The present invention relates to a chute for a cement truck and a method of fabricating a chute for a cement truck. In particular, the present invention relates to a chute for a cement truck fabricated from UHMWPe.
The prior art reveals cement truck chutes manufactured from steel and aluminium. One drawback of such prior art chutes is that due to the corrosive and abrasive nature of the cement the chutes become quickly worn and must be replaced. In order address this drawback the prior art discloses providing a liner covering the metal chute and made of a material which is better able to withstand the abrasive cement such as UHMWPe. These liners have the drawback that they are typically riveted to the chute and therefore quickly become dislodged thereby exposing the metal chute.
In order to address the drawbacks of the prior art, there is disclosed a chute assembly for directing cement from a cement truck. The assembly comprises an elongate chute of generally u-shaped cross section fabricated from UHMWPe and comprising an upper end and a lower end, a plurality of reinforcing rods arranged along a length of and encased within the UHMWPe, one end of each of the rods adjacent the upper end and another end of each of the rods adjacent the lower end, a pair of u-shaped collars, an upper one of the collars adjacent the upper end and a lower one of the collars adjacent the lower end, and a fastener for securing each of the collars to their respective rod ends.
There is also disclosed a method for fabricating a chute for directing cement from a cement truck. The method comprises placing a plurality of reinforcing rods generally in parallel in a mould with a powdered UHMWPe, wherein each end of the rods is adjacent a respective edge of the mould, closing the mould and applying heat to the mould until the UHMWPe is molten, removing the UHMWPe and reinforcing rods from the mould once the UHMWPe has solidified, arranging a u shaped collar at each end of the chute, each of the collars having a curvature configured to match that of the end of the chute to which it is attached, and securing the collars to the ends of the rods. At least the u-shaped collar arranged at the upper end of the chute comprises a pair of hooks adapted for attachment to the cement truck.
Additionally, there is provided a method for fabricating a chute for directing cement from a cement truck. The method comprises forming a substantially flat chute blank from UHMWPe, the chute blank having a first edge opposite a second edge, bending the chute blank about an axis between the first edge and the second edge to form an elongate chute having an open top, a closed bottom and a u-shaped cross section, and attaching a pair of u-shaped collars manufactured from a rigid durable material to respective ends of the elongate chute, each of the collars having a curvature configured to match that of the end of the chute to which it is attached.
Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of specific embodiments thereof, given by way of example only with reference to the accompanying drawings.
Referring now to
Referring to
Referring back to
Referring again to
Referring to
UHMWPe is a type of the thermoplastic polyethylene having extremely long chains with a molecular mass usually between 2 and 6 million u. The longer chain serves to more effectively transfer load to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made. UHMWPe is odorless, tasteless, and nontoxic. UHMWPe is highly resistant to corrosive chemicals, extremely low moisture absorption and a very low coefficient of friction. UHMWPe is self-lubricating and is highly resistant to abrasion, in some forms being 15 times more resistant to abrasion than carbon steel. Its coefficient of friction is significantly lower than that of nylon and acetal, and is comparable to that of polytetrafluoroethylene (PTFE, Teflon), but UHMWPe has better abrasion resistance than PTFE.
Although the chute 12 can be manufactured, for example, by machining a flat piece of UHMWPe, it is preferable to manufacture the chute via moulding. In this regard, a UHMWPe powder is placed in a mould (not shown) together with the rods 22 positioned appropriately, the mould closed and then heat applied to melt the UHMWPe (typically above about 136° C.) and fill the mould while encasing the rods in UHMWPe (illustratively with the exception of the threaded bores 26 and the ends of the rods as in 22). Features such as the reinforcing ribs 32 and the raised tabs 34 are included in the mould. Additional features can also be moulded into the blank 38, such as a pair of chute lips 40 or the like. Once the mould has cooled sufficiently, the blank 38 is removed from the mould and, typically while still warm, gently curved to fit the upper collar 14 and lower collar 18 following which the rods 22 are inserted into the rod end receiving bores 23 and secured to the collars 14, 18 using the fasteners 24.
Still referring to
Referring to
Referring to
Referring back to
Although the present invention has been described hereinabove by way of specific embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.
This application is a National Entry Application of PCT application no PCT/CA2015/050844 filed on Sep. 3, 2015 and published in English under PCT Article 21(2), which itself claims benefit of U.S. provisional application Ser. No. 62/045,250, filed on Sep. 3, 2014. All documents above are incorporated herein in their entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2015/050844 | 9/3/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/033688 | 3/10/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4054194 | Davis | Oct 1977 | A |
5192178 | Silbernagel | Mar 1993 | A |
6367606 | Skalla | Apr 2002 | B1 |
6845858 | McVay | Jan 2005 | B2 |
6918481 | Quigley | Jul 2005 | B2 |
6971495 | Hedrick | Dec 2005 | B2 |
20040154898 | McVay | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
202164017 | Mar 2013 | CN |
203973765 | Dec 2014 | CN |
2015048841 | Apr 2015 | WO |
Entry |
---|
International Search Report of corresponding PCT application No. PCT/CA2015/050844. |
Number | Date | Country | |
---|---|---|---|
20170266843 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62045250 | Sep 2014 | US |