CHUCK FOR APPARATUS FOR MACHINING A TUBULAR ROTATING WORKPIECE

Abstract
The invention relates to a chuck (1) for a machine tool for machining a tubular workpiece (26) which rotates about a rotational axis that coincides with the centre of the chuck, comprising at least two chucking slides (7a, b, c) that are designed to be positionable radially with respect to the rotational axis in order to release and chuck the workpiece, are arranged on the end side of and in a manner distributed uniformly around the circumference of a chuck head plate, and bear chucking jaws (8a, b, c). Such a chuck is intended to be created with improved operating characteristics and extension to all chucking functions. To this end, for the external central chucking of a tube (26), there are provided centring slides (27a, b, c) which can be disengaged from the chuck head plate with a forward inclination towards the end of the tube to be machined and centre the tube by means of chucking claws (29) which are arranged at the front, free end of centring slide rods (28), said centring slides (27a, b, c) engaging via a toothed rod section (34) into a toothing (35) of a drive means assigned to each centring slide, and meshing for their part, on a toothing side (37) parallel to the side with the toothing, with a central toothed wheel (33) arranged concentrically with the rotational axis, wherein the central toothed wheel (33) synchronizes the movements of all the centring slides (27a, b, c).
Description

The invention relates to a chuck for an apparatus for machining a tubular workpiece rotating about an axis that coincides with the center of the chuck, comprising at least two jaw slides that are designed to be positionable radially with respect to the rotation axis in order to release and grip the workpiece, and are mounted on an end face of and angularly equispaced on a chuck head plate.


An apparatus for machining tube ends, in particular for cutting threads in a tubular workpiece rotating about an axis, is known from DE 10 2009 053 679. The tube thread is generally manufactured at the tube end of the chucked tubular workpiece or tube for a one-time run-over of the tools commonly arranged in a turret head, the movements of the tools being controlled numerically. To chuck the tube, a machining apparatus has a front end chuck—where the turret head is employed with the tools—and a rear end chuck at the rear, both chucking the tube concentrically with respect to the rotation axis. A machining center with a minimum of two opposing machining apparatuses is equipped with four chucks. Both the front end chuck and the rear end chuck preferably have three jaw slides with jaws.


Such thread-cutting machines with a rotating tube and turret heads with fitted tools that are controlled via NC axes, require machining multiple chucking functions. The tubes must be able to be chucked compensating—first—centrally, with direct orientation toward the center of the machine, and—secondly—with adjustment to, thirdly, eccentrically chucked tubes. By external centered chucking is meant an additional chucking of the tube ends protruding from the front end chuck in the area of or close to the subsequently to be manufactured thread. This is accompanied by a compensating chucking by means of the jaw slides of the front end chucks if the jaw slides can be applied to the tube that is somewhat curved over the length, where applicable, in a compensating manner and thus not exactly centrally. Thus, such front end chucks are very complex and the chucking and releasing of the jaw slides or the jaws carried by them is implemented via wedge systems with rectangular redirection parallel to the center or rotation axis of the chuck, for the embodiment forms known in the field. This entails large diameters and lengths of the chucks with a respectively large mass, which is disadvantageous for operation.


The object of the invention is therefore to provide a chuck, particularly a front end chuck, of the type described above with improved operational characteristics for centered, compensating and eccentric chucking, where front and rear end chucks can be have with the same parts and a front end chuck can be supplemented or modified with the functions of centered and compensating chucking by an integrated external centered chucking system.


This object is solved according to the invention in that for the external centering chucking of a tube, there are centering slides that have centering slide rods axially forwardly and radially inwardly shiftable from a chuck head plate toward the end of the tube to be machined so as to center the tube by jaws at their front ends, respective racks of the slides engaging with teeth on one side of respective drives and each also meshing with teeth on an opposite side parallel to the one side with a central gear mounted concentrically with the rotation axis such that the central gear synchronizes movements of all the centering slides. By coupling all of the three present centering slides via their drives with the central gear common to them, the centering slides are synchronously moved forward with the fitted jaws during application of the drives, and will always chuck a tube centrally in an area upstream of the thread to be cut, i.e. the jaws will attach exactly to the tube shortly before the tube end. Therefore, the free chucking length of the tube, which protrudes from the jaws of the centering slides, is very small, which facilitates precise cutting of the thread.


A preferred suggestion of the invention provides that the drives of the centering slides are designed as hollow cylinders each provided internally with a piston provided that is acted upon by pressure and that has a supply rod for means at its two pressure sides with the supply rods for pressure extending out from the ends of the hollow cylinder, the hollow cylinder thus sliding toward the one or the other side above the respective piston during pressurization of the one or the other piston side of the piston and in doing so, pulls in the centering slide or pushes it out toward the front to chuck the tube. This achieves a compact design for the arrangement or mounting of the externally center slides in or onto the chuck.


An easy assembly results from enclosing the centering slide rods in a housing sleeve—which is provided with a mounting flange at its front end that is remote from the tooth rod section of the centering slides—to attach the chucking head plate with a mounting flange. The centering slides can be inserted with their centering rods from the front into the chuck head plate and subsequently bolted to such plate via the mounting flange.


According to a preferred embodiment of the invention, the centering slides are provided in addition to above-described slides, so that every jaw slide is associated with a cross slides provided in the head plate movable tangentially to the rotation axis and acted upon by positioning means, on the one hand, and with separate, gears meshing with the racks, on the other hand, whereby each jaw slide is provided with a follower claw at its bottom side that serves to redirect the positioning movement of the cross slide into a movement of the jaw slide that is perpendicular with respect to the rotation axis, and is engaged with a link-type guide groove provided in the slide block of the cross slide, and whereby the gears are associated with an axial coupling pinion that can be inserted or released axially to the rotation axis. Thus, a chuck can be achieved, particularly a front end chuck that concentrates and unifies any desired chucking functions, i.e. including external centered chucking, into the chuck itself. In doing so, a redirection of movement is possible without wedge systems and parallel to the center of the chuck via engaging of the cross slide that is acted upon by positioning means, with the jaw slides on the plane of the head plate, immediately perpendicular with respect to the rotation axis. This results in less mass accompanied by increased dynamics as well as shortened start-up and slow-down times of the unavoidable cycles after every machining. During chucking and releasing of the tube, large areas—that is, those of the follower claw and the guide groove, in which the follower claw is displaced in a forced-guided way during positioning movements of the cross slides in a form-fit sliding manner—transfer high forces with favorable contact pressure. The centered and compensating and externally centered chucking does not require any enlarging of the design height or design length of the chuck. Centered chucking is implemented via the separate gears connected with one jaw slide whose synchronous operation and thus that of the three gears, as well, guarantees the inserted coupling pinion, whereas a balanced chucking is facilitated with a disengaged coupling pinion.


An advantageous suggestion of the invention provides that insertable and disengageable coupling pinions are engaged with all three gears in the inserted final position and with only one gear in the disengaged final position. Inserting and disengaging of the coupling pinion can be implemented manually, freely accessible from the front end of the chuck or the head plate, whereby all three slide systems and the associated gears move independently from one another with the coupling pinion disengaged to fit off-centered to and chuck the tube.


In an advantageous continued development of the invention, the cross slide and the jaw slide cross one another at an acute pressure angle of between a tangent and the travel path of the follower claw and guide groove, which is transferred to a positioning stroke of the cross slide with reduction to the positioning stroke of the cross slide. If such angle is 30°, a reduction of 1 to 2 (the sine of 30° corresponds to 0.5) can be achieved, which facilitates fast chucking and releasing.


According to one configuration of the invention, a cylinder is provided as positioning means of the cross slides so that the slide block of the cross slides is connected via a piston rod with the cylinder piston. The required movement during chucking and releasing can therefore be easily performed.


According to an advantageous suggestion of the invention, an indicator bolt is provided in the chuck head plate extending axially parallel to the coupling pinion is linked to move synchronously with the coupling pinion, and visible from the outside by its front end section in the head plate and identifying the inserted and disengaged positions of the coupling pinion. The machine operator thus always has knowledge of the current functional position of the coupling pinion and can insert or disengage the coupling pinion, depending on the machining requirement (centered with direct alignment to the center of the machine or balanced chucking).





Further features and details of the invention are described in the claims and the following description of embodiments shown in the drawings, in which:



FIG. 1 is a perspective front view, of part of a machining apparatus;



FIG. 2 shows a chuck as shown supplemented by way of contrast or in combination with centering slides that can be extended at an angle to the front for centered concentered chucking of the tube close to a thread to be cut;



FIG. 3 shows only the arrangement of the centering slides with coupling via teeth with a centered gear wheel, as a detail of the chuck according to FIG. 2 in perspective view;



FIG. 4 is a longitudinal section through a centering slide with meshing of the drive and the central toothed gear, as a detail of FIG. 3;



FIG. 5 is a perspective sectional view of the chuck of FIG. 1;



FIG. 6 is a rear schematic view like FIG. 5 of the chuck as a principal outline with association of the cross slides to the is jaw slides in an inclined position crossing one another at a pressure angle;



FIG. 7 shows the chuck of FIG. 1 in a longitudinal section, approximately along line VII-VII [of FIG. 1]; and



FIG. 8 shows a longitudinal cross view through a coupling pinion that can be inserted into and disengaged from three separate gears that are connected separately with respective jaw slides, as partial view of the chuck of FIG. 1 or FIG. 2.





A chuck 1 of a machining apparatus for cutting threads or threaded connections at tube ends is shown in FIG. 1. It consists of a head plate 2 having a rear face carrying a housing ring 3. To accept a tubular workpiece 26 to be machined (FIG. 2), the chuck 1 has a central throughgoing passage 4 whose center axis 5 coincides with a rotation axis of the rotating tube in the chuck. Three movable jaw slides 7a, 7b, and 7c with covers 6 and respective jaws 8a, 8b, and 8c are carried on a front face of the head plate 2, angularly equispaced about and radially equispaced from the center chuck axis 5 for bearing on the tube radially inwardly toward the center rotation axis 5 (FIG. 6).


To position the jaw slides 7a, 7b, and 7c with the respective jaws 8a, 8b, and 8c radially relative to the rotation axis 5 of the chuck 1, each jaw slide 7a, 7b, and 7c is associated with a respective cross slide 9a, 9b, and 9c shiftable tangentially to the chuck axis 5 and set in the head plate. As can be gathered from FIG. 5, these cross slides each have of a hydraulic cylinder 10 for positioning and a slide block 11 that are each formed as a rack 12 along one longitudinal edge and each connected via a respective piston rod 13 with a respective piston 14. For actuating the cylinder pistons 14, the hydraulic cylinders 10 have connections 15 (FIG. 1) to an unillustrated pressure supply.


The slide blocks 11 each have a back face lying in the section plane of FIG. 5 and an opposite front face (see FIG. 6) formed with an angled guide groove 16 extending at an angle 18 of preferably 30° to the tangential axis of the respective block and in which engage respective follower claws 17 of the jaw slides 7a, 7b, and 7c. Pressurization of the hydraulic cylinders 10 pushes the follower claws 17 by means of the guide grooves 16 so the jaws 8a, 8b, and 8c are shifted with the respective the jaw slides 7a, 7b, and 7c radially inward toward the chuck axis 5. The inclined extension with pressure angle 18 facilitates a fast, short positioning stroke of the jaws 8a, 8b, and 8c, of for example 50 mm with movement of the cross slides 9a, 9b, and 9c through a positioning stroke of 25 mm.


The cross slides 9a, 9b, and 9c are associated with respective gears 19a, 19b, and 19c (FIG. 8) in the chuck 1 that are concentric with the passage 4 and axially stacked with only the outer or front gear 19a visible in FIG. 5. The hydraulic cylinders 10 are thus coupled by the racks 12 of their slide blocks 11 with the respective gears 19a, 19b, and 19c. The gears 19a, 19b, and 19c can mesh with a coupling pinion 20 that is insertable and disengageable axially with respect to the chuck axis 5 (FIGS. 5 and 8), meshing in an inserted position with all the gears 19a, 19b, and 19c for synchronous movement of the three gears 19a, 19b, and 19c and thus of the jaw slides 7a, 7b, and 7c to centrally chuck a tube.


If, on the other hand, a compensating chucking is to be implemented, coupling pinion 20 is disengaged and subsequently engages only with one gear 19a, which is the outer one. Therefore, all three slide systems can move independently with the respectively connected gears, adjust to the tube off-center and chuck the tube.


As can be gathered from the partial section of the chuck shown in FIG. 8, an indicator bolt 21 is extends axially parallel to coupling pinion 20 and connected by a rod or link 22 with coupling pinion 20 to shift axially synchronously therewith. The coupling pinion 20 can be engaged or disengaged manually in the illustrated embodiment using threaded bolts 23, with the indicator bolt 21 shifting inward or outward so that a front end 24 indicates the current position, engaging into a recess (borehole) 25 of the chuck head plate 2 either more (coupling pinion 20 engaged with all gears 19a, 19b, and 19c) or less (coupling pinion 20 only meshed with the upper or front gear 19a).


The chuck 1 of FIGS. 1 and 5 to 8 is suitable both as a rear end and front end chuck and fulfils the required chucking functions of a centering chuck with direct alignment to the machine center and/or a compensating chucking of the tube to be machined.


If the chuck 1 of FIGS. 2 to 4 is also formed or combined with integrated centering jaw slides 27a, 27b, and 27c, the chuck 1 further combines the centering chucking of the tube 26 close to the thread being cut, maintaining the same mounting parts. Other external chucks are then no longer required.


As can be gathered from FIGS. 2 to 4, the three centering slides 27a, 27b, and 27c pass have respective centering slide rods inclined toward the tube 26 from the ring housing 3 and that pass forwardly through the chuck head plate 2. These centering rods 28 carry height-adjustable jaws 29 at their front, free ends and are each surrounded by a respective housing sleeve 30 having a mounting flange 31 that is fixed (bolted) in the chuck head plate 2.


The centering slides 27a, 27b, and 27c are coupled by respective drives 32a, 32b, and 32c with a central gear 33 that synchronizes the movements of the centering slides 27a, 27b, and 27c and that is located in the housing 3 of the chuck 1 behind the gears 19a, 19b, and 19c of the jaw slides 7a, 7b, and 7c of the chuck 1. For synchronous movement, the centering slides 27a, 27b, and 27c mesh with the respective drives 32a, 32b, and 32c that in turn mesh with the center gear 33. To this end, teeth 34 formed on each of the centering slide rods 27 [28] meshes through a cutout of the housing sleeve 30 of the respective centering slide 27a, 27b, and 27c (cf. FIG. 4) with angled teeth 35 on one side of the respective drive 32a, 32b, and 32c that are formed as hollow cylinders 36 while teeth 37 parallel to toothing 35 on an opposite side of the hollow cylinder 36 mesh with the center gear 33 (cf. FIG. 3).


Pistons 38 in the cylinders 36 of the drives 32a, 32b, and 32c can be locked in place by pressure, while still permitting linear movement of the respective hollow cylinders 36, so as to set the position of the respective slide rods 27a, 27b, and 27c and shift it outward or withdraw it toward the chuck head plate 2. For application of pressure and thus relative shifting of the hollow cylinders 36 relative to their pistons 38, pressure supply rods 39a and 39b extend from both ends of the piston 38 through the front ends of the respective cylinder 36 up to the wall of housing 3 of the chuck 1, via which the drives 32a, 32b, and 32c or their hollow cylinders 36 can be connected to a pressure means supply (not shown).












Reference list:


















 1
Chuck



 2
Head plate



 3
Housing ring/housing



 4
Throughgoing passage



 5
Center (of jaw)/axis of a chucked tube



 6
Cover/housing



 7a-c
Jaw slides



 8a-c
Jaws



 9a-c
Cross slide



10
Hydraulic cylinder



11
Slide block



12
Toothing rod



13
Piston rod



14
Cylinder piston



15
Connection for pressure means



16
Link-type guide groove



17
Follower claw



18
Pressure angle



19a-c
Gear



20
Coupling pinion



21
Indicator bolts



22
Carrier/rod



23
Screw thread bolt



24
End section (of the indicator bolt)



25
Recess (drilling in head plate)



26
Tube



27a-c
Centering slides



28
Centering slide rod



29
Clamping jaw



30
Housing sleeve



31
Mounting flange



32a-c
Drives



33
Central gear



34
Rack section/tooth-rod section



35
Toothing



36
Hollow cylinder



37
Parallel toothing side



38
Piston



39a-b
Supply rod for pressure means









Claims
  • 1. A chuck (1) for an apparatus for machining a tubular workpiece (26) rotating about an axis (4) that coincides with the center of the chuck, comprising at least two jaw slides (7a, 7b, and 7c) that are positionable radially with respect to the rotation axis (4) in order to release and grip the workpiece, are mounted on an end face of and angularly equispaced on a chuck head plate (2), and carry respective jaws (8a, b, c), wherein, for the external centering chucking of a tube (26), there are centering slides (27a, 27b, and 27c) that have centering slide rods (28) axially forwardly and radially inwardly shiftable from a chuck head plate (2) toward the end of the tube to be machined so as to center the tube (26) by jaws (29) at their front ends, respective racks (34) of the slides (27a, 27b, and 27c) engaging with teeth (35) on one side of respective drives (32a, 32b, and 32c) and each also meshing with teeth (37) on an opposite side parallel to the one side with a central gear (33) mounted concentrically with the rotation axis (5) such that the central gear (33) synchronizes movements of all the centering slides (27a, 27b, and 27c).
  • 2. The chuck according to claim 1, wherein the drives (32a, 32b, and 32c) of the centering slides (27a, 27b, and 27c) are formed as hollow cylinders (36) each provided internally with a piston (38) acted upon by pressure and having pressure supply rods (39a, b) at both pressure sides, the pressure supply rods (39a, b) extending from the ends of the hollow cylinder (36) for connection to a pressure supply source such that, upon pressurization of the one or other piston side of piston (38), the hollow cylinder (38) shifts the piston (38) toward the one or the other side and in doing so axially advances or retracts the respective centering slide (27a, 27b, and 27c) relative to the chucked tube (26).
  • 3. The chuck according to claim 1, wherein centering slide rods (28) are each enclosed by a housing sleeve (30) provided with a mounting flange (31) at its front end remote from the rack (34) of respective centering slide rod (28) for mounting in the chuck head plate (2).
  • 4. The chuck according to claim 1, wherein centering slides are each associated with a respective jaw slides that each is associated with a respective cross slide that is provided in the head plate movable tangentially to the rotation axis and applied with positioning means, on the one hand and having a slide block on one longitudinal side as a rack in turn meshing with respective separate, gears, each jaw slide being provided with a follower claw at its bottom side that serves to redirect the movement of the respective cross slide into a movement of the jaw slide radially of the rotation axis and that is engaged with a link-type guide groove provided in the respective slide block of the respective cross slide, the gears being associated with an axial coupling pinion that can be inserted or disengaged axially with respect to rotation axis.
  • 5. The chuck according to claim 4, wherein the cross slides and the jaw slides are arranged cross one another at a pressure angle of the follower claw and the guide groove, the angle converting a positioning stroke of each of the cross slides with reduction to a positioning stroke of the respective jaw slide.
  • 6. The chuck according to claim 4, wherein the insertable and disengageable coupling pinions is engaged with all three gears in and inserted end position, and only with one gear in a disengaged end position.
  • 7. The chuck according to claim 1, wherein a respective cylinder as the positioning means of each of the cross slides whose slide blocks are connected via respective piston rods with respective pistons.
  • 8. The chuck according to claim 1, wherein an indicator bolt is mounted in the chuck head plate, extending axially parallel to the coupling pinion and shifting synchronously therewith with its front end section in head plate visible from the outside, and identifying an inserted or disengaged position of the coupling pinion.
  • 9. A chuck for holding a tubular workpiece, the chuck comprising: a chuck body rotatable about a chuck axis and having an axially directed end plate;a plurality of chuck jaws angularly equispaced about and radially equispaced from the axis on the front plate;respective means for radially shifting the chuck jaws front plate for gripping and releasing a workpiece at the axis;a plurality of elongated centering slides angularly equispaced about the axis and each having a radially inwardly directed edge formed with a row of teeth a radial outer edge formed with a row of teeth;a common ring gear meshing with the inner-edge teeth of all of the centering slides;respective centering rods seated in the chuck body and each extending axially past the front plate at an acute angle to the chuck axis, and having axially front and rear ends of which the front end is more closely juxtaposed with the chuck axis than the respective rear end;respective centering jaws carried on the front ends; andrespective rows of teeth on radial inner edges of the centering rods meshing with the outer-edge teeth of the centering slides.
  • 10. The chuck defined in claim 9, wherein there are three such chuck jaws, centering jaws, centering slides, and centering rods with the chuck jaws angularly interleaved with the centering jaws.
Priority Claims (1)
Number Date Country Kind
10 2011 117 881.7 Nov 2011 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2012/004217 10/9/2012 WO 00 3/25/2014