Circuit and method for driving liquid crystal display device

Information

  • Patent Grant
  • 6760018
  • Patent Number
    6,760,018
  • Date Filed
    Wednesday, February 3, 1999
    25 years ago
  • Date Issued
    Tuesday, July 6, 2004
    20 years ago
Abstract
A liquid-crystal display, which is driven by a voltage swinging method achieves reduction in size and reduced power consumption. The liquid-crystal display has a circuit configuration that enables direct input of a signal that has controller potential. This reduces the logic voltage within scanning electrode drivers of the structure of the liquid-crystal display.
Description




FIELD OF THE INVENTION




The present invention relates to a matrix-type liquid-crystal display apparatus (hereinafter referred to as an liquid-crystal display), and more specifically it relates to a scanning electrode drive apparatus which drives a liquid-crystal display and a method of drive associated therewith.




BACKGROUND ART




In recent years, with advances in information-oriented societies, liquid-crystal displays have come into use in a wide range of fields, such as in TVs and in office equipment. In compact portable equipment in particular, liquid-crystal displays have come into overwhelming widespread use, compared with other types of displays.




In these types of fields, because of the high importance of portability, while compactness is demanded, a larger screen is required to assure readability. For this reason, there is a great need to increase the display region within a limited area, this being accompanied by an ever-narrowing area surrounding the liquid-crystal display.




One method to cope with accommodating narrowed area surrounding the display is to slim-down and make small the scanning electrode drive device and signal electrode drive device, and one method of achieving a slimmed-down and smaller scanning electrode drive device and signal electrode drive device is to make the withstand voltage small so as to shrink the element size.




In the method used in the past, as shown in

FIG. 4

, was to change the potential when the liquid-crystal display operates by AC, the scanning electrode device outputting the combinations of V


1


/V


2


and V


3


/V


4


, the signal electrode drive device outputting the combinations of V


5


/V


4


and V


1


/V


6


at those respective times.




Therefore, for both the scanning electrode drive device and the signal electrode drive device, a withstand voltage of at least V


1


-V


4


was required, making it necessary to use an electrode drive device with a high withstand voltage.




In this method, it is necessary to implement the signal electrode drive device as well using elements having a high withstand voltage, this being incompatible with the achievement of compactness and high density.




This is also disadvantageous and not compatible with an increase in the speed of operation of the signal electrode scanning device accompanying an increase in the number of data signals that are required for an increased number of pixels.




Additionally, because a high voltage must be operated at high speed, the associated power consumption is not very low.




One method of solving the above-noted problems is to use a drive method which makes use of power supply voltage swinging method.




This power supply voltage swinging method is that method whereby, as shown in

FIG. 5

, a potential VB which is switched from potential VA, as grounding potential, is input to the scanning electrode drive device, while in synchronization with which, a potential VD which is switched from potential VC, as high level voltage potential, is also input to the scanning electrode drive device, respectively.




By doing this, it is possible to greatly lower the withstand voltage of the signal electrode drive device without increasing the withstand voltage of the scanning electrode drive device, the result being that it is possible to achieve a increased operating speed in the signal electrode drive device due to an increase in the number of data signals, and also to achieve high density and low power consumption.




However, using the power supply undulation method, in the case in which a signal from an external system is input to the scanning electrode drive device, when the power supply potential is in the period A condition as shown in

FIG. 5

, within the scanning electrode drive device there is a low-level input when the input signal is at the VB level and a high-level input when the input signal is at the VD level. Also, when the power supply potential is in the period B condition, within the scanning electrode drive device there is a low-level input when the input signal is at the VA level and a high-level input when the input signal is at the VC level.




For this reason, in the case in which a signal is input from an external system, depending upon the condition of the power supply potential, it is necessary to input the VD level or the VC level in the case of inputting a high level, and necessary to input the VB level or the VA level in the case of inputting a low level.




For this reason, it is necessary to change the potential of an externally input signal, this making it necessary to have an external circuit that converts the input signal potential.




An example of a drive circuit of a liquid-crystal display which uses the above-noted power supply undulation method will now be described, with reference being made to FIG.


6


.




Specifically, a drive circuit


200


for a liquid-crystal display which uses the power supply voltage swinging method (referred to the voltage swinging method hereafter) of the past has signal electrode drive circuits


203


that drive the signal electrodes of the liquid-crystal display


202


and scanning electrode driving circuits


204


that drive the scanning electrodes that are provided in a direction that perpendicularly intersects the above-noted signal electrode drive circuits.




More specifically, this drive circuit


200


has a swinging voltage generating circuit


206


that generates a swinging voltage and supplies this swinging voltage to the above-noted scanning electrode driving circuits


204


, a level-converting circuit


207


that is connected to the above-noted swinging voltage generating circuit


206


and the above-noted scanning electrode driving circuits


204


, that is connected to an input signal (sign), and that is provided for the purpose of converting this input signal, which is input via an appropriate signal input means


208


, to the above-noted swinging voltage level, and a controller


205


that separately controls the above-noted signal electrode drive circuits


203


, swinging voltage generating circuit


206


, and level-converting circuit


207


.




In the above-noted drive circuit for a liquid-crystal display that uses the voltage swinging method of the past, it is necessary to use an input signal such that coincides with the difference in potential between the high-level voltage (VDD) and the low-level voltage (VSS) output from the above-noted swinging voltage generating circuit


206


.




Therefore, in a drive circuit for the liquid-crystal display of the past as described above, as shown in

FIG. 7

, the actual input signal (sign; indicated by a thick broken line in the drawing) is generated by voltage conversion so as to vary as shown by the thick line in the drawing (signV).




Therefore, in a drive circuit for a liquid-crystal display in the past, it is minimally required that the above-noted level-converting circuit


207


be provided, and there is the problem that this makes it difficult to achieve a downsizing of the overall drive circuit of this liquid-crystal display.




Additionally, as seen from the scanning electrode drive device, it is not necessary to have the overall circuit have a high withstand voltage, and on the contrary, it is desirable that in particular, a portion which processes controlling signals, other than output signals for driving a liquid crystal, is composed by devices having a low withstand voltage from the standpoint of low power consumption and compactness.




However, in the currently used configuration that employs the voltage swinging method, implementation using a low withstand voltage circuit is difficult.




An object of the present invention is to improve on the above-noted prior art, and to provide a circuit capable of direct input of an input signal the level of which is fixed, without shifting the level of the input signal while employing the voltage swinging method.




DISCLOSURE OF THE INVENTION




To achieve the above-noted object, the present invention employs the basic technical constitution described below. Specifically, a first aspect of the present invention is a liquid-crystal display drive circuit having a signal electrode driver which drives a plurality of signal electrodes and a scanning electrode driver which drives a plurality of scanning electrodes, an input signal from an external system being directly input to the scanning electrode drive device being driven, by a voltage swinging drive method.




In a second aspect of the present invention, a liquid-crystal display comprising a liquid-crystal display means, a signal electrode driving means which drives a plurality of a signal electrode that is connected to said liquid-crystal display means, and a scanning electrode driving means which drives a plurality of scanning electrode that is connected to said liquid-crystal display, a liquid-crystal display drive circuit minimally configured so that when driving each driving means using a voltage swinging drive method, an input signal from an external system is directly input to said scanning electrode driving means.




Additionally, a third aspect of the present invention is a liquid-crystal display driving method whereby, in a liquid-crystal display comprising a signal electrode driver which drives a plurality of signal electrodes and a scanning electrode driver which drives a plurality of scanning electrodes, a liquid-crystal display driving method whereby an input signal from an external system is directly input to said scanning electrode drivers which are driven by a voltage swinging drive method, so as to perform drive thereof.




A fourth aspect of the present invention is a liquid-crystal driving method used in a liquid-crystal display comprising a liquid-crystal display means, a signal electrode driving means which drives a plurality of signal electrode that is connected to said liquid-crystal display means, and a scanning electrode driving means which drives a plurality of scanning electrode that is connected to said liquid-crystal display, and the a liquid-crystal display driving method configured so as to convert a signal voltage level of an input signal from an external system to a low withstand voltage power supply potential level used within said scanning electrode driving means when driving each driving means using a voltage swinging drive method and so as to apply said converted level to said scanning electrode driving means.











SIMPLE DESCRIPTION OF THE DRAWINGS





FIG. 1

is a drawing which shows the circuit configuration in an embodiment of the present invention.




FIG.


2


(A) is a drawing which shows the power supply potential in the voltage swinging method in an embodiment of the present invention, and




FIG.


2


(B) is a drawing which shows the input signal voltage level with respect to the power supply potential in the voltage swinging method in an embodiment of the present invention.





FIG. 3

is a block diagram which shows the configuration of an example of a liquid-crystal display drive circuit according to the present invention.





FIG. 4

is a drawing which shows the power supply potential in the prior art.





FIG. 5

is a drawing which shows the power supply potential in the voltage swinging method in the prior art.





FIG. 6

is a block diagram which shows an example of the configuration of a liquid-crystal display drive circuit of the prior art which uses the voltage swinging method.





FIG. 7

is a drawing which shows an example of the voltage level of an input signal in the voltage swinging method of the prior art.











PREFERRED EMBODIMENTS OF THE PRESENT INVENTION




Preferred embodiments of a liquid-crystal display drive circuit and driving method according to the present invention will be described, with reference being made to relevant accompanying drawings.




Specifically, in a liquid-crystal display having, for example, a signal electrode drive device that drives a plurality of signal electrode and a scanning electrode drive device that drives a plurality of scanning electrode, a liquid-crystal display drive circuit according to the present invention is capable of directly inputting a signal from an external system to the scanning electrode drive device to drive it by using the voltage swinging method.




That is, according to the above-noted configuration, without changing the potential of an input signal from an external system, and without adjusting the potential in the voltage swinging method by making a level shift, it is possible to input the signal directly to the scanning electrode drive device being driven using the voltage swinging method.




By way of detailed description of the liquid-crystal display drive circuit


200


of the present invention, which is shown in

FIG. 3

, in a drive circuit of liquid-crystal display


200


(LCD panel), which is formed by, for example, the signal electrode drive circuit means


203


that each drives a signal electrode and the scanning electrode driving circuits


204


that each drives a scanning electrode, the liquid-crystal display drive circuit


200


according to the present invention is capable of directly inputting a signal (sign) from an external system to the scanning electrode driving circuits


204


to drive them by using the voltage swinging method.




That is, in a liquid-crystal drive circuit


200


which is formed by a liquid crystal display means


202


, the signal electrode driving means


203


which drives a plurality of signal electrodes and which are connected to the liquid-crystal display means


202


, and the scanning electrode driving circuits


204


which drives a plurality of scanning electrodes and which are connected to the liquid-crystal driving means


202


, the liquid-crystal drive circuit


200


is configured so that, when driving a specific scanning electrode driving circuits


204


of the above-noted driving means using the voltage swinging method, the liquid-crystal display drive circuit


200


according to the present invention is configured so as to directly input an input signal (sign) from an external system to the above-noted scanning electrode driving circuits


204


.




That is, a specific configuration of a liquid-crystal display drive circuit


200


according to the present invention is shown in

FIG. 3

, in which drawing the liquid-crystal driving circuit


200


is formed from the signal electrode driving means


203


which drives the signal electrodes of the liquid-crystal display means


202


and the scanning electrode driving circuits


204


which drives the scanning electrodes provided in a direction that perpendicularly intersects these signal electrode driving circuits, and in particular this liquid-crystal driving circuit


200


has a swinging voltage generating circuit


206


that generates a swinging voltage with respect to the above-noted scanning electrode driving circuits


204


, an appropriate signal input means


208


which applies a prescribed signal to the above-noted scanning electrode driving circuits


204


, and a controller


205


that separately controls the above-noted signal electrode driving means


203


, the above-noted swinging voltage generating circuit


206


, and the above-noted scanning electrode driving circuits


204


.




Thus, in the present invention, within the above-noted scanning electrode driving circuits


204


, a signal level converting means


100


is provided which converts an input signal from an external signal (sign), which is applied to the above-noted scanning electrode driving circuits


204


via the appropriate signal input means


208


, to a prescribed level.




Next, by way of description of the configuration of the signal level converting means


100


that is part of the liquid-crystal display driver


200


according to the present invention, it is desirable that this signal level converting means


100


have a circuit configuration such as described below.




Specifically, the above-noted signal level converting means


100


is desirably configured so as to have a function which converts the high-level potential and the low-level potential of an input signal from an external system to a high-level potential and a ground potential of a scanning drive voltage that drives the above-noted scanning electrode driving circuits


204


.




Additionally, as a more specific description of the configuration of the above-noted signal level converting means


100


in a liquid-crystal display driver


200


according to the present invention, this signal level converting means


100


according to the present invention is preferably configured so as to have, as shown in

FIG. 1

, a signal input section


101


, an output signal section


102


, and an inverting means


103


which is connected to the signal input section


101


and the output signal section


102


.




More specifically, for example, the above-noted signal input section


101


has a signal inputting means


30


, a first inputting means


1


which inputs a high-level potential (VDL) of an input signal from an external system, a second inputting means


2


which inputs a low-level potential signal (VSL) of an input signal from an external system, a third inputting means


3


which is connected to a power supply potential (VCC) having a low withstand voltage within the scanning electrode driver, and a first connecting means


4


which is connected to a ground potential (VSS) within the scanning electrode driver.




Yet more specifically, with regard to the above-noted signal input section


101


, this signal input section has a first MOSFET


5


of a first conduction type, the gate of which is connected to the above-noted signal inputting means


30


and the source of which is connected to a first input


1


, a second MOSFET


6


of the first conduction type, the gate of which is connected to the above-noted second inputting means


2


and the source of which is connected to the above-noted signal inputting means


30


, and which has a back gate that is in common with the above-noted first MOSFET


5


that is connected to the above-noted first inputting means


1


, a third MOSFET


7


of a second conduction type, having a source which is connected to the drain of the above-noted first MOSFET


5


and having a gate that is connected to the above-noted third inputting means


3


, a fourth MOSFET


8


of the second conduction type, having a source that is connected to the drain of the above-noted second MOSFET


6


, having a gate that is connected to the above-noted third inputting means


3


, and having a back gate that is in common with the above-noted third MOSFET


7


which is connected to the above-noted first connecting means


4


, a fifth MOSFET


9


of the second conduction type, having a source that is connected to the drain of the above-noted third MOSFET


7


, having a drain that is connected to the above-noted first connecting means


4


, and having a gate that is connected to the drain of the second MOSFET


6


, and a sixth MOSFET


10


of the second conduction type, having a source that is connected to the drain of the above-noted fourth MOSFET


8


, having a drain that is connected to the above-noted first connecting means


4


, and having a gate that is connected to the drain of the first MOSFET


5


.




Additionally, the above-noted first inputting means


1


is connected to the power supply input section of the inverting means


103


which is configured in two stages, and the drain of the above-noted second MOSFET


6


is connected to the inputting means


11


of the first stage inverter INV


1


in this inverting means


103


.




The above-noted output signal section


102


is formed by a seventh MOSFET


16


and an eight MOSFET


17


of the first conduction type, the sources of which are connected to a power supply potential


40


(VCC) having a low withstand voltage within the above-noted scanning electrode driver, a ninth MOSFET


18


of the second conduction type, the source of which is connected to the drain of the seventh MOSFET


16


and also connected to the gate of the eight MOSFET


17


, the drain of which is connected to the above-noted first connecting means


4


, and the gate of which is connected to an outputting means


13


of the second stage inverting means INV


2


, a tenth MOSFET


19


of the second conduction type, the source of which is connected to the drain of the eight MOSFET


17


and also connected to the gate of the seventh MOSFET


16


, the drain of which is connected to the first connecting means


4


and the gate of which is connected to the outputting means


12


of the first stage inverting means INV


1


, and an outputting means


15


which is provided at the source of the tenth MOSFET


19


.




In above example of the present invention, the first stage inverting means INV


1


is configured, for example, by a PMOSFET


107


and an NMOSFET


108


, and the second stage inverting means INV


2


is configured, for example, by a PMOSFET


109


and an NMOSFET


110


.




Next, the operation and signal conversion processing method in the above-described example of a liquid-crystal display driving circuit according to the present invention will be described in detail.




Specifically,

FIG. 1

is a drawing for the purpose of showing the circuit configuration for implementing the according to the present invention.




In this drawing, the reference numerals


5


,


6


,


107


, and


109


indicate high withstand voltage PMOS devices,


7


,


8


,


9


,


10


,


108


,


110


,


18


, and


19


indicated high withstand voltage NMOS devices, and


16


and


17


indicate low withstand voltage PMOS devices.




The power supply potentials input to the scanning electrode driver shown in

FIG. 1

are indicated in FIG.


2


(A)




By way of description of the potentials shows in

FIG. 2

, VDD is a high withstand voltage power supply potential within the scanning electrode driver, VCC is the low withstand voltage power supply potential within the scanning electrode driver, VSS is the ground potential within the scanning electrode driver, VDL is the high-level potential of an input signal from an external system, and VSL is the low-level potential of an input signal from an external signal, this being the external system ground potential.




The operation of the circuit which is shown in

FIG. 1

will now be described.




First, we will consider the case in which the input signal is at the high level, that is, when the input signal is VDL. When VDL is input, the PMOS device


5


is off, and the PMOS device


6


is on.




When this happens, the gate of the NMOS device


9


has VDL applied to it, this causing the NMOS device


9


to turn on, with the NMOS device


7


also being turned on, the result being that the gate of the NMOS device


8


has VSS applied to it, this causing shutoff of the NMOS device


8


.




As a result, the gates of the first inverter stage INV


1


which is formed by the PMOS device


107


and the NMOS device


108


have VDL applied to them, this causing VSS to be output from the output of the first inverter stage INV


1


.




The gates of the subsequent second inverter stage INV


2


, which is formed by the PMOS device


109


and the NMOS device


110


, have VSS applied to them from the proceeding inverter output, so that VDL is output from this second inverter stage INV


2


.




While the PMOS device


6


and the NMOS device


8


are each in the on condition, because the NMOS device


9


and the PMOS device


5


which are respectively connected in series therewith are off, unless the input signal changes, current does not flow, thereby enabling a reduction of wasteful power consumption.




The output of the first inverter stage INV


1


, which is formed by the PMOS device


107


and the NMOS device


108


is the gate input of the NMOS device


19


, this causing the NMOS device


19


to be switched off.




The output of the second inverter stage INV


2


, which is formed by the PMOS device


109


and the NMOS device


5


is the gate input to the NMOS device


18


, which causes this NMOS device


18


to be on.




Because the NMOS device


18


is on, the gate of the PMOS device


17


has VSS applied to it, this causing the PMOS device


17


to be switched on.




When the PMOS device


17


is switched on, the gate of the PMOS device


16


has VCC applied to it, this causing the PMOS device


16


to be off.




As a result, VCC is output as the output signal. That is, the output is the high level of the potential level within the scanning electrode driver is output.




Next, consider the case in which the input signal is a low level, that is, the case in which VSL is input. When VSL is input, the PMOS device


101


is turned on, and the PMOS device


6


is turned off.




When this occurs, the gate of the NMOS device


10


has VDL applied to it, so that the NMOS device


10


is turned on.




When this happens, the NMOS device


8


also is turned on, so that the gate of the NMOS device


9


has VSS applied to it, this causing shutoff of the NMOS device


9


.




As a result, VSS is applied to the gates of the inverter that is formed by the PMOS device


107


and the NMOS device


108


, the output of this inverter thereby being made VDL. The gates of the subsequent inverter which is formed by the PMOS device


109


and the NMOS device


110


have VDL applied to them from the output of the previous inverter, and VSS is output.




The output of the inverter that is formed by the PMOS device


107


and the NMOS device


108


is the gate input of the NMOS device


19


. The output of the inverter that is formed by the PMOS device


109


and the NMOS device


110


is the gate input of the NMOS device


18


, so that the NMOS device


18


is turned off.




Because the NMOS device


19


is on, VSS is applied to the gate of the PMOS device


16


, this causing the PMOS device


16


to be turned on.




When the PMOS device


16


is turned on, VCC is applied to the gate of the PMOS device


17


, this causing the PMOS device


17


to be turned off.




As a result, the output signal is VSS. That is, the output is the low level in the potential level within the scanning electrode driver.




As noted in the above operational description, when the input signal is VDL, level conversion is performed by the circuit of

FIG. 1

, thereby causing a shift to VCC. That is, there is a conversion to a high-level signal for low-voltage logic within the scanning electrode driver.




In the same manner, when the input signal is VSL, level conversion is performed by the circuit of

FIG. 1

, thereby causing a shift to VSS. This represents a conversion to the low-level signal for low-voltage logic within the scanning electrode driver.




Because it is possible to automatically convert the above-described input signal (sign) to low-level voltages used with the scanning electrode driving circuits, as shown in FIG.


2


(B), it is possible to directly apply the input signal to the scanning electrode driving circuits, without providing a special level converting means.




Therefore, in subsequent circuits which do not need to have high withstand voltages, the need to use high-voltage MOS devices is eliminated, this making it possible to perform signal processing entirely with low-voltage MOS devices.




For this reason, it is possible to reduce the chip surface area, and also possible to achieve a savings in power consumption.




As is clear from the specific example noted above, in the present invention it is desirable that the method of driving the liquid-crystal display be as follows.




Specifically, in a liquid-crystal display drive circuit


200


having a plurality of signal electrode driving means


203


which each drives a signal electrode and a plurality of scanning electrode driving circuits


204


which each drives a scanning electrode, this method is that of performing drive by directly inputting an input signal from an external system to the scanning electrode driving circuits


204


which is driven by the voltage swinging method, and this method is desirably configured so that, in a liquid-crystal display


200


which is formed by a liquid-crystal display means


200


, a plurality of signal electrode driving means


203


which each drives a signal electrode, and a plurality of scanning electrode driving circuits which each drives a scanning electrode, when performing drive of the scanning electrode driving circuits


204


using the voltage swinging method, conversion is made to low-voltage logic levels used within the scanning electrode driving circuits


204


.




In a liquid-crystal display driving circuit according to the present invention, by virtue of the above-described technical constitution, using the voltage swinging method it is possible by performing input of a signal without external level conversion, thereby simplifying external circuitry. Additionally, because it is possible to configure the circuit using low-voltage MOS devices rather than the high-voltage MOS devices which have usually been used and also because it is possible to perform operation with low voltage that was previously done with high voltage, it is possible to achieve the effect of a reduction in power consumption.



Claims
  • 1. A liquid-crystal display drive circuit comprising:a plurality of signal electrodes; a signal electrode driving circuit for driving the plurality of signal electrodes; a plurality of scanning electrodes; a scanning electrode driving circuit for driving the plurality of scanning electrodes; a voltage swinging drive circuit, said liquid-crystal display driving circuit being capable of direct input of an input signal from an external system to said scanning electrode driving circuit the scanning electrode driving circuit being driven by said voltage swinging drive circuit, and within said scanning electrode driving circuit a signal level converting means is located for converting a signal level of an input signal input from an external system, wherein said signal level converting means comprises a signal input section, a signal output section, and an inverter means which is connected to said signal input section and said output signal section, said signal input section comprising: a signal input means; a first inputting means which inputs a high-level potential {VDL) of an input signal from an external system; a second inputting means which inputs a low-level potential signal {VSL) of an input signal from an external system; a third inputting means which is connected to a power supply potential (VCC) having a low withstand voltage within said scanning electrode driver; and a first connecting means which is connected to a ground potential (VSS) within said scanning electrode driver, wherein said signal input means further comprising: a first MOSFET of a first conduction type, the gate of which is connected to said signal inputting means and the source of which is connected to a first inputting means; a second MOSFET of said first conduction type, the gate of which is connected to said second inputting means and the source of which is connected to said signal inputting means, and which has a back gate that is in common with said first MOSFET that is connected to said first inputting means; a third MOSFET of a second conduction type, having a source which is connected to the drain of said first MOSFET and having a gate that is connected to said third inputting means; a fourth MOSFET of said second conduction type, having a source that is connected to said drain of said second MOSFET, having a gate that is connected to said third inputting means, and having a back gate that is in common with said third MOSFET which is connected to said first connecting means, a fifth MOSFET of said second conduction type, having a source that is connected to said drain of said third MOSFET, having a drain that is connected to said first connecting means, and having a gate that is connected to said drain of said second MOSFET; and a sixth MOSFET of said second conduction type, having a source that is connected to said drain of said fourth MOSFET, having a drain that is connected to said first connecting means, and having a gate that is connected to said drain of said first MOSFET, and further wherein, said first inputting means being connected to the power supply input section of said inverting means which is configured in two stages, and said drain of said second MOSFET is connected to said inputting means of the first stage inverter INV1 in this inverting means, and wherein, said output signal section comprising: a seventh MOSFET and an eighth MOSFET of said fist conduction type, the sources of which are connected to a power supply potential (VCC) having a low withstand voltage within said scanning electrode driver; a ninth MOSFET of said second conduction type, the source of which is connected to the drain of the seventh MOSFET and also connected to the gate of said eighth MOSFET, the drain of which is connected to said first connecting means, and the gate of which is connected to an outputting means of said second stage inverting means; a tenth MOSFET of said second conduction type, the source of which is connected to the drain of said eighth MOSFET and also connected to said gate of said seventh MOSFET, the drain of which is connected to said first connecting means and the gate of which is connected to the outputting means of said first stage inverting means; and an outputting means which is provided at the source of said tenth MOSFET.
Priority Claims (1)
Number Date Country Kind
9-43329 Feb 1997 JP
Parent Case Info

This application is the national phase under 35 U.S.C. §371 of prior PCT International Application No. PCT/JP98/00770 which has an International filing date of Feb. 26, 1998 which designated the United States of America, the entire contents of which are hereby incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/JP98/00770 WO 00
Publishing Document Publishing Date Country Kind
WO98/38626 9/3/1998 WO A
US Referenced Citations (10)
Number Name Date Kind
5559526 Izawa Sep 1996 A
5578957 Erhart et al. Nov 1996 A
5627556 Kwon et al. May 1997 A
5650801 Higashi Jul 1997 A
5714844 Sato Feb 1998 A
5838287 Kuijk Nov 1998 A
5870071 Kawahata Feb 1999 A
6064361 Akiyama May 2000 A
6067064 Furuhashi et al. May 2000 A
6118425 Kudo et al. Sep 2000 A
Foreign Referenced Citations (1)
Number Date Country
7-334122 Dec 1995 JP