This application claims priority under 35 U.S.C. §119 to EP 07447016.2 filed Mar. 7, 2007, which is hereby incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a circuit for controlling an electric stimulus applied to an animal. In this type of system, the stimulus is usually generated by means of a collar attached to the animal's neck. The collar is typically remotely controlled by means of a radio frequency remote control. The intensity of the stimulus is variable, which allows to train the animal. The method for implementing the circuit is also detailed.
2. Description of the Related Technology
The use of electric stimuli is common in the context of animal training, and in particular that of dogs. The stimulus is applied by means of two electrodes in contact with the animal's skin and to which a high potential difference is applied.
Although it is very effective, the method has two drawbacks:
Analyzing the state of the art shows that there may be in particular a circuit and an associated method for solving the first above-mentioned problem (see document U.S. Pat. No. 6,327,999 B1). The method consists in measuring the voltage present at the electrode terminals when the stimulus is applied. If the voltage is lower than a given threshold during the application of this stimulus, the system deduces that a non-infinite impedance is connected between the electrodes and thus that the contact of the electrodes is good. If, on the other hand, the voltage is greater than that given threshold, the contact of the electrodes is considered defective.
The major drawback of this technique is that the contact of the electrodes can only be measured when the stimulus is applied. In fact, it would be more useful to check the contact of the electrodes before applying the stimulus.
The second point above has however not been resolved, also in view of the other known documents from the state of the art.
Thus, American patent U.S. Pat. No. 5,666,908 may disclose a training collar wherein a radio transmitter is used in conjunction with a microprocessor receiver incorporated into the collar for improved control of the level of the electric stimulation applied to the animal through the electrodes. A control signal including the stimulation level codes is transmitted to the receiver and the microprocessor generates series of voltage pulses whose width is determined by the stimulation level code. The generated series of pulses controls the current circulating in the transformer power circuit generating the stimulus. The peak-to-peak amplitude of the voltage pulses applied to the electrodes is determined by the width of the voltage pulses in the generated series of pulses. The number of different stimulation levels for a given voltage interval is only limited by the number of bits used to specify the above-mentioned code, which gives better control over increments in the level of stimulation applied to the animal.
American patent U.S. Pat. No. 6,170,439 B1 may disclose a training device comprising a remote transmitter and a receiver incorporated into a collar worn by an animal, in which several stimulation levels may be selected at the level of the transmitter. The information representing the desired stimulation level is transmitted to the receiver and demodulated to produce a digital signal. The microprocessor located in the receiver generates as an output a first series of pulses of constant length and with a frequency representing the selected stimulation level. This first series is filtered to produce a second series of pulses whose width represents the selected stimulation level. This second series of pulses is applied to the control electrode of the switch linked to the transformer that generates the high-voltage pulses forming the stimulus and whose intensity corresponds to the width of the pulses of the above-mentioned second series. Thus, the amplitudes of the high-voltage pulses applied to the contact electrodes represent the selected stimulation level.
American patent U.S. Pat. No. 6,184,790 B1 may disclose a device that is similar to the preceding ones, with a transformer for generating high-voltage pulses with low output impedance.
The circuit and method described herein solves both above-mentioned problems by means of an electronic circuit and of an operation algorithm for this circuit. In one embodiment, there is a remote receiving circuit to provide and control an electric stimulus applied to an animal comprising an electronic switch powered by a battery in series on a primary of a high-voltage transformer and whose on/off state can be modified by control pulses in such a way to create a source of alternating current for feeding a primary of the transformer, a first electrode and a second electrode configured so as to be in contact with the animal and linked to the respective ends of a secondary of the transformer, and a device for measuring a peak intensity of a stimulus current applied by the electrodes to the animal's body.
Measuring this peak current then allows adjusting the intensity of the stimulus applied to the animal to this measurement.
In another embodiment, there is a device for providing and remotely controlling an electric stimulus applied to an animal, the device comprising a radio frequency transmitter configured to remotely emit a signal, and the above-mentioned receiving circuit, configured to receive the signal and to provide and control the stimulus depending on the signal received.
In another embodiment, there is a method (algorithm) for implementing the above-mentioned circuit so as to measure the quality of contact between the electrodes and the animal's skin, with the following stages:
In another embodiment, there is a method for regulating the cyclic ratio of the pulses for controlling the above-mentioned circuit, with the following stages:
In another embodiment, there is a computer usable medium having computer readable program code embodied therein for measuring a quality of contact of electrodes with an animal's skin, the computer readable code comprising instructions for a) applying a control signal to an electronic switch with a cyclic ratio of 1%; b) measuring a voltage of the measurement signal VMEASUREMENT with an analog-digital converter; c) if VMEASUREMENT is greater than a predetermined value VTHRESHOLD, stopping generation of the control signal; d) declaring contact of the electrodes to be good; e) after a predetermined wait, returning to a); f) if VMEASUREMENT is not greater than the predetermined value VTHRESHOLD, determining if the cyclic ratio is lower than 20%; g) if the cyclic ratio is lower than 20%, increasing the cyclic ratio by 1% and resuming to b); h) if the cyclic ratio is not lower than 20%, stopping generation of the control signal; i) declaring contact of the electrodes to be insufficient; and j) after the predetermined wait, returning to a). The program code can be run on a microcontroller.
In yet another embodiment, there is a computer usable medium having computer readable program code embodied therein for regulating a cyclic ratio of control pulses to control an electric stimulus applied to an animal, the computer readable code comprising instructions for a) generating a control signal with a cyclic ratio of 1%; b) measuring a voltage of a measurement signal VMEASUREMENT; c) deducing ISTIMULUS, PEAK with the equation: VMEASUREMENT=ISTIMULUS, PEAK*R1*R3/(R2+R3); and d) if ISTIMULUS PEAK is lower than a desired set level, increasing the cyclic ratio and resuming b); or e) if ISTIMULUS, PEAK is not lower than the desired set level, reducing the cyclic ratio and resuming b). The program code can be run on a microcontroller.
The following detailed description of certain embodiments presents various descriptions of specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.
The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.
A principle of the circuit and method presented below is based on the fact that the intensity of the stimulus is directly related to the intensity of the electric current passing through the electrodes.
Measuring the intensity of the electric current is therefore the key that allows to check the quality of contact of the electrodes and also to adjust the intensity of the stimulus.
Method of Measurement and Electric Diagram
Measuring the electric current passing through the electrodes is not easy because:
An example circuit for measuring the current 1 is shown in
A controlled switch 2 (transistor T1), an associated diode (P1) and a high-voltage transformer 4 (TR1) are responsible for generating the stimulus. The other components are intended to measure the current.
To explain the operation of the circuit for measuring the current, it is necessary to start by explaining the operation of the stimulus generation. The stimulus is generated by applying a signal PWM 5 (Pulse Width Modulation) based on transistor 2. This signal, which is responsible for the generation of the stimulus, is called hereafter a CONTROL signal. A microcontroller is an example of a component that may be used to generate the CONTROL signal. The PWM signal typically has a period of 1 ms and a cyclic ratio of 0 to 90%. The cyclic ratio is the ratio of the time during which T1 is conductive divided by the total time of the PWM cycle (1 ms).
Analyzing a PWM cycle shows that the transformer 4 (TR1) stores up energy while T1 is conducting (ON) and releases this energy when T1 is turned off (OFF). The release of this energy occurs through contact electrodes 6 (EP1) and 7 (EP2) connected to the secondary of the transformer TR1, which generates the stimulus. This type of operation is called “flyback” operation of the transformer 4 by those skilled in the art.
The presence of parasitic capacities (not shown) in the TR1 windings results in that the voltage at the electrode terminals is restricted to an upper terminal since these parasitic capacities absorb part of the energy provided by the transformer, even when no charge is created between the electrodes. It is therefore easy to understand that the higher the cyclic ratio, the higher the voltage at the electrode terminals.
The current ISTIMULUS is measured by means of a non-linear shunt 8 and of a peak detector 9. The shunt 8 is formed by a limiter 8C (Z1), a resistor 8B (R1) and a forward-biased diode 8A (D1). The peak detector 9 is formed by a second forward-biased diode 9A (D2), a condenser 10 (C1) and a voltage divider 11 (R2 and R3).
The current ISTIMULUS is the current that enters through the electrode 6 (EP1), passes through the transformer 4 and exits through the electrode 7 (EP2) connected to the earth, passing through the circuit for measuring the current. When the current ISTIMULUS passes through R1 and D1, it creates a drop in voltage equal to ISTIMULUS*R1+VD1 at the terminals of (R1, D1). VD1 is the direct drop in voltage at the terminals of D1, the diode D1 preferably being a Schottky diode for which VD1 is typically 0.4V.
The drop in voltage at the terminals of (R1, D1) is corrected by D2 which charges C1. The charging voltage is equal to the voltage at the terminals of (R1, D1) less the drop in voltage at the terminals of D2 (VD2). This gives:
VC1=ISTIMULUS, PEAK*R1+VD1−VD2 [I]
As VD1≈VD2≈0.4V, VC1≈ISTIMULUS, PEAK*R1, with R1 of the order of 100Ω.
R2 and R3 are high-value resistors, typically several hundred kΩ, and form a dividing bridge which allows to obtain a potential of VMEASUREMENT within an acceptable range by a measurement device which is, for example, an analog-digital converter (ADC) incorporated into a microcontroller. R2 and R3 also act as slow-discharge resistors for C1.
This finally gives:
VMEASUREMENT=ISTIMULUS, PEAK*R1*R3/(R2+R3) [II]
It is therefore seen that the signal VMEASUREMENT is an almost continuous signal and that it is the direct image of the peak value of the stimulation current ISTIMULUS. As already mentioned, VMEASUREMENT can be measured by an ADC incorporated into a microcontroller.
It should finally be noted that Z1 (two Zener head-to-tail diodes) is a protection that limits the voltage at the terminals of (R1, D1) to typically 12V.
Algorithm for Measuring Electrode Contact
The circuit shown in
Unfortunately, a cyclic ratio of 10% is not always suited to some specific circumstances:
In the first case, a cyclic ratio of 5% for example should be used and in the second case a cyclic ratio of 20%. The algorithm presented below allows to solve this dilemma simply and effectively.
The algorithm consists in periodically carrying out a measurement cycle (typically every 5 seconds). This measurement cycle lasts a few hundred milliseconds. It consists in applying a CONTROL signal with a progressive cyclic ratio starting from 1% and typically limited to 20%. If, during this cycle, the potential of the MEASUREMENT signal (VMEASUREMENT) exceeds VTHRESHOLD, the CONTROL signal is immediately interrupted and the system deduces that the contact is correct. If, on the other hand, the potential of the MEASUREMENT signal never exceeds VTHRESHOLD during the measurement cycle, it means that the electrodes are really too far from the animal's skin and/or that the contact is incorrect or defective.
In the case where a microcontroller generates the CONTROL signal and measures the potential of the MEASUREMENT signal, an algorithm 200 may be summarized as follows in reference to
This algorithm thus allows to adjust the cyclic ratio as a function of possible obstacles such as hair located between the electrodes and the animal's skin, while avoiding to apply an excessively high cyclic ratio when there is no obstacle and/or when the animal's skin is damp.
Control of the Stimulus Current
As mentioned in the introduction, the stimulus is of variable intensity. In the state of the art, this consists in using different cyclic ratios depending on the desired stimulus intensities. Unfortunately, this technique has the major drawback that the effective intensity of the stimulus felt by the animal greatly depends on the quality of contact of the electrodes. Thus, for a cyclic ratio of 50%, an animal with a dense and dry coat will barely feel the stimulus whereas an animal with a damp coat will feel a painful sensation.
The presented circuit allows to solve this problem by producing feedback on the ISTIMULUS measurement.
An algorithm 300 for adapting the cyclic ratio using the circuit for measuring the current follows in reference to
This algorithm is a regulatory algorithm that uses the circuit of
The circuit and method comprises numerous advantages compared with the state of the art, such as:
The above-described methods or algorithms may be realized in a program format to be stored on a computer readable recording medium that includes any kinds of recording devices for storing computer readable data, for example, a CD-ROM, a DVD, a magnetic tape, memory card and a disk, and may also be realized in a carrier wave format (e.g., Internet transmission or Bluetooth transmission). The programs can be performed by the microcontroller or other computing device.
While specific blocks, sections, devices, functions and modules may have been set forth above, a skilled technologist will realize that there are many ways to partition the system, and that there are many parts, components, modules or functions that may be substituted for those listed above.
While the above detailed description has shown, described, and pointed out the fundamental novel features of the invention as applied to various embodiments, it will be understood that various omissions and substitutions and changes in the form and details of the system illustrated may be made by those skilled in the art, without departing from the intent of the invention.
Number | Date | Country | Kind |
---|---|---|---|
07447016 | Mar 2007 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2800104 | Cameron et al. | Jul 1957 | A |
2978690 | Kurie et al. | Apr 1961 | A |
3221241 | Greenberg et al. | Nov 1965 | A |
3472216 | Clyborne | Oct 1969 | A |
3589337 | Doss | Jun 1971 | A |
3608524 | Waltz | Sep 1971 | A |
3673487 | Hendrickson | Jun 1972 | A |
3673567 | McClellan, Sr. | Jun 1972 | A |
4095163 | Montague | Jun 1978 | A |
4446841 | Van Siclen, Jr. | May 1984 | A |
4539937 | Workman | Sep 1985 | A |
4802482 | Gonda et al. | Feb 1989 | A |
4819197 | Blais | Apr 1989 | A |
4996945 | Dix, Jr. | Mar 1991 | A |
5425330 | Touchton et al. | Jun 1995 | A |
5461223 | Butturini et al. | Oct 1995 | A |
5584262 | Schultz | Dec 1996 | A |
5666908 | So | Sep 1997 | A |
5733313 | Barreras et al. | Mar 1998 | A |
5905623 | McCartney | May 1999 | A |
5927233 | Mainini et al. | Jul 1999 | A |
6019066 | Taylor | Feb 2000 | A |
6327999 | Gerig | Dec 2001 | B1 |
6459378 | Gerig | Oct 2002 | B2 |
6813309 | Ogino | Nov 2004 | B1 |
6923147 | Davis | Aug 2005 | B1 |
7245470 | Hoopes | Jul 2007 | B2 |
7425835 | Eisele | Sep 2008 | B2 |
7554341 | Eisele | Jun 2009 | B2 |
7805200 | Kast et al. | Sep 2010 | B2 |
20020050249 | Grimsley et al. | May 2002 | A1 |
20020079909 | Reeves | Jun 2002 | A1 |
20030116101 | Kim et al. | Jun 2003 | A1 |
20030193400 | Grasselli et al. | Oct 2003 | A1 |
20040257842 | Hui et al. | Dec 2004 | A1 |
20050073294 | Baxter et al. | Apr 2005 | A1 |
20050145201 | Gillis et al. | Jul 2005 | A1 |
20050172912 | Crist et al. | Aug 2005 | A1 |
20050217606 | Lee et al. | Oct 2005 | A1 |
20060169222 | Gerig | Aug 2006 | A1 |
20060192550 | Sandquist et al. | Aug 2006 | A1 |
20070221139 | Reinhart | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
2005100421 | Jun 2005 | AU |
Number | Date | Country | |
---|---|---|---|
20080216766 A1 | Sep 2008 | US |