Embodiments of the present invention relate to circuits, and more particularly, to voltage regulators.
In battery operated equipment, long battery life is very important. One factor influencing battery life is the efficiency of the voltage regulators used to power the different subsystems in the equipment. Switching regulators (SWR) provide among the highest efficiency, and they are widely used. However, switching regulators are relatively expensive and take-up a relatively large amount of printed circuit board area. As a result, linear low drop out regulators (LDOs) are widely used where lower efficiency can be tolerated. This results in systems that typically have a few SWRs and a large number of LDOs.
The LDOs operate with reasonably high efficiency if the difference between their input voltage, Vin, and output voltage, Vout, is small relative to Vout. This voltage difference is referred to as an overhead voltage Vovh, where Vovh=Vin−Vout. Neglecting ground current, the efficiency, Eff, may be expressed as follows
Eff=(Pout/Pin)˜(Vout/Vin)=Vout/(Vout+Vovh)=1/(1+Vovh/Vout).
If LDOs are used between the battery and the subsystems, the efficiency changes as the battery voltage decreases through the discharge cycle. The efficiency starts out low for a fully charged battery, and increases as the battery voltage, Vbat, decreases toward its minimum voltage.
Combining an SWR and LDO in a cascade fashion, where the SWR's input is the battery voltage and the SWR's output voltage provides the LDO's input voltage, is often used to improve the overall efficiency. An advantage of such a combination is that, as the LDO operates from the regulated output voltage of the SWR, the LDO's overhead is relatively constant and may be chosen low enough so as to provide a reasonably high overall efficiency for the combination. There also are advantages inherent to linear regulators, such as, for example, low noise, low ripple, and fast transient response. The output voltage of the SWR, Voswr, is typically set to Vout+Vovh, where Vovh is a fixed voltage. The SWR's control loop may either control the Voswr to equal Vout+Vovh, or regulate the Voswr so as to provide the required constant Vovh by forcing the difference of Voswr and Vout to be Vovh.
The value of Vdsmin depends on process parameters, temperature, output current and pass device size. In many prior art solutions Vovh, is chosen to be large enough to cover Vdsmin under worst case process parameters, junction temperature, highest output current, and smallest pass device size. Typically, Vdsmin may vary two to three times over the full parameter space. Designing Vdsmin for the worst case may result in a system that has lower than optimal efficiency for most cases and under most operating conditions.
The next, typically much smaller component of Vovh is the SWR's ripple voltage, denoted as Vswrripple/2 in
a shows the block diagram of one embodiment of the SWR-LDO combination in accordance with the invention.
b shows the block diagram of another embodiment of the SWR-LDO combination in accordance with the invention.
It is expected that the described embodiments provide an SWR-LDO regulator combination that has improved overhead, resulting in improved efficiency of the combined SWR-LDO regulator system. For some embodiments, it is also expected that there may be one or more of the following features: improved efficiency over process variation, junction temperature variation, output current variation, external component value ranges, and pass device sizes. It is also expected that the described embodiments has some of the advantages of the prior art LDO regulators, such as low output ripple voltage and fast load transient response.
Embodiments generate the overhead voltage Vovh in an adaptive way so as to track process parameter variations, temperature variations, and output current (e.g., load current) variations. Embodiments with both analog and digital control are described. An advantage of the digitally controlled embodiments is that they provide programmability and flexibility. They also enable the adjustment and optimization of the overhead in individual integrated circuit by measuring parameters on each individual unit during test, and enable the adjustment of the digitally stored parameters in the digital controller's non-volatile memory for minimal optimal overhead.
Throughout the description of the different embodiments of the invention, the SWR power stage 101 or 601 may be a buck, a boost, or a buck-boost topology, depending on the required value of Voswr relative to the Vin (e.g., the range of the battery voltage or other voltage source at the input of the SWR). The SWR power stage 101 or 601 may also represent a regulated high efficiency charge pump, in standard or fractional implementation. The power stages are not necessarily limited to these examples, so that other types of power stages may be used.
a shows an embodiment of the invention. The output of the SWR, Voswr, is regulated by Error amplifier 102 via the Vc control voltage on line 110. Error amplifier 102 increases Voswr until the voltage on node 307 is equal to or close to Vout 112, resulting in V(307)=Vout. A FET (Field Effect Transistor), denoted as RPFET 301 in
The voltage difference between nodes 111 and 310 is approximately Vth+Vdsmin. Vth is the threshold voltage of RPFET 301, and the matching PFET 106. Voltage source 311 deducts the Vth from the voltage on node 310. This generates approximately Vdsmin between nodes 111 and 306. Vdsmin for RPFET 301 tracks the Vdsmin of pass PFET 106 at the maximum load current due to the scaled current source 304 that biases RPFET 301. Current source 304 biases RPFET 301 with 1/N of the maximum load current, the current scale factor being the inverse of the size scale factor between the two transistors 301 and 106. That is, for RPFET 301 to provide the same Vdsmin as PFET 106, the scaling should keep the ratio (Idsmax)/(device size) constant, e.g., (Ioutmax/N)=(Ioutmax/N)/1. Hence, the voltage between nodes 111 and 306 is approximately the Vdsmin of the pass PFET 106 at the maximum load current. As matching between devices is never perfect, in practice the current source 304 may be chosen such that it sources a current slightly higher than Ioutmax/N in order to cover the tolerance. V320 represents to sum of the other parts of Vovh: V320=dVoswr+Voswtrmax+Vswrripple/2 as indicated in
There are many ways known in the art to implement the V311 voltage source with a source voltage of Vth, and need not be detailed here. Also, there are different known circuits to generate the Vdsmin voltage between nodes 111 and 306. The circuit shown in the implementation of
b shows another known circuit to generate Vdsmin. It is well known that the drain current, Ids, for a MOSFET in the saturation region may be written as
Ids=k(W/L)(Vgs−Vth)2.
Rearranging the above expression gives
(Vgs−Vth)=sqrt{Ids/(k(W/L))}=dV=Vdsmin,
where dV is the gate overdrive needed to generate the Ids current, which is known to be substantially equal to Vdsmin. The voltages are all positive, as shown, for NFETs, and are negative for PFETs. Diode connected RPFET 301 is biased by a current source 304a sourcing a current of 4*(Ioutmax/N). This biasing generates a drain-source voltage of Vgs (301) relative to rail 111, where
Vgs(301)=−Vth−sqrt(4Ioutmax/(Nk(W/L)))=−Vth−2*sqrt(Ioutmax/(Nk(W/L))).
The Vgs of PFET 3120 is given by
Vgs(3120)=−Vth−sqrt(Ioutmax/(Nk(W/L))).
The voltage between node 111 and node 306 is the difference between the gate sources voltages of PFETs 301 and 3120:
Vgs(301)−Vgs(3120)=−sqrt(Ioutmax/(Nk(W/L)))=Vdsmin.
Hence, the circuit of
There are many known ways to implement the V320 voltage source. As an example, the V320 voltage source may be replaced by a resistor and current source 304 moved to the left side of such a resistor in
R*Ioutmax/N=V320.
Another way to implement the V320 voltage source is to design a controlled offset voltage, with the value of the V320 voltage built into the 102 SWR error amplifier.
Current sense element 402 may be placed on the drain side of PFET 106, without making a significant difference in the operation of the circuit. The value of the current generated by CCCS 401 tracks the LDO's actual output current Iout, where I(CCCS)=Iout/N. It is expected that this embodiment ensures efficient operation over the entire LDO output current range, rather than only at an output current of Ioutmax. There are many known ways in the art to implement current sense element 402 and CCCS 401.
The circuit of
Digital duty cycle calculating engine 602 uses the digital value of Vovh, Vovhdig, the digital value of the tolerance of the LDO's output voltage, dvoutdig, and the digital value of the SWR's input voltage, Vindig, that is generated by Analog to Digital Converter (A/D converter) 609 to calculate the digital duty cycle value Ddig that generates the appropriate Voswr. In one embodiment, this control is open loop, no feedback from Voswr is used by the digital controller. This is facilitated by operating the SWR power stage 601 in continuous current mode, where there is a direct relationship between the SWR's output voltage Voswr, input voltage Vin, and duty cycle that is first order independent of the output (load) current. Because of the lack of feedback, the load regulation of the SWR that is part of the value dVoswr is larger than in typical feedback controlled systems.
If for some reason continuous current mode operation is not appropriate, digital duty cycle calculating engine 602 may use the real-time output current value in digital form, e.g., Ioutdig 612, to calculate the duty cycle. Unless the output current is constant or slowly changing, the digital controller and parameter calculator 608 should be a real-time calculating engine. The different inputs into digital controller and parameter calculator 608 are either available within the system in digital form, or if they are only available in analog form, an A/D converter (not shown) may be used to convert the analog quantities, such as temperature T and current lout, to digital values.
In the embodiment of
The digital duty cycle Ddig on line 606 controls the SWR's output voltage Voswr. This is calculated by the digital error amplifier and loop compensation block 703. It adjusts the Voswr to force its two digital inputs, Voswrdig 707 and Vref2dig 705, to the same value, or very close to the same value. Voswrdig is generated by A/D converter 707. This is the digitized value of the output voltage Voswr of the SWR. Vref2dig is generated by digital adder 701. It generates this value by adding Vovhdig and dvoutdig on lines 605 to the digital value of Voutdig on lines 604.
In the embodiment of
Vref2dig is the digital form of the reference voltage of the SWR. Digital error amplifier and loop compensation block 703 takes these two digital values, digitally amplifies the difference, and applies digital filtering to it. This digital filtering provides the loop filter function so as to make the SWR's closed digital control loop stable.
The digital values of Vovhdig and dvoutdig are stored in memory 607. These values are stored by a digital controller and parameter calculator engine (not shown), which in one embodiment may be similar to engine 602 of
An advantage of this embodiment is that it uses differential A/D converter 802 that does not need to be very accurate or have very high resolution, because its output always varies around zero. Another advantage of this embodiment is that it does not need a digital representation of Vovh and its components, making the digital part of the circuit much simpler.
In the embodiment of
In battery operated handheld systems, such as cellular phones, PDAs (personal digital assistants), digital still cameras, and so forth, there are a relatively large and number of voltage rails, requiring a relatively large number of voltage regulators. High efficiency operation of these regulators is paramount for long battery life. Wherever relatively large current and large input-output voltage difference is needed, or in cases where up-conversion is needed, switching regulators or charge pumps are often used. However, as switching regulators are relatively expensive and large, wherever possible linear low drop out regulators, LDOs, are often used. As discussed previously, combining a switching regulator and an LDO in a cascade fashion yields a high efficiency regulator system that also exhibits the low ripple, low noise, and fast transient response advantages of linear regulators. But combining a switching regulator with every LDO may not be economical.
Accordingly, embodiment voltage regulators are described that combine a front end switching regulator with a number of LDOs, all operated from the output of the same SWR, in such a way that the combined system has improved efficiency by adaptively controlling the output voltage of the switching regulator based on the combined overhead needs of all the LDOs operated from its output voltage. It is expected that embodiments provide improved overhead and efficiency over process variation, junction temperature variation, output current variation, external component value ranges, pass device sizes, varying LDO output voltages (Vouts), and LDO output currents (louts). It is expected that the described embodiments preserve the advantages of the LDO regulators, especially their low output ripple voltage and fast load transient response. Some or all of the described embodiments generate the overhead voltage Vovh for all the LDOs in an adaptive way so as to track process parameter variations, temperature variations, output current (e.g., load current) variation, and calculate the minimum switching regulator output voltage, Voswr, that satisfies the overhead requirements of all the LDOs.
Embodiments with both analog and digital control are described. An advantage of the digitally controlled embodiments is that they provide programmability and flexibility. They also enable the adjustment and optimization of the overhead in every individual integrated circuit by measuring parameters on each individual unit during test, and allow for adjusting the digitally stored parameters in the digital controller's non-volatile memory for minimal improved overhead.
As discussed for the previous embodiments, the SWR power stage 601 may be buck, boost, or buck-boost topology, depending on the required value of Voswr relative to the Vin (e.g., battery voltage range at the input of the SWR). It may also represent a regulated high efficiency charge pump, in standard or fractional implementation.
The combined system is expected to be stable and in equilibrium if Voswr−Vovh(i)≧Vout(i) for all three regulators. Expressing Voswr as the dependent variable, this relationship becomes Voswr≧Vout(i)+Vovh(i). Each of the three error amplifiers ensure that this relationship is held for its corresponding LDO. The error amplifier that corresponds to the LDO with the highest Vout(i)+Vovh(i) requires the highest Voswr. It controls the switching regulator output by controlling the voltage on line 110 via the analog “OR” connection of the outputs of the error amplifiers realized by the three diodes Dl, D2, and D3 and resistor R1. The diode connected to the controlling error amplifier is forward biased, while the other two diodes are reverse biased and their corresponding error amplifiers are inactive and in negative saturation. For the LDO with the controlling error amplifier, Voswr=Vout(i)+Vovh(i) (under ideal conditions). For all the other LDOs, it is Voswr>Vout(i)+Vovh(i).
The transfer of control between the three error amplifiers is continuous and smooth. If for instance the load on one LDO that was not in control were to increase, thereby increasing its Vovh, and it now requires higher Voswr, the output voltage on its error amplifier will move higher than the output voltage of the error amplifier that was in control and it will raise the voltage on line 110 (via its serial diode), which in turn will increase the Voswr.
The analog “OR” function, realized by Dl, D2, D3 and R1 in
In
It is to be understood that there are many ways to implement the combined digital duty cycle calculating engine (comprising blocks 6021, 6022, 6023), and maximum duty cycle discriminator (6060) functions. For example, one digital duty cycle calculating engine function may be multiplexed and shared between multiple LDOs, and combined via a small digital state machine and some memory to generate the maximum duty cycle used to control the SWR. All the different partitioning and physical implementations of these functions are applicable for this embodiment of the invention.
The digital values needed to calculate Vovh and the duty cycle are stored in the memory, which may be non-volatile. Digital controller and parameter calculator block 608 calculates and generates these digital values from the process parameter information, temperature information, Iout(i), Ioutmax(i), Voswrripple, dVoswr, and device sizing information. These are either available in the system in digital form, or are digitized via an analog to digital converter that is not shown. The function of block 608 may be part of the voltage regulator system, or it may be accomplished by software running on an external computer and the data loaded into memory 607 via the serial interface during IC testing, or at another point in the manufacturing process, or perhaps in real time during system start-up or during normal operation.
Digital to analog converters, DACs 6031, 6032 and 6033, provide the digitally controlled reference voltages of the LDOs. These may be changed in real time, dynamically by the regulator system's on-chip controller (not shown), or via the serial interface 842 from an outside controller. If any of the LDO output voltages is changed via lines 6041, 6042, or 6043, the appropriate value on the corresponding line 6051, 6052, or 6053, also changes. This in turn may change the Vref2dig value and generate a new Voswr via block 703 that yields improved efficiency for the new set of LDO output voltages. This embodiment automatically adjusts Voswr to dynamically track the operating conditions of the LDOs, both Vout and Iout, to improve the overall efficiency of the regulator system.
Differential A/D converter 802 digitizes the difference of (Voswr-Vovh(i)) and Vout(i) for all LDOs in a multiplexed fashion. The multiplexing is accomplished by differential analog multiplexer 820 under the control of digital sequencer 840. Negative peak detector 825 chooses the most negative of these digital values, which corresponds to the highest Voswr requirement among the LDOs, and feeds it to digital error amplifier and loop compensation block 803. Its output 606 provides the digital duty cycle value, Ddig, for the digitally controlled SWR power stage 601.
In equilibrium, when the Voswr is in steady state and regulated, the value of the input to digital error amplifier and loop compensation block 803 on line 805, and on its input on line 815, is approximately zero. This means that the loop regulates to (Voswr-Vovh(i))−(Vout(i))=0, corresponding to Voswr=Vout(i)+Vovh(i), for the LDO that requires the highest Voswr. For all the other LDOs, the output of A/D converter 802 on line 815 is positive.
If the operating conditions of the LDOs change, either by a change in their programmed output voltage via the DACs, 3031, 3032 or 3033, or their output current changes, the loop automatically regulates the Voswr according to the needs of the LDO requiring the highest Voswr value.
An advantage of the embodiment of
It is to be understood that in
It is understood that the embodiment of
Some of the functional blocks described with respect to the above embodiments may be realized by hardwired circuits, programmable circuits, or processors running software or firmware. Some of the functional relationships described with respect to the above embodiments may be abstracted by the flow diagrams of
In
In
Various modifications may be made to the disclosed embodiments without departing from the scope of the invention as claimed below. For example, the disclosed embodiments utilized PFET transistors for the pass transistor and the replica transistor. However, duals to these embodiments may be realized and are straightforward modifications of the disclosed embodiments, in which NFETs replace the described PFETs.
It is to be understood in these letters patent that the meaning of “A is connected to B”, where A or B may be, for example, a node or device terminal, is that A and B are connected to each other so that the voltage potentials of A and B are substantially equal to each other. For example, A and B may be connected by way of an interconnect, for example. In integrated circuit technology, the interconnect may be exceedingly short, comparable to the device dimension itself. For example, the gates of two transistors may be connected to each other by polysilicon or copper interconnect that is comparable to the gate length of the transistors. As another example, A and B may be connected to each other by a switch, such as a transmission gate, so that their respective voltage potentials are substantially equal to each other when the switch is ON.
It is also to be understood in these letters patent that the meaning of “A is coupled to B” is that either A and B are connected to each other as described above, or that, although A and B may not be connected to each other as described above, there is nevertheless a device or circuit that is connected to both A and B. This device or circuit may include active or passive circuit elements, where the passive circuit elements may be distributed or lumped-parameter in nature. For example, A may be connected to a circuit element which in turn is connected to B.
It is also to be understood in these letters patent that a “current source” may mean either a current source or a current sink. Similar remarks apply to similar phrases, such as, “to source current”.
It is also to be understood in these letters patent that various circuit blocks, such as current mirrors, amplifiers, etc., may include switches so as to be switched in or out of a larger circuit, and yet such circuit blocks may still be considered connected to the larger circuit because the various switches may be considered as included in the circuit block.
Various mathematical relationships may be used to describe relationships among one or more quantities. For example, a mathematical relationship or mathematical transformation may express a relationship by which a quantity is derived from one or more other quantities by way of various mathematical operations, such as addition, subtraction, multiplication, division, etc. Or, a mathematical relationship may indicate that a quantity is larger, smaller, or equal to another quantity. These relationships and transformations are in practice not satisfied exactly, and should therefore be interpreted as “designed for” relationships and transformations. One of ordinary skill in the art may design various working embodiments to satisfy various mathematical relationships or transformations, but these relationships or transformations can only be met within the tolerances of the technology available to the practitioner.
Accordingly, in the following claims, it is to be understood that claimed mathematical relationships or transformations can in practice only be met within the tolerances or precision of the technology available to the practitioner, and that the scope of the claimed subject matter includes those embodiments that substantially satisfy the mathematical relationships or transformations so claimed.
This application claims the benefit of provisional application “Drop out linear regulators for improved efficiency”, filed 25 May 2005, U.S. Ser. No. 60/684,702; and the provisional application “Circuit and method to combine a switching regulator and multiple low drop out linear regulators for improved efficiency”, filed 27 May 2005, U.S. Ser. No. 60/685,436.
| Number | Date | Country | |
|---|---|---|---|
| 60684702 | May 2005 | US | |
| 60685436 | May 2005 | US |