This disclosure relates generally to devices for making rolled cigarettes, and more particularly to hand-operated devices for making rolled cigarettes one at a time.
Some cigarette smokers prefer the process of making their own cigarettes to buying pre-rolled and pre-packaged cigarettes. For example, the individual components of a cigarette, such as tobacco and cigarette papers, when purchased in bulk, are often less expensive per cigarette than pre-made cigarettes. In addition, some people find enjoyment in making their own cigarettes, and may even consider cigarette-rolling to be a challenging endeavor in which to demonstrate skill.
One way to make cigarettes individually and manually is to place an amount of loose tobacco in a cigarette paper and roll it between one's fingers. However, this approach is limited in that it is somewhat difficult to produce a cigarette of uniform shape and fill, and outside influences (for example, bad weather in an outdoor setting, or jostling from other people in a crowded area) may increase the difficulty. Relatively small and simple devices that allow a user to make cigarettes are available; however, such devices small enough to fit comfortably in one's hand or on a table may not be capable of rolling consistently a high-quality cigarette. Other devices, though capable of improved function, may be too large to be carried easily in a pocket or handbag, if they may be carried at all.
Rolling devices conventionally include a framework in which two roughly parallel rollers are closely arranged, and in which a looped belt is configured to encompass the rollers, with enough slack to form a groove or recess between the rollers in which loose tobacco may be formed into a cylindrical shape. Usually, at least one of the rollers is movable between two positions: an “open” configuration in which the rollers have their greatest separation, so that a broad, shallow recess in the belt between the rollers is formed, into which loose tobacco may be placed, and a “closed” configuration in which the rollers have their least separation, so that the belt forms a narrower and deeper recess, in which the loose tobacco may be compressed or shaped by movement of the belt over the rollers. In such devices, a piece of cigarette paper may then be fed between the rollers and rolled around the compressed tobacco to form a finished cigarette.
Different constructions are used to enable movement of the rollers relative to each other. In some devices, the ends of the movable roller may be journaled in a slot that defines a range of movement of the roller (relative to the other roller), as the ends are slid along the slot. In some devices, the moveable roller is mounted on a pair of hinged arms that may swing the moveable roller away from, or toward, the other roller. Some devices may include two pairs of arms on a central hinge, so that the rollers may be moved away from, or toward, each other by opening and closing the hinge. Such devices, however, are prone to a number of difficulties in use, such as in manipulating the looped belt to form a cylinder of tobacco having a cigarette paper around it, rolling the rollers or otherwise smoothly moving the belt over the rollers to compress the tobacco, accumulating tobacco debris within the slots or openings holding the ends of the rollers, and binding of the looped belt as it passes through the device, and so forth. Each of these difficulties may result in a substandard manually-rolled cigarette, user frustration, mechanical failure, and so forth.
Also, such devices typically do not provide a mechanism by which a compressed cylinder of tobacco may be inserted into a pre-formed cigarette tube, for example if a user would prefer to use a pre-formed cigarette tube instead of a leaf of cigarette paper. Pre-formed tubes are commercially available, some of which include filter tips, which may be difficult to incorporate into a cigarette rolling device. Instead, different types of injector machines are available, which operate by compressing loose tobacco in a chamber, and then forcing the compressed tobacco into a pre-formed tube. Such machines are generally too large and/or mechanically complex to allow portability.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
For the purposes of the description, a phrase in the form “NB” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous.
Disclosed herein are several embodiments of cigarette rolling and forming devices, which generally include two (or more) cylinders and a looped belt trained thereon, and which are configured to selectively compress a quantity of loose tobacco into a shaped tobacco cylinder. Some embodiments of cigarette rolling devices according to the present disclosure include one or more features that minimize or prevent mechanical clogging due to loose tobacco. For example, in some embodiments, a pair of opposing support plates extends from a base, with two cylinders extending between the support plates and rotatably mounted thereto. The support plates include a pair of corresponding slots, with axle portions of one of the cylinders being journaled therein for slidable movement, such the cylinder is translatably moveable relative to the support plates through a range of motion defined by the slots. In various embodiments, the base may have a curved, contoured, or generally “hourglass” shape, which may provide clearance for a user's fingers when opening and closing the device, forming the tobacco rod, and/or inserting the tobacco rod into a pre-formed cigarette tube. In some embodiments, the contoured or hourglass shape of the base also may reduce the size and/or weight of the device, and/or may facilitate single-handed operation of the device.
Some embodiments may also include guard plates disposed between the ends of the movable cylinder and the slot in which the axle portions are journaled, the guard plate being configured to prevent loose tobacco from the recess from entering the slot. In such embodiments of cigarette rolling devices, a guard plate may include a movement slot through which the axle portion extends, the movement slot configured to accommodate a path of movement of the axle portion of the translatable cylinder as the first cylinder is moved within the range of motion defined by the curvilinear slots. Optionally, the guard plate may be partially or wholly recessed in a corresponding recess in the support plate, or be otherwise disposed between the cylinder and the curvilinear slot.
Some embodiments of cigarette rolling devices according to the present disclosure may include a trough extending between the support plates, the trough having a top surface and a bottom surface, with the belt being trained around the cylinders and the trough, so that the portion of the belt forming the recess in which loose tobacco may be compressed is prevented from contacting other portions of the belt. In some embodiments, the trough may be configured to snap into one or more corresponding recesses on the base, and/or the trough may be configured to interconnect the support plates.
Some embodiments of cigarette forming devices according to the present disclosure also include a pushing device mounted for movement along an axis parallel to the cylinders, the pushing device including a pushing element adapted to engage and push one end of a shaped tobacco rod in the cylindrical recess toward one of the support plates, for example, to push the tobacco rod into a pre-formed cigarette tube. In such embodiments, the support plate may further include an opening and a nozzle disposed in the support plate, and optionally a nozzle guard to protect the nozzle from accidental damage and/or to facilitate visualization of the nozzle by a user. In various embodiments, the nozzle may extend in a direction away from the cylinders and may be configured to receive and retain one end of a pre-formed cigarette tube against the plate. The pushing device may thus be adapted to selectively push the tobacco rod from the recess into a pre-formed cigarette tube retained on the nozzle. In some embodiments, the pushing device may further be configured, after pushing the tobacco rod into the tube, to compress the tobacco rod into the tube.
In additional embodiments, the pushing device also may be configured to rotate around the fixed cylinder, and thus may be used to open and close the device (e.g., slide the translatable cylinder in the journaled slot). In these embodiments, when rotated about the axis of the fixed cylinder (e.g., away from the translatable cylinder), the pushing device may include a pushing element that exerts force on the translatable cylinder, causing it to move in it's journaled slots into an open position.
In various embodiments, the nozzle also may be associated with a clamping mechanism, which may be configured to hold the pre-formed cigarette tube in place against and/or around the nozzle. In some embodiments, the clamping mechanism may be used to retain the pre-formed cigarette tube on the nozzle, for example while the pushing device is being used to slide the tobacco rod into the pre-formed cigarette tube. In some embodiments, the clamping mechanism may be configured to be activated by a user without needing to alter the user's grip on the cigarette rolling device.
In some embodiments, the cigarette rolling device also may be configured to form a tobacco rod having a slightly asymmetrical (e.g., slightly conical) shape, wherein a first end of the tobacco rod has a slightly smaller diameter than the second end of the tobacco rod. In some embodiments, this asymmetrical shape may be achieved by varying the length of the slots at the first and second ends of the device, thus aligning the translatable cylinder slightly out of parallel with the fixed cylinder. In some embodiments, this slightly conical tobacco rod shape may ease the displacement of the rod through the nozzle and into the pre-formed cigarette tube.
These and other illustrative embodiments of cigarette rolling and/or forming devices may incorporate any combination of the features, components, and concepts discussed herein. Several illustrative, non-exclusive examples of cigarette rolling devices according to the present disclosure are disclosed below in connection with
The cigarette rolling devices in
One illustrative and non-exclusive embodiment of a cigarette rolling device 100 is shown in
As shown best in
As shown in
Slot 107a allows translatable cylinder 103 be selectively translatably moved relative to the support plates (and relative to fixed cylinder 104), through a range of motion defined by the size and shape of the slot, by sliding the axle portions of translatable cylinder 103 along the slots. Thus, translatable cylinder 103 is configured to be rotatable about a non-fixed axis.
As described in greater detail below, the inverted “J” shape of the slot shown in
Turning now to
Returning to
As can be seen in
The trough may facilitate efficient use of the device, for example, by reducing drag. For example, if the trough were not present, the portion of the belt that forms the recess may be urged toward, or even against, the other layer of the belt that moves in the opposite direction of the portion forming the recess, when a quantity of loose tobacco is being shaped in the recess via rolling of the belt. The inner surface of the belt may further have a texture to reduce the amount of friction generated when portions of the surface slide or contact each other. However, in some circumstances, the inner surface of the belt that slides against itself when the two layers are moved in opposite directions may eventually become worn from repeated use, and/or create drag that interferes with rolling, due to two surfaces moving relative to each other. Moreover, moisture or loose tobacco particles may cause layers of the belt to bind or otherwise adhere to each other, pulling both layers in the same direction, which may lead to binding of the cylinders, creasing or tearing the belt, or other mechanical interference or damage to the device.
Also, distensions or other irregularities in the belt surface may in turn lead to uneven rolling of a leaf of cigarette paper around a shaped tobacco rod, or may create creases and folds in a leaf of cigarette paper, which many users may find undesirable. The trough may thus reduce or prevent drag by providing a stable sliding surface for one layer of the belt, or otherwise preventing the portion of the belt forming the recess from rubbing or sliding against, or otherwise contacting, other portions of the belt, such as a layer of the belt moving in the opposite direction when the belt is rolled.
As mentioned briefly above, a quantity of loose tobacco is compressed and shaped into a tobacco rod by rolling the belt, as the tension of the belt itself, in addition to forces urging the tobacco against surfaces over which the belt is moved. The trough may function to increase the tension of the belt (or reduce slack) overall or when the cylinders are in the closed configuration, by providing another surface around which the belt is trained. Increasing the tension of the belt may in turn provide stability to the device and/or increase consistency of cigarettes produced using the device by positionally stabilizing the cylindrical recess formed when the cylinders are in the closed configuration. In such configurations, only the portion of the belt trained around the outer surface of the trough may come in contact with the trough.
In some configurations, such as those in which the portion of the belt forming the recess comes in contact with a trough (such as the inner surface of the trough), the trough may facilitate forming of a tobacco rod by providing a support surface against which the tobacco in the recess may be urged when the belt is moved over the cylinders (or rolled around the rollers). The roller surfaces and the surface tension of the unsupported portion of the belt itself collectively provide a compressive force on the tobacco in the cylindrical recess, but repeated use over time may tend to stretch the belt so that the surface tension is weakened, or the belt is slackened sufficiently, and so forth, so that the belt may become unsuitable for compressing tobacco. As such, the support trough in such configurations may provide a support surface against which the belt may be urged, which may reduce or even prevent distension of the belt via the compressive force delivered to the tobacco in the recess by the cylinders.
Optionally, the trough may function to establish the diameter of a finished cigarette, such as by providing a support surface of constant diameter, and/or by increasing the tension of the belt surface, as discussed above, either of which may assist a user in determining the correct quantity of loose tobacco to use. By reducing or preventing variation in the diameter of tobacco rod shaped in the device, a user can be assured of relatively consistent results, which may in turn reduce waste if the tobacco rod produced is too large for a standard pre-formed cigarette tube to surround. The trough may thus have any configuration, shape, thickness, cross-section, and so forth, suitable to achieve any of the aforementioned results. For example, alternative configurations may include a flatter or more curved cross-section than that shown (e.g., a semi-circular cross section with a different diameter), be a different thickness, and so forth, as well as be of composite construction and/or discontinuous construction. Furthermore, in some embodiments, the trough may help align the axis of the tobacco rod formed in the recess of the belt with the axis of the nozzle. In some embodiments, without the backup support and alignment the trough provides, the tobacco rod might fail to align with the nozzle, and thus might not be displaceable by the pushing device through the nozzle.
As shown in
As shown in
As can be seen in
As described above, although device 100 may be used to roll cigarettes in cigarette papers, which typically come in books of packets of flat leaves, pre-formed cigarette tubes are also commercially available, for example if a user prefers to hand-roll a tobacco rod, but does not want to roll a leaf of cigarette paper around the tobacco rod. Some commercially available cigarette tubes also include filter tips positioned within the otherwise empty tube, into which a user may place a shaped tobacco rod. Thus, embodiments of a cigarette rolling device may instead include a mechanism by which a tobacco rod shaped in the cigarette rolling device, as explained in detail above, may be pushed or injected into a pre-formed cigarette tube.
As shown in
In various embodiments, an arm 158 is shown to extend from the collar portion 156 in a direction such that when pushing device is mounted on fixed cylinder 104, the arm descends generally into a recess 114 formed by the portion of the belt 109 trained around the cylinders 103, 104. An extension 159 protrudes from the arm, for example at a right angle in some embodiments, and terminates in a substantially circular pushing element 160. So configured, the pushing element is adapted to engage and push the end of a shaped tobacco rod in the cylindrical recess, for instance by sliding the pushing device along the cylinder. More particularly, the pushing device is adapted to be slid toward one support plate, designated as the “distal” support plate, from the direction of the other, “proximal” support plate, and back again. In other words, if the pushing device is initially positioned near the proximal support plate, when a tobacco rod is shaped in the cylindrical recess, sliding the pushing device toward the distal support plate will engage the pushing element with the end of the tobacco rod and push the end of the tobacco rod toward the first support plate, to longitudinally compress the tobacco rod.
As mentioned above, “tapping” or compressing the end of a shaped tobacco rod may more securely pack the tobacco into a cylindrical form, making the tobacco rod less likely to break apart and/or to reduce or even prevent loose tobacco from flaking away or otherwise coming loose from the tobacco rod. As such, longitudinal compression may allow a cigarette to last longer in storage, without tobacco coming loose from the end of the cigarette. Compression of one or both ends of a tobacco rod may also provide a flat surface against which cigarette paper, or the end of a cigarette tube, may be folded, such as to hold tobacco in the paper or tube while the cigarette is being held, stored, or smoked, and/or simply for aesthetic effect.
In addition to slidable movement, the collar portion 156 and inner surface 154 are configured to move in a predetermined range of rotatable movement about the cylinder to which the device 150 is clamped, such as to ensure stability of the pushing device on the cylinder 104. For example, in some embodiments, as cylinder 103 is moved from a “closed” position to an “open” position, the portion of the belt trained between the cylinders moves from defining a relatively deeper, cylindrical recess to defining a broader, relatively shallower recess. As this belt portion moves from one configuration to the other, it may push against the portion of the pushing device within the recess (e.g., the pushing element 160, the extension 159, and/or the pushing device arm 158). However, the collar portion 156 and inner surface 154 of the pushing device are configured to allow the pushing device to “rock” back and forth on the cylinder, for example to accommodate the movement of the belt when the cylinders are moved between “open” and “closed” configurations, without becoming detached therefrom.
In various embodiments, pushing device 150 also may include an outrigger portion 192 extending from collar portion 156 and configured to limit rotation of pushing device 150 about fixed cylinder 104 by coming in contact with the portion of belt 109 that is wrapped around translatable cylinder 103. This configuration allows outrigger portion 192 to prevent over-rotation of pushing device 150 about fixed cylinder 104, which otherwise might allow the pushing device 150 (and particularly the pushing element 160, the extension 159, and/or the pushing device arm 158) to pinch belt 109 against trough 130.
Additionally, outrigger portion 192 may serve to orient the axis of the pushing element 160 and align it to the axis of the formed tobacco rod. Additionally, in various embodiments, outrigger portion 192 may provide stability to the pushing device 150, as well as providing an additional slide bearing surface that reduces overall contact pressure of the pushing device 150 against belt 190 when extending it to displace the tobacco rod.
In some embodiments, such as the embodiment illustrated in
In various embodiments, proximal support plate 101a may be configured to receive and house at least a portion of pushing device 150, such as to allow the pushing device to be moved substantially out of recess 114 while a quantity of loose tobacco is being shaped into a tobacco rod, so as not to interfere with the rolling process. In various embodiments, therefore, proximal support plate 101a thus may include a recess for receiving a portion of pushing device 150. As such, the pushing device may be selectively moved to the support plate, housing a portion thereof within the recess in the support plate, so that after a tobacco rod is formed, the pushing device may be deployed to urge the pushing element against the end of the tobacco rod.
As such, in some embodiments, a pushing device as described above may function as a compression element, such as to longitudinally compress the tobacco rod. However, as may be seen in
The size of the cross-section of the nozzle is such that an end of pre-formed cigarette tube (not shown) may be fitted snugly over the nozzle and retained against the support plate. As such, after a quantity of loose tobacco has been shaped into a compressed tobacco rod in the substantially cylindrical recess formed by the belt, sliding the pushing device from the second support plate toward the first support plate functions to engage the pushing element with the end of the tobacco rod and urges the tobacco rod through the opening 170 and nozzle 172, and into the cigarette tube retained against the first support plate, to form a cigarette. In some embodiments, a nozzle guard 174 may be used in conjunction with the nozzle 172, for example to protect the nozzle from accidental damage during transport, but also to serve as a visual guide to assist a user in fitting the pre-formed cigarette tube over the nozzle. In some embodiments, nozzle guard 174 may have a contrasting color when compared with nozzle 172, for instance to help make nozzle 172 more visually distinct.
Also, in various embodiments, sliding the pushing device 150 to the extent of the movement allowed by the distal support plate 101b may project at least a portion of the pushing element 160 partially through the opening 170, by means of extension 159 on arm 158. When the length of the cylinders corresponds to the length of the cigarette tube, this configuration thus may allow the tobacco rod, once injected into the cigarette tube, to be further compressed or “tapped” into the tube. Optionally, of course, the pushing device also may be used to push bits of loose tobacco from the belt, for example to clean the belt of the device between uses.
Turning now to
The overall structural configuration of a cigarette rolling device 100 having been explained, an illustrative explanation of the use of such a device, in general, is given in the paragraphs below. In the following explanation, several of the individual components are further discussed, as well as variations to the structural configuration and some components of the illustrated embodiments. All of such variations are considered to be within the scope of this disclosure.
In use, such as to roll a cigarette, a user may first move cylinder 103 away from cylinder 104, such as by applying force to the tab 153 on pushing device 150 sufficient to cause the portion of the pushing device within the recess (e.g., the pushing surface 160, the extension 159, and/or the pushing device arm 158) to exerting sufficient pressure against translatable cylinder 103 to cause the axles 106 of translatable cylinder 103 to move along slots 107 into an open position. One of skill in the art will appreciate that the device may be opened in other ways, even if pushing device 150 is present, such as by applying pressure directly to translatable cylinder 103 or to the belt 109 trained around the cylinder.
As mentioned above, the configuration of the slot 107 may be suitable to provide a desired amount of ease of movement of cylinder 103, such as by restricting or allowing freedom of movement along the slot; to provide a desired range of separation of the cylinders when cylinder 103 is moved near to or away from cylinder 104; and so forth. Additionally, as described in greater detail above, the two slots 107a, 107b may be of different lengths, or may be positioned differently on support plates 101a, 101b, such that the cylinders 103, 104 are not quite parallel to one another. In particular, the cylinders 103, 104 may be spaced more closely together at the distal end (e.g., the nozzle end) of the device when the device is in the closed position, so as to create a slightly cone-shaped tobacco rod, for instance to ease displacement of the formed tobacco rod out of recess 114 through the nozzle 172. Thus, even though the slots in the illustrated embodiments are all shown, in general, to have an inverted “J” shape, any desired shape may be used, and the slots may be of different lengths or have different positioning with respect to one another.
A user may then place a quantity of loose tobacco on the portion of the belt 109 between the cylinders 103, 104, and may prepare to shape the loose tobacco into a tobacco rod by moving the translatable cylinder 103 toward the fixed cylinder 104, into a “closed” configuration, as shown in
“Substantially cylindrical,” in turn, signifies a shape with a relatively constant and substantially circular cross-section, such that a quantity of loose tobacco, when rolled in such a substantially cylindrical recess, is formed into a cylindrical shape, also referred to herein as a “tobacco rod.” As can be seen in
In general, a quantity of loose (uncompressed) tobacco sufficient to form a cigarette will occupy a greater volume than when compressed, and, when the cylinders are moved into the “closed” configuration, will urge the belt outward into the substantially cylindrical shape shown in
After a quantity of loose tobacco is placed on the belt 109, and the cylinders have been moved to a “closed” configuration, the belt may be moved over the cylinders to shape the loose tobacco into a tobacco rod. As can be seen in
In the cigarette rolling devices illustrated herein, the cylinders (such as cylinders 103, 104) are all shown to be rotatably mounted to the support plates, and thus may be rolled in either direction to move the belt and compress the tobacco. As such, such cylinders may also be referred to herein as “rollers.” Rotating the cylinders may allow easy movement of the belt over the cylinders. However, one or more of the cylinders may instead be nonrotatably mounted, for example in embodiments in which the belt may be slid over the one or more nonrotatable cylinders. For example, an alternative configuration may include a nonrotatable cylinder in place of cylinder 104, together with a rotatable cylinder such as translatable cylinder 103, or any desired combination of rotatable and nonrotatable cylinders.
The surfaces of the cylinders thus may be textured to provide a desired degree of friction against the belt. The belt may also (or alternatively) have a textured outer and/or inner surface, such as to provide a desired degree of friction when moved over the cylinders and/or against the tobacco. In embodiments incorporating rotatable cylinders (or rollers), for example, the surface of the belt that is urged against the surface of the rollers may be textured or otherwise fabricated to assure a “grip” of the belt over the rollers, such that a user may be able to roll the rollers by exerting force on the belt. In embodiments incorporating nonrotatable cylinders or structures around which the belt is slid, the surface of the belt that moves against such cylinders may be smoothly textured or otherwise configured to reduce drag. Also, the surface of the belt that is urged against the tobacco may be textured or otherwise fabricated to “grip” the loose tobacco, such as to facilitate compression as the belt is rolled around the tobacco, as desired.
In configurations that incorporate nonrotatable cylinders, a “cylinder” may be configured to have a partially cylindrical or even geometrically noncylindrical shape, and consist of one or more surfaces over which the belt may be slid. Such surfaces may have a partially cylindrical or curved shape, such as to facilitate sliding, or any desired geometry to provide a sliding surface, and/or a surface against which the belt may be urged in order to compress a quantity of loose tobacco into a tobacco rod when the belt is moved over the cylinders. Such variations are considered to be within the scope of this disclosure, and, as such, are considered to be within the scope of the term “cylinder,” as used herein. For the sake of clarity, however, all of the illustrated embodiments are shown to include rotatably mounted cylinders.
After the belt has been moved over the cylinders to compress the tobacco into a tobacco rod, a user may place a pre-formed cigarette tube over nozzle 172, and optionally may depress button 190 in order to activate the clamping device 180 and hold the pre-formed cigarette tube in place. Longitudinal pressure may then be applied to pushing device tab 153 to slide the collar portion 156 of pushing device 150 from the proximal end to the distal end of fixed cylinder 104, which simultaneously advances the pushing device arm 158, extension 159, and substantially circular pushing surface 160 within recess 114. This movement pushes the formed tobacco rod through opening 170 and nozzle 172 into the pre-formed cigarette tube. Once the tobacco rod has been inserted into the pre-formed cigarette tube, further sliding of pushing device 150 may cause the tobacco rod to be tamped within the tube as described above in greater detail.
Alternately, a user may insert one end of a piece (or “leaf”) of cigarette paper between the cylinders and continue moving the belt, to roll the paper received between the cylinders around the tobacco rod. Cigarette papers are commercially available in several standard sizes, and the overall width of the cylinders may be appropriate, in various embodiments, to accommodate leaves of various sizes. Commercially available cigarette papers are usually gummed along one edge, or include some other adhesive property, so that when the gummed edge is oriented to be the trailing edge of the leaf as it is rolled around the tobacco rod, the gummed edge adheres to the surface of a portion of the paper already rolled. As such, if such a cigarette paper is used in the rolling device, a user may stop rolling and moisten the trailing, gummed edge prior to rolling the paper completely around the tobacco rod. Once the paper is rolled around the rod, the cylinders may be moved into the “open” configuration and the formed cigarette may be removed.
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
The present application is a Continuation-in-Part of and claims priority to U.S. patent application Ser. No. 12/136,650, filed Jun. 10, 2008, entitled “CIGARETTE ROLLING AND FORMING DEVICES,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
338580 | Arnold | Mar 1886 | A |
1087230 | Garwood | Feb 1914 | A |
1909749 | Booth | May 1933 | A |
1956838 | Steuart | May 1934 | A |
2009000 | Zint | Jul 1935 | A |
2276719 | Daudelin | Mar 1942 | A |
D142559 | Herzog | Oct 1945 | S |
2436015 | Morris | Feb 1948 | A |
2471656 | Sas | May 1949 | A |
3746011 | Kappeler et al. | Jul 1973 | A |
3783882 | Messner et al. | Jan 1974 | A |
3903902 | Messner et al. | Sep 1975 | A |
3911933 | Crisp et al. | Oct 1975 | A |
4368741 | Meinunger | Jan 1983 | A |
4657030 | Werding | Apr 1987 | A |
5615692 | Ruppert et al. | Apr 1997 | A |
D400300 | Brandenburg et al. | Oct 1998 | S |
D473338 | Brandenburg et al. | Apr 2003 | S |
D545494 | Soeprapto | Jun 2007 | S |
20090301501 | Prevost | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
29 43 136 | May 1981 | DE |
385870 | Jan 1933 | GB |
438583 | Nov 1935 | GB |
466 895 | Jun 1937 | GB |
466895 | Jun 1937 | GB |
2008059201 | May 2008 | WO |
Entry |
---|
Photos of prior art cigarette rolling device 1 (A-D). |
Photos of prior art cigarette rolling device 2 (A-B). |
Photos of prior art cigarette rolling device 3 (A-C). |
Photos of prior art cigarette rolling device 4 (A-D). |
Photos of prior art cigarette rolling device 5 (A-B). |
Photos of prior art cigarette rolling device 6 (A-B). |
Photos of prior art cigarette rolling device 7 (A-D). |
Photos of prior art cigarette rolling device 8 (A-B). |
Photos of prior art cigarette rolling device 9 (A-E). |
Photos of prior art cigarette rolling device 10 (A-C). |
Photos of prior art cigarette rolling device 11 (A-E). |
Photos of prior art cigarette rolling device 12 (A-E). |
Number | Date | Country | |
---|---|---|---|
20130092181 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12136650 | Jun 2008 | US |
Child | 13692875 | US |