The present invention relates to wiring devices and, more specifically, to an approach for denying power to the solenoid of a wiring device in a tripped condition including if an end-of-life condition has occurred.
In an end-of-life condition, the silicon-controlled rectifier (SCR) responsible for triggering an interruption of the power supplied to the GFCI output terminals of a ground fault circuit interrupter (GFCI) may short. As a result, current will flow unimpeded through the solenoid until it fuses open. As industry standards governing GFCIs require that a device that has reached end-of-life be able to deny power to the GFCI output terminals, the fusing of the solenoid presents a problem because it can no longer cause a disconnection of the power to GFCI output terminals.
Conventional approaches to addressing the problem of how to deny power in an end-of-life condition include inserting a mechanical switch in series with the inductor of the solenoid that opens when the device trips. Mechanical switches, however, can cause undesirable arcing between the contacts when the switch is thrown, and switches that can withstand such arcing are expensive. Accordingly, there is a need in the art for an approach for denying power to the solenoid of a wiring device in an end-of-life condition that does not rely on a mechanical switch.
The present disclosure is related to an electrical wiring device that can deny power to the solenoid of the wiring device when the device is in a tripped state, so that the solenoid will not fuse if the SCR reaches end-of-life. Instead, when the SCR reaches end-of-life, the device will immediately trip whenever it is reset so that the device denies power to the GFCI output terminals in the end-of-life condition.
According to an aspect, an electrical wiring device, includes: a fault protection circuit configured to provide a fault detection signal in response to detecting at least one type of predetermined fault condition; a circuit interrupter configured to couple a plurality of line terminals and a plurality of load terminals in a reset state, and to decouple the plurality of line terminals and the plurality of load terminals in a tripped state; a first solid-state switch electrically coupled to receive the fault detection signal at a first gate, the first solid-state switch turning ON in response to receiving the fault detection signal at the first gate; a solenoid electrically coupled to the first solid-state switch, such that the solenoid energizes when the first solid-state switch turns ON, the solenoid, when energized, generating a magnetic field that moves the circuit interrupter into the tripped state; a second solid-state switch serially connected with the first solid-state switch and the solenoid, wherein the second solid-state switch is turned OFF when the circuit interrupter is in the tripped state, such that the solenoid is prevented from being energized.
In an example, the second solid-state switch includes a second gate, wherein the second solid-state switch receives a gate signal, such that the second solid-state switch is ON, when the circuit interrupter is in the reset state, wherein the second solid-state does not receive the gate signal, such that the second solid-state switch is OFF, when the circuit interrupter is in the tripped state.
In an example, the electrical wiring device further includes a mechanical switch positioned to manage the gate signal input to the second gate of the second solid-state switch.
In an example, the electrical wiring device further includes a third solid-state switch positioned to manage the gate signal input to the second gate of the second solid-state switch.
In an example, the third solid-state switch has a third gate that receives a third gate signal from a processor that is programmed to determine when the circuit interrupter is in the reset state and when the circuit interrupter is in the tripped state.
In an example, the first solid-state switch is a silicon controlled rectifier.
In an example, the second solid-state switch is a silicon controlled rectifier.
In an example, the second solid-state switch is a bipolar junction transistor.
In an example, the third solid-state switch is a bipolar junction transistor.
According to another aspect, a method of denying power to an electrical wiring device in an end-of-life condition, comprising the steps of: providing a first solid-state switch serially connected with a solenoid and a second solid-state switch, wherein the second solid-state switch is turned on in response to a fault detection signal in order to energize the solenoid to cause a circuit interrupter to move from a reset state to a tripped state, wherein, in the reset state, a plurality of line terminals and a plurality of load terminals are coupled together, wherein, in the tripped state, the plurality of line terminals and the plurality of load terminals are decoupled; turning the first solid-state switch on when the circuit interrupter is in the reset state to allow current to flow through the solenoid and the second solid-state switch; and turning the first solid-state switch off when the circuit interrupter is in the tripped state so that power does not flow through the solenoid and the second solid-state switch.
In an example, the method further includes the step of using a mechanical switch coupled to the circuit interrupter to selectably turn the first solid-state switch ON in the reset state and OFF in the tripped state.
In an example, the method further includes the step of using a third solid-state switch coupled to a gate of the first solid-state switch to selectably turn the first solid-state switch ON in the reset state and OFF in the tripped state.
In an example, the first solid-state switch is a silicon controlled rectifier.
In an example, the second solid-state switch is a silicon controlled rectifier.
In an example, the second solid-state switch is a bipolar junction transistor.
In an example, the third solid-state switch is a bipolar junction transistor.
According to an aspect, an electrical wiring device, comprising: a fault protection circuit configured to provide a fault detection signal in response to detecting at least one type of predetermined fault condition; a circuit interrupter configured to couple a plurality of line terminals and a plurality of load terminals in a reset state, and to decouple the plurality of line terminals and the plurality of load terminals in a tripped state; a first solid-state switch electrically coupled to receive the fault detection signal at a first gate, the first solid-state switch turning ON in response to receiving the fault detection signal at the first gate; a solenoid electrically coupled to the first solid-state switch, such that the solenoid energizes when the first solid-state switch turns ON, the solenoid, when energized, generating a magnetic field that moves the circuit interrupter into the tripped state; a second solid-state switch disposed in parallel with the solenoid, wherein the second solid-state switch is turned ON when the circuit interrupter is in the tripped state, such that current is shunted from the solenoid.
In an example, the second solid-state switch includes a second gate, wherein the second solid-state switch receives a gate signal, such that the second solid-state switch is OFF, when the circuit interrupter is in the reset state, wherein the second solid-state switch does not receive the gate signal, such that the second solid-state switch is ON, when the circuit interrupter is in the tripped state.
In an example, the electrical wiring device further includes a mechanical switch positioned to manage the gate signal input to the second gate of the second solid-state switch.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring to the figures, wherein like numeral refer to like parts throughout, there is seen in
The fault detection signal from fault detector U1 is received at the gate of SCR Q1, which turns ON, and thus begins conducting in response to the fault detection signal. When SCR Q1 is turned ON and conducts in the middle of the AC line cycle, the solenoid K1A is energized for a short time period, i.e., typically less than about 25 milliseconds so that the armature of solenoid K1A trips a circuit interrupter 12 to move from a reset state into a tripped state. Circuit interrupter 12 couples a plurality of line terminals (LINE HOT and LINE NEU), a plurality of feed-through load terminals (FEEDTHRU HOT and FEEDTHRU NEU) and a plurality of receptacle load terminals (FACE HOT and FACE NEU) in a reset state, and decouples the plurality of line terminals (LINE HOT and LINE NEU), the plurality of feed-through load terminals (FEEDTHRU HOT and FEEDTHRU NEU) and the plurality of receptacle load terminals (FACE HOT and FACE NEU) in the tripped state.
If the fault condition is resolved, solenoid K1A is no longer energized and circuit interrupter 12 may be manually returned to the reset position via, for example, a mechanical reset button. Electrical wiring device 10 may further comprise a controller U2 that provides additional functionality, including monitoring the states of electrical wiring device 10. For example, controller U2 may include supporting circuitry and be programmed to perform functions such as self testing, miswire detection, and status indication.
However, in a potential end-of-life scenario, SCR Q1 may short and allow for the flow of power through solenoid K1A. An extended flow of current through solenoid K1A can cause solenoid K1A to fuse open. If solenoid K1A has fused open, it can no longer trip circuit interrupter 12 in the tripped state to deny power to the GFCI output terminals. However, circuit interrupter 12 is still capable of being manually reset by a user even through solenoid K1A is unable trip circuit interrupter 12 when a ground fault is detected by fault detector U1. As a result, although device 10 appears, to a user, to be operational, it is no longer capable providing ground fault protection and will not be in compliance with regulations specifying that device 10 must be capable of denying power to the GFCI output terminals, e.g., the feedthrough terminals FEEDTHRU HOT and FEEDTHU NEU as well as the face terminals FACE HOT and FACE NEU.
There is seen in
After circuit interrupter 12 has tripped, resetting circuit interrupter 12 will open switch K1B, so that SCR Q3 will again be ON and any future detection of a fault can result in tripping of circuit interrupter 12. Assuming any fault condition will likely be resolved before the circuit interrupter 12 is reset, SCR Q1 will not be conducting when SCR Q3 is again turned ON, and so circuit interrupter 12 will remain in the reset state until SCR Q1 again begins conducting. If, however, SCR Q1 began conducting because it reached end-of-life, it will remain conducting after resetting circuit interrupter 12. Thus, when circuit interrupter 12 is reset, and switch K1B is open and SCR Q3 turns ON, current will immediately be allowed to flow through solenoid K1A due to SCR Q1 being in an end-of-life state, thereby causing solenoid K1A to again trip circuit interrupter 12. Thus, in the event that SCR Q1 reaches end-of-life, any attempts to reset circuit interrupter 12 will result in the immediate tripping of circuit interrupter 12. Device 10 will therefore continue to deny power to the feedthrough terminals FEEDTHRU HOT and FEEDTHU NEU as well as the face terminals FACE HOT and FACE NEU in the end-of-life condition. However, it will not be possible to reset device 10 and have it remain in the reset state for any useful duration of time.
In
Referring to
Referring to
In the examples of
Generally speaking, comparing
Referring to
In the reset state, controller U2 does not send a signal through output SHDN, thus BJT Q7 remains OFF and, consequently, SCR Q3 remains ON. As a result, in the event of a fault or if SCR Q1 has reached end-of-life, SCR Q1 begins conducting and can trip circuit interrupter 12 by allowing current to flow through solenoid K1A and SCR Q3. When a trip is detected by controller U2 (e.g., by detecting a voltage HIGH or LOW at U2 PA2 input, which corresponds to the state of switch K1B, which is tied to the circuit interrupter 12), U2 sends an output signal through output SHDN to turn BJT Q7 ON, thus turning SCR Q3 OFF and disconnecting SCR Q1 from solenoid K1A. When the device 10 is reset by a user, U2 will detect that the device is in a reset state (again, through the PA2 input) and cease sending a signal through output SHDN, turning SCR Q3 ON.
In the event that SCR Q1 has reached end-of-life, power flowing through SCR Q1 to solenoid K1A will be disconnected by SCR Q3, thereby preventing any fusing of solenoid K1A. Resetting circuit interrupter 12 will open switch K1B, thereby indicating to controller U2 that device 10 has been reset. Controller U2 will cease providing a signal via output SHDN to close BJT Q7, which allows SCR Q3 to close so that power can flow through solenoid K1A. If SCR Q1 is still operational, device 10 will be ready to detect and respond to a fault. If SCR Q1 has shorted out in an end-of-life condition, power will flow through solenoid K1A and cause circuit interrupter 12 to trip. Device 10 will therefore continue to deny power to the feedthrough terminals FEEDTHRU HOT and FEEDTHU NEU as well as the face terminals FACE HOT and FACE NEU.
Referring to
As a result, in the event of a fault, or if SCR Q1 has reached end-of-life, SCR Q1 begins conducting and trips circuit interrupter 12, through BJT Q6, by allowing current to flow through solenoid K1A. When controller U2 detects tripping of circuit interrupter 12 through the closing of switch K1B—which closes in response to tripping of circuit interrupter 12 and opens when circuit interrupter 12 is reset—controller U2 sends a HIGH signal on output SHDN, thereby closing BJT Q7 and causing BJT Q6 to open. In the event that SCR Q1 has reached end-of-life, power flowing through SCR Q1 to solenoid K1A will be disconnected by Q7 closing, thereby preventing any fusing of solenoid K1A. Resetting circuit interrupter 12 will open switch K1B, thereby indicating to controller U2 that device 10 has been reset. Controller U2 will cease providing a signal via output SHDN (or otherwise provides a LOW signal) in order to open Q7 which closes BJT Q6, so that power can flow from SCR Q3 to solenoid K1A. If SCR Q1 is still operational, device 10 will be ready to detect and respond to a fault. If SCR Q1 has shorted out in an end-of-life condition, power will flow through solenoid KAI long enough to trip circuit interrupter 12, which will also stop the flow of power through solenoid K1A and prevent any undesirable fusing. Device 10 will therefore continue to deny power to the feedthrough terminals FEEDTHRU HOT and FEEDTHU NEU as well as the face terminals FACE HOT and FACE NEU as solenoid K1A remains operational.
Referring to
As a result, in the event of a fault, or if SCR Q1 has reached end-of-life, SCR Q1 begins conducting and can trip circuit interrupter 12, through BJT Q6, by allowing current to flow through solenoid K1A. When controller U2 detects tripping of circuit interrupter 12 through the closing of switch K1B—which closes in response to tripping of circuit interrupter 12 and opens when circuit interrupter 12 is reset—controller U2 sends a HIGH signal on output SHDN, thereby closing Q7 and causing Q6 to open. In the event that SCR Q1 has reached end-of-life, power flowing through SCR Q1 to solenoid K1A will be disconnected by Q6 opening, thereby preventing any fusing of solenoid K1A. Resetting circuit interrupter 12 will open switch K1B, thereby indicating to controller U2 that device 10 has been reset. Controller U2 will cease providing a signal via output SHDN to open Q7 (or otherwise provides a LOW signal), which allows Q6 to close so that power can flow from SCR Q1 to solenoid K1A. If SCR Q1 is still operational, device 10 will be ready to detect and respond to a fault. If SCR Q1 has shorted out in an end-of-life condition, power will flow through solenoid K1A long enough to trip circuit interrupter 12, which will soon after then stop the flow of power through solenoid K1A and prevent any undesirable fusing via Q6. Device 10 will therefore continue to deny power to the feedthrough terminals FEEDTHRU HOT and FEEDTHU NEU as well as the face terminals FACE HOT and FACE NEU as solenoid K1A remains operational.
Generally speaking, an SCR (such as SCR Q3 in
Furthermore, as shown in the examples of
In the above examples, described in connection with
Although the solid-state switch (e.g., SCR Q3 or BJT Q6) is shown in
In an alternative example, as shown, for example, in
For example,
As shown in
As shown in
Although fault detector U1 and controller U2 are each shown as single microcontrollers in
Furthermore, while the solid-state switches have been shown as an SCR or BJT in
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto; inventive embodiments may be practiced otherwise than as specifically described and claimed.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged; such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
The recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not impose a limitation on the scope of the invention unless otherwise claimed.
No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. There is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/694,544 filed on Jul. 6, 2018, the contents of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6199264 | Marcou et al. | Mar 2001 | B1 |
6437955 | Duffy et al. | Aug 2002 | B1 |
6556395 | Chan et al. | Apr 2003 | B1 |
6831819 | Nemir et al. | Dec 2004 | B2 |
6969801 | Radosavljevic et al. | Nov 2005 | B2 |
7245470 | Hoopes | Jul 2007 | B2 |
7292419 | Nemir | Nov 2007 | B1 |
7315437 | Bonilla et al. | Jan 2008 | B2 |
7336457 | Liscinsky, III | Feb 2008 | B2 |
7342762 | Harris, IV | Mar 2008 | B2 |
7372678 | Disalvo et al. | May 2008 | B2 |
7375939 | Weil | May 2008 | B2 |
7382595 | Thurk et al. | Jun 2008 | B2 |
7414818 | Shi | Aug 2008 | B2 |
7443309 | Baldwin et al. | Oct 2008 | B2 |
7542250 | Premerlani et al. | Jun 2009 | B2 |
7545244 | Disalvo et al. | Jun 2009 | B2 |
7619861 | Weeks et al. | Nov 2009 | B2 |
7626788 | Wang et al. | Dec 2009 | B2 |
7636615 | Pfingsten et al. | Dec 2009 | B2 |
7652395 | Von Arx et al. | Jan 2010 | B2 |
7667938 | Ykema et al. | Feb 2010 | B2 |
7692904 | Li et al. | Apr 2010 | B2 |
7697248 | Tomimbang | Apr 2010 | B2 |
7719804 | Morgan et al. | May 2010 | B1 |
7733617 | Baldwin et al. | Jun 2010 | B2 |
7791848 | Baldwin et al. | Sep 2010 | B2 |
7791850 | Chen | Sep 2010 | B2 |
7800873 | Batko et al. | Sep 2010 | B2 |
7800874 | Disalvo et al. | Sep 2010 | B2 |
7852607 | Radosavljevic et al. | Dec 2010 | B2 |
7859368 | Huang et al. | Dec 2010 | B2 |
7940498 | Huang | May 2011 | B2 |
7952842 | Engel | May 2011 | B2 |
7969696 | Lazarovich et al. | Jun 2011 | B2 |
7986500 | Lazarovich et al. | Jul 2011 | B2 |
8004806 | Li | Aug 2011 | B2 |
8053933 | Smith et al. | Nov 2011 | B2 |
8068937 | Eaves | Nov 2011 | B2 |
8120886 | Anand et al. | Feb 2012 | B2 |
8159794 | Baldwin et al. | Apr 2012 | B2 |
8223469 | Barber | Jul 2012 | B2 |
8274394 | Feight | Sep 2012 | B2 |
8462006 | Chen | Jun 2013 | B2 |
8514529 | Mcmahon et al. | Aug 2013 | B1 |
8614868 | Lawler et al. | Dec 2013 | B2 |
8717728 | Johnson, Jr. | May 2014 | B2 |
8760824 | Armstrong | Jun 2014 | B2 |
8773827 | Kiko | Jul 2014 | B2 |
8817441 | Callanan | Aug 2014 | B2 |
8861146 | Mcmahon et al. | Oct 2014 | B2 |
8953289 | Mcmahon et al. | Feb 2015 | B2 |
8976494 | Ward | Mar 2015 | B2 |
9036315 | Johnson, Jr. | May 2015 | B2 |
9076607 | Premerlani et al. | Jul 2015 | B2 |
9088152 | Huang | Jul 2015 | B2 |
9118174 | Simonin | Aug 2015 | B2 |
9214798 | Gawron, Sr. et al. | Dec 2015 | B1 |
9252587 | Jefferies et al. | Feb 2016 | B2 |
9299521 | Weeks et al. | Mar 2016 | B2 |
9401599 | Har-Shai et al. | Jul 2016 | B2 |
9437386 | Weeks | Sep 2016 | B2 |
9525282 | Armstrong | Dec 2016 | B2 |
9537299 | Rozman et al. | Jan 2017 | B2 |
9608433 | Simonin | Mar 2017 | B2 |
9696374 | Simonin | Jul 2017 | B2 |
9728952 | Mcmahon et al. | Aug 2017 | B2 |
9748760 | Legatti | Aug 2017 | B2 |
9755419 | Luciani et al. | Sep 2017 | B2 |
9762049 | Armstrong | Sep 2017 | B2 |
9766282 | Okerman et al. | Sep 2017 | B2 |
9774181 | Bonasia et al. | Sep 2017 | B2 |
9793702 | Simonin | Oct 2017 | B2 |
9829539 | Epee | Nov 2017 | B2 |
10012718 | Macbeth et al. | Jul 2018 | B2 |
10020649 | Du | Jul 2018 | B2 |
10062535 | Simonin | Aug 2018 | B2 |
10079122 | Kinsel et al. | Sep 2018 | B2 |
10083811 | Liu et al. | Sep 2018 | B2 |
10168388 | Simonin | Jan 2019 | B2 |
10199820 | Simonin | Feb 2019 | B2 |
10276321 | Kennedy et al. | Apr 2019 | B2 |
10291014 | Weeks | May 2019 | B2 |
10333512 | Ugale et al. | Jun 2019 | B2 |
10381823 | Djelassi et al. | Aug 2019 | B2 |
10410816 | Chen et al. | Sep 2019 | B2 |
20070109696 | Williamson | May 2007 | A1 |
20080088992 | Williamson | Apr 2008 | A1 |
20080151454 | Uhl | Jun 2008 | A1 |
20090207543 | Boniface et al. | Aug 2009 | A1 |
20140268434 | Simonin | Sep 2014 | A1 |
20150012145 | Kiko | Jan 2015 | A1 |
20150348722 | Fraser et al. | Dec 2015 | A1 |
20160276821 | Politis et al. | Sep 2016 | A1 |
20170125996 | Batko et al. | May 2017 | A1 |
20170170643 | Simonin | Jun 2017 | A1 |
20170256934 | Kennedy et al. | Sep 2017 | A1 |
20170263405 | Bonasia et al. | Sep 2017 | A1 |
20170331276 | Mcmahon et al. | Nov 2017 | A1 |
20180083434 | Lim et al. | Mar 2018 | A1 |
20180191150 | Chen et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
201797291 | Apr 2011 | CN |
Number | Date | Country | |
---|---|---|---|
20200014201 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62694544 | Jul 2018 | US |