Reference will now be made to the attached drawings, when read in combination with the following detailed description, wherein like reference numerals refer to like parts throughout the several views, and in which:
Referring now to
Additional features of the work holder assembly include a fixed central sleeve 16, about which is rotatably supported a collet assembly 18. A rotary support collar 20 is provided in interdisposed fashion between the fixed sleeve 16 and the collet 18 and, with the provision of inner and outer bearings, such as shown at 22 and 24 respectively, facilitate rotation of the collet 18.
The collet typically supports the workpiece to be machined and includes an annular shaped end cover plate 26 such as typically secured to the collet 18 by fasteners 27. Without limitation, it is also contemplated that the work holder assembly may function in a non-rotating embodiment, and such as by it securing a stationary workpiece for machining by a moving tool.
The collet 18 supports a plurality of clamps in independent and typically circumferentially arrayed fashion about a periphery of the workpiece 12. Each clamp includes a subassembly consisting of a linearly displaceable and biased (e.g. spring loaded) pin, see at 28 and 30, which coacts with associated and radially displaceable locking pins, see further at 32 and 34, these being actuated into locking position with circumferential locations associated with the workpiece 12.
As is further referenced by the end/bottom view of
A feature associated with each clamping assembly is the incorporation of a wedge-shaped interface between the linearly displaceable (wedge) pins, 28 and 30 and coacting radially displaceable lock pins 32 and 34. As illustrated in
It is contemplated that the linear displaceable pins may each or selectively be pre-biased in a given (locking) direction through the incorporation of a mechanical bias. Alternatively, the linearly traversable pins may be actuated by a pressurized fluid source, and as will be subsequently described, may operation in conjunction or separately from a spring loading component associated with the linearly traversable pin (see pin 30 in
Referencing
A threaded adjustment bolt 44 extends from an end of the pin 28 opposite the radially traveling component (or associated lock pin 32) and in order to define a range of adjustment or travel of the lock pin 32 (within the overall range specified by the recessed surface). The head of the bolt 44 is shown shouldered against a fixed end wall surface 46 against which an inner end of the pin 28 abuts, further such that the threaded shaft end can be rotatably interengaged relative to an interior pocket 46 defined in linearly extending direction within the pin 28 and in order to define a range of actuation of (each of) the linearly traversable pins.
The linear traversable pin 28 exhibits an arcuate projecting end portion, see at 48. The corresponding radial traveling lock pin 32 further exhibits a recessed interior 50, see as shown in the cutaway of
The ability to clamp a workpiece at as many contact points as possible, combined with the incorporation of a wedge or irregular shaped coaction between respective linear and radial displaceable components associated with each clamp, renders possible the application of a minimal force to clamp a part, while still locking that part into position, this again due to increasing the number of contact points with the workpiece. The further advantage derived from this arrangement is the reduction or avoidance of part deformation resulting from extreme clamping forces (a significant problem with in particular thin-walled workpieces).
The wedge arrangement illustrated by the arcuate projecting end 48 of associated linear pin 28 illustrates only one arrangement, it being understood that other wedge, cam or irregular surface designs can be incorporated into an interface between the linear 28 and radial 30 clamp elements, and in order to achieve the above-discussed objectives, while preventing the tooling from backdriving the radial lock pins and linear slide pins out of contact with the workpiece 12.
A fluid pressure supply tube 52 extends through a central location associated with the fixed sleeve portion 16 of the chuck. An outermost extending pressure supply nozzle 54 (embedded within the body of the chuck assembly 10) is in fluidic communication with the collet through a fluid delivery component, see at 56, this in turn being in communication with the fluid supply tube 52 via a fluid conducting passageway 58. Referencing in particular
In the initial engagement condition referenced in
A common manifold can be incorporated into the collet 18, and which may include such as the rotary support collar 20 feeding pressurized fluid from an exterior source (not shown) to individual fluid delivery components (or a modified single delivery component communicable with all of the linear actuating sliding pins associated in turn with all of the annularly arrayed clamps). The use of hydraulic or pneumatic actuation can precisely balance clamping forces through the use of a common manifold and allows pressure to build uniformly over all of the sliding pins and associated, wedge actuated, lock pins in a manner such that pressure progressively diverts to each lock pin not yet in contact with the part and until all pins are gripping the workpiece. At that point, a uniform clamping force is achieved regardless of the contour of the part being gripped.
If the part tolerances allow, other types of spring or mechanical actuation can be employed, as they do import some deformation based on large irregularities and this may in fact be desirable in certain applications. However, and due to the reduced forces required for clamping the workpiece, the present design generates pressure equal to or greater than that achieved with only a few large clamps, with resulting reduced deformation.
Referring further to
In this manner, fluid pressure is directed (or redirected) to operate in at least one of a clamping and an actuated release condition, whereby the fluid pressure is applied in one possible variant to overcome a spring loading forced applied to the linearly traveling pin (such as illustrated at 28) to release actuate the locking pin 32. Alternatively, the fluid pressure can be applied in switching fashion between fluid driven clamping and fluid driven release conditions in the absence of any type of mechanical holding or biasing arrangement, including again spring loading of the linear slidable pins.
Referring now
The construction of the clamps, including in particular the spring loaded nature of the linearly traversable sliding pins 74 and 76 as well as the provision of the adjustable end screws and the displacement range defining side apertures is similar to that shown and described in the initially disclosed embodiment of
A series of fluid passageways (not illustrated in this embodiment) extend from locations associated with the nozzle 86 to distant locations either the workpiece or associated and radially directed lock pins 78 and 80 (see as shown at 88 and 90 in
Having described my invention, other and additional preferred embodiments will become apparent to those skilled in the art to which it pertains, and without deviating from the scope of the appended claims.
Number | Date | Country | |
---|---|---|---|
60840069 | Aug 2006 | US |