster; Proximal (Definition); 10 pages; retrieved from the internet (https://www.merriam-webster.com/dictionary/proximal) on Jun. 9, 2021.
Wikipedia; Hinge; 4 pages; retrieved from the internet (https://en.wikipedia.org/w/index.php?title=Hinge&oldid=479569345) on Jun. 9, 2021.
Smith et al.; U.S. Appl. No. 17/189,123 entitled “Optical pressure sensor assembly,” filed Mar. 1, 2021.
Kankaria; U.S. Appl. No. 17/209,162 entitled “Optical coherence tomography with graded index fiber for biological imaging,” filed Mar. 22, 2021.
Newhauser et al.; U.S. Appl. No. 17/209,168 entitled “Occlusion-crossing devices,” filed Mar. 22, 2021.
Rosenthal et al.; U.S. Appl. No. 18/337,852 entitled “Atherectomy catheter with laterally-displaceable tip,” filed Jun. 20, 2023.
Related Publications (1)
Number Date Country
20210076949 A1 Mar 2021 US
Continuations (2)
Number Date Country
Parent 15854579 Dec 2017 US
Child 16941310 US
Parent 14776750 US
Child 15854579 US