The present invention relates to data transfer between circuits. More particularly, the present invention relates to a circuit used to transfer a data value reliably between circuits that are clocked by non-synchronous clock signals.
The output of the binary phase accumulator circuit can be configured to provide an integer portion representing the number of complete clock cycles of the input clock between binary phase accumulator circuit overflows as well as the fractional portion that is stored in the register at overflow. A clock edge of the fractionally divided clock signal can be generated by delaying the input clock signal that caused the overflow by the fractional portion that is stored in the register at overflow.
There sometimes exists a need for one or more circuits that are not synchronous to the system clock signal, i.e. not synchronous to the input clock signal of the fractional frequency divider circuit, to capture and use the n-bit phase value produced by the binary phase accumulator circuit or other circuit of the fractional frequency divider circuit for various purposes. One example is counters for each phase, or group of phases, which increment or decrement at each edge of a target output clock signal generated by a frequency synthesizer employing a binary phase accumulator circuit where the target output clock signal is non-synchronous to the system clock signal. The n-bit phase value to be captured and used must adhere to proper setup and hold requirements at each clock edge presented to logic elements such as flip-flops in the other circuits clocked by a clock signal other than the system clock signal.
In accordance with an aspect of the present invention, a circuit for transferring a N-bit phase value between circuits clocked by non-synchronous clock signals includes an input for a system clock signal, and a phase and marker signal generator coupled to the input for the system clock signal, the phase and marker signal generator including a binary phase accumulator circuit configured to generate an n-bit phase value output, and an edge signal configured to indicate that the n-bit phase value output is a valid n-bit phase value output. The circuit further includes, a latching clock delay circuit having a first input coupled to the input system clock signal, a second input coupled to receive the edge signal of the phase and marker signal generator, and an output, an n-bit variable phase delay circuit having an input, a control input, and an output, the input coupled to the n-bit phase value output of the phase and marker signal generator, a multibit delay adder having a first input coupled to the n-bit phase value output of the phase and marker signal generator, a second input coupled to an n-bit phase delay offset signal, and an output coupled to the control input of the n-bit variable phase delay circuit, and an n-bit phase flip-flop having data inputs coupled to the output of the n-bit variable phase delay circuit, a clock input coupled to the output of the latching clock delay circuit and a Phase Out output.
In accordance with an aspect of the present invention, the latching clock delay circuit includes a gate having a first input coupled to the input system clock signal, a second input coupled to receive the edge signal of the phase and marker signal generator, and an output, a variable latching clock delay circuit having an input coupled to the output of the gate and an output, and a fixed latching clock delay circuit having an input coupled to the output of the variable latching clock delay circuit and an output coupled to the output of the latching clock delay circuit.
In accordance with an aspect of the present invention, the gate is an AND gate, and the variable latching clock delay circuit includes a control input coupled to the to the n-bit phase value output of the phase and marker signal generator.
In accordance with an aspect of the present invention, the binary phase accumulator circuit in the phase and marker signal generator is configured to accumulate a frequency control word value (FCW) at every system clock signal edge, output the accumulated FCW value as the n-bit phase value output after each system clock signal edge. When the accumulated FCW value reaches an integer overflow value, the binary phase accumulator circuit is configured to modify the generated n-bit phase value output at the subsequent system clock signal edge to be equal the integer overflow value minus an immediately previous value of the n-bit phase value output, and output the edge signal at the subsequent system clock signal edge.
In accordance with an aspect of the present invention, the circuit further includes a marker output of the phase and marker signal generator, a variable marker delay circuit having an input, a control input, and an output, the input coupled to the marker output of the phase and marker signal generator, the control input of the variable marker delay circuit coupled to the output of the multibit delay adder, and a marker flip-flop having a data input coupled to the output of the variable marker delay circuit, a clock input coupled to the latching clock delay circuit and a latched Marker Out output.
In accordance with an aspect of the present invention, the phase and marker signal generator is configured to generate a marker signal at the marker output every N system clock signal cycles in the same system clock signal cycle as the edge signal of the phase and marker signal generator.
In accordance with an aspect of the present invention, a method for transferring a transfer n-bit phase value between circuits clocked by an edge of a system clock signal and circuits clocked by an edge of a latching clock output signal, where the latching clock output signal is non-synchronous with the system clock signal includes generating a new n-bit phase value by accumulating a frequency control word in response to an edge of the system clock signal, setting a delay for the new n-bit phase value to be a function of the new n-bit phase value and a fixed period, The method further includes, when the n-bit phase value equals or exceeds an integer overflow value, generating an edge signal, setting a transfer n-bit phase value equal to a value by which the new n-bit phase value exceeded the integer overflow value, and generating a latching clock output signal responsive to the generated edge signal and delayed from the edge of the system clock signal by a latching clock delay that is a function of the transfer n-bit phase value and a fixed latching clock delay.
In accordance with an aspect of the present invention, the latching clock delay is the sum of the transfer n-bit phase value and the fixed latching clock delay.
In accordance with an aspect of the present invention, the fixed latching clock delay is derived from circuit characteristics.
In accordance with an aspect of the present invention, the fixed period is derived from characteristics of the circuits clocked by the edge of the system clock signal.
In accordance with an aspect of the present invention, the fixed latching clock delay comprises a delay derived from characteristics of the circuits clocked by the edge of the system clock signal.
In accordance with an aspect of the present invention, the latching clock delay is set to be greater than the delay for the new n-bit phase value.
In accordance with an aspect of the present invention, the method further includes generating a marker signal every N system clock edges.
In accordance with an aspect of the present invention, generating a marker signal every N system clock edges includes generating the marker signal synchronously with the edge signal.
In accordance with an aspect of the present invention, the method further includes latching the marker signal.
In accordance with an aspect of the present invention, latching the marker signal includes latching the marker signal using the generated latching clock output signal.
The invention will be explained in more detail in the following with reference to embodiments and to the drawing in which is shown:
Persons of ordinary skill in the art will realize that the following description is illustrative only and not in any way limiting. Other embodiments will readily suggest themselves to such skilled persons.
In one example shown in block diagram form in
In a binary phase accumulator cycle, each clock cycle of an input clock signal (e.g., a clock cycle of a system clock signal) produces a new n-bit phase value at the output of the accumulator adder consisting of the previous output obtained from the register summed in the adder with a frequency control word (FCW) which FCW is constant for generating a target output clock signal at the target output clock frequency. In some configurations, the n-bit phase value output is taken from the output of the register which introduces a latency of one clock cycle of the input clock signal but allows the adder to operate at a higher clock rate.
The accumulator adder in a binary phase accumulator circuit employed as a fractional frequency divider circuit is configured to overflow when the sum of the absolute value of its operands exceeds its capacity (a quantity that sets the integer portion of the frequency divisor and that is referred to in the description accompanying
As a non-limiting examples, in order to divide the frequency of the input clock signal by 2 where the input clock cycle has been divided into 1,024 phase increments, the FCW is chosen to be 1,024 and the capacity of the phase accumulator is set to be equal to 2,048. The circuit senses when the accumulator output exceeds the integer overflow value of 2,048 (which provides the integer portion of the divisor=2048/1024=2) and at that time the amount by which the accumulated FCW exceeds the integer overflow value (which would be 2×1,024 minus 2,048=0) is the fractional portion of the divisor. A remainder value of 0 is a fractional value of 0. In order to divide an input clock signal by 2½, the FCW is selected to be equal to 1,280 and the capacity of the phase accumulator is set to be equal to 2,048. The circuit senses when the accumulator output exceeds the capacity of 2,048 (which provides the integer portion of the divisor=2048/1024=2) and at that time the amount by which the accumulated FCW exceeds the integer overflow value (which would be 2×1,280 minus 2,048=512) is the fractional portion of the divisor. Since the phase value for an entire period of the clock cycle is 1,024 a remainder value of 512 is a fractional value of ½. In general, for any fractional divisor having an integer portion I and a fraction portion F=x/y where the input clock cycle is quantized into Q segments, FCW is chosen to be (Q+(x/y)/1).
Persons of ordinary skill in the art will appreciate that the binary phase accumulator circuit 10 is shown as a circuit employing logic elements and that the binary phase accumulator circuit 10 could be configured from software running on a processor. The binary phase accumulator 10 is configured to divide the frequency of an input clock signal by a fractional divisor including an integer portion I and a fractional portion F.
In the binary phase accumulator circuit 10 an accumulator adder 12 has a first input coupled to a current n-bit phase value output 14 and a second input coupled to a stored FCW indicated at reference numeral 16. As previously noted the value assigned to the stored FCW at reference numeral 16 is chosen based on the fractional portion of the divisor that will be used to divide the frequency of a system clock signal that is provided on line 18 from a system clock source 20, which may be provided as part of binary phase accumulator circuit 10, or may be external to binary phase accumulator circuit 10, with the system clock signal received from such an external source on line 18.
The n-bit output of the accumulator adder 12 on lines 22, denoted SUM, is coupled to a first input (minuend) of an overflow subtractor 24. The second input (subtrahend) of the overflow subtractor 24 is coupled to a stored integer overflow value (IOV) indicated at reference numeral 26. The value assigned to the stored IOV at reference numeral 26 is chosen based on the integer portion of the divisor that will be used to divide the frequency of the system clock signal that is provided on line 18 from the system clock source 20.
The n-bit SUM output of the accumulator adder 12 on lines 22, is further coupled to a first input of multiplexer 28. The n-bit DIFFERENCE output of overflow subtractor 24 on lines 30 is coupled to a second input of multiplexer 28. The n-bit SUM output of accumulator adder 12 is further coupled to a first input of magnitude comparator 32 and the stored IOV 26 is further coupled to a second input of magnitude comparator 32. The output of magnitude comparator 32, denoted CARRY, is coupled to the select input of multiplexer 28 on line 34. The n-bit output of multiplexer 28 is coupled to a data input of flip-flops 36 that is used as an n-bit phase value register. A clock input of the flip-flops 36 is coupled to the system clock signal that is provided on line 18 from the system clock source 20. The output of flip-flops 36 provide the n-bit phase value output 14 of the binary phase accumulator circuit 10.
The accumulator adder 12 in the binary phase accumulator 10 adds the FCW stored at reference numeral 16 to the current n-bit phase value output on line 14 and generates the sum output of the accumulator adder 12 (SUM) on line 22 (a new n-bit phase value). Overflow subtractor 24 subtracts the IOV stored at reference numeral 26 from the SUM on line 22 and generates the DIFFERENCE output on line 30. Magnitude comparator 32 compares the SUM on line 22 (i.e. the n-bit phase value output+FCW) to IOV and generates a CARRY signal output on line 34 only when the SUM on line 22 is greater than, or equal to, the IOV stored at reference numeral 26.
The DIFFERENCE output of the overflow subtractor 24 on lines 30 is initially negative as the IOV is greater than the SUM on lines 22. The CARRY signal on line 34 will therefore initially be low, causing the multiplexer 28 to pass the SUM on lines 22 to the data input of the flip-flops 36. The SUM on lines 22 will be latched to the output of flip-flops 36 as the n-bit phase value output on the next clock pulse of the system clock signal on line 18 from the system clock source 20.
When the SUM on lines 22 becomes equal to or greater than the IOV stored at reference numeral 26, the DIFFERENCE output of the overflow subtractor 24 on lines 30 will be equal to the fractional portion of the divisor used to divide the frequency of the system clock signal on line 18. At this time, the CARRY signal output on line 34 will become high and the multiplexer 28 will pass the fractional portion of the divisor used to divide the frequency of the system clock signal to the data input of the flip-flops 36. The fractional portion of the divisor will be latched into the output of the flip-flops 36 as the n-bit phase value output on the next clock pulse of the system clock signal on line 18 from the system clock source 20 and will be used as a transfer n-bit phase value that will be provided in accordance with the present invention.
A flip-flop 38 may optionally be included as a CARRY signal register. Data input of flip-flop 38 is coupled to the output of magnitude comparator 32 such that the CARRY signal on line 34 is coupled to flip-flop 38. The clock input of flip-flop 38 is coupled to the output of the system clock source 20 on line 18. The flip-flop 38 will latch the CARRY signal on line 34 on the next clock pulse of the system clock signal on line 18. The data output of the flip-flop 38 generates an Edge signal output on line 40. Persons of ordinary skill in the art will appreciate that the Edge signal output on line 40, delayed by the n-bit phase value on line 14, can be used as an edge of a synthesized output clock signal. The edge signal indicates that the output of the flip-flops 36 is a valid n-bit phase value, i.e. the output of the flip-flops 36 represent the fractional portion of the divisor used to divide the frequency of the system clock signal. The valid n-bit phase value is the delay from the edge of the system clock to the edge of a target, or output clock, being produced.
Referring now to
The circuit 50 includes a phase and marker signal generator 52 that is coupled to the system clock signal on line 18 from the system clock source 20 (in the first clock domain). The phase and marker signal generator 52 includes a binary phase accumulator circuit like the binary phase accumulator circuit 10 of
In some embodiments of the invention, the phase and marker signal generator 52 includes both an n-bit phase value output on lines 14 that is coupled to an input of an n-bit variable phase delay circuit 56 and a marker signal output on line 54 that is coupled to an input of variable marker delay circuit 64. The marker signal on line 54 is generated periodically every N cycles of the system clock signal on line 18 and is asserted in the same cycle of the system clock signal as the generation of the Edge signal on line 40. The marker signal on line 54 can be used for various purposes, one example being to signal a system of the occurrence of a particular Edge signal for the purpose of changing the divisor used in a frequency synthesizer included in the system. The marker signal on line 54 can be implemented by any of a number of different circuits. In the example shown in
The n-bit variable phase delay circuit 56 functions to delay the n-bit phase value output on lines 14 by a variable amount. The delayed n-bit phase value at the output of the n-bit variable phase delay circuit 56 is shown as being coupled in series with an n-bit fixed phase delay circuit 58 having an output coupled to the data input (D) of n-bit phase value flip-flop 60. N-bit fixed phase delay circuit 58 is not an actual discrete circuit element in the design but represents the inherent delay through the n-bit phase value signal path from the phase and marker signal generator 52 to the data input of the n-bit phase flip-flop 60. The amount of delay provided by the fixed phase delay circuit 58 represents the distributed delay paths inherent in the design. The data outputs (Q) of the n-bit phase flip-flop 60 form the n-bit Phase Out output signal on lines 62.
The marker signal on line 54 is provided to the variable marker delay circuit 64 that functions to delay the marker signal. The delayed marker signal at the output of the variable marker delay circuit 64 is shown as being coupled to a fixed marker delay circuit 66 having an output coupled to the data input (D) of marker flip-flop 68. The fixed marker delay circuit 66 is not an actual discrete circuit element in the design but represents the inherent delay through the marker signal path from the phase and marker signal generator 52 to the data input of the marker flip-flop 68. The amount of delay provided by the fixed marker delay circuit 66 represents the distributed delay paths inherent in the design. The data output (Q) of the marker flip-flop 68 forms the Marker Out signal on line 70, which is thus a latched delayed marker output.
The amount of variable delay provided by variable marker delay circuit 64 is set to be the same amount as the variable delay provided by n-bit variable phase delay circuit 56. In some embodiments where the delay exhibited by fixed marker delay circuit 66 is significantly different from the delay exhibited by fixed phase delay circuit 58, the values presented by the respective variable marker delay circuit 64 and n-bit variable phase delay circuit 56 are preferably set to different amounts so as to compensate. In one particular embodiment, different phase delay offset AO signals, to be described further below, may be provided for each of the phase delay and marker delay paths. The n-bit variable phase delay circuit 56 and marker delay circuit 64 and the fixed phase delay circuit 58 and marker delay circuit 66 can be formed as analog delay circuits or as shift register delay circuits as is known in the art.
While the fixed phase delay circuit 58 and fixed marker delay circuit 66 are shown in
The amount of delay provided by the n-bit variable phase delay circuit 56 and the variable marker delay circuit 64 is determined as a function of the n-bit phase value output on lines 14. The n-bit phase value output on lines 14 is coupled to one set of inputs of a multibit delay adder 72. The other set of inputs of the multibit delay adder 72 is provided by an n-bit phase delay offset AO signal that is coupled to the multibit delay adder on lines 74. The n-bit output of the multibit delay adder 72 on lines 76 is a control signal that is coupled to a control input of both n-bit variable phase delay circuit 56 and variable marker delay circuit 64 and is used to set the delay time of each of n-bit variable phase delay circuit 56 and variable marker delay circuit 64. The phase delay offset AO signal on lines 74 is a fixed delay value selected to ensure a valid setup and hold time for the delayed n-bit phase value output coupled to the D inputs of the n-bit phase flip-flop 60 and the delayed marker signal at the D input of the marker flip-flop 68. The value of the phase delay offset AO signal on lines 74 is added to the n-bit phase value output on lines 14 in the multibit delay adder 72 and the resulting sum is the control signal that controls the delay of the variable phase delay circuit 56 and marker delay circuit 64. AO sets a minimum delay value when the n-bit phase value output on lines 14 is zero, i.e. at a minimum possible value, to assure that the delay through the circuit 50 from an edge of the system clock signal on line 18 to clock the phase flip-flop 60 and marker flip-flop 68, as will be described below, is longer than the total combined delay of the n-bit phase value through the n-bit variable phase delay circuit 56 and the fixed phase delay circuit 58 to the n-bit phase flip-flops 60 and longer than the total combined delay of the marker signal through the variable marker delay circuit 64 and the fixed marker delay circuit 66 to the marker flip-flop 68 when the n-bit phase value output on lines 14 is zero. The value of the phase delay offset AO signal on lines 74 is determined at circuit design time by considering the fixed delays in the binary phase accumulator circuit 10 and the marker and n-bit phase value output paths in circuit 10 plus some margin for setup/hold. The value of the phase delay offset AO signal on lines 74 is thus determined by characterizing the design in which the circuit 50 is used. The value of AO is held in a register and is initially set using circuit simulations and is trimmed as may be necessary when actual silicon is received and characterized.
The system clock signal on line 18 provided by system clock source 20 is coupled to a first input of a latching clock delay circuit 78. The Edge signal on line 40 identifies a system clock edge at which the n-bit phase value and Marker signals are valid and is coupled to a second input of the latching clock delay circuit 78. The latching clock delay circuit 78 functions to delay the Edge signal on line 40 to provide a latching clock signal in a second clock domain non-synchronous with the first clock domain for transferring the n-bit phase value (and optionally the marker signal). The Edge signal on line 40 is coupled to one input of an AND gate 80 of the latching clock delay circuit 78, and the system clock signal on line 18 is coupled to a second input of the AND gate 80. AND gate 80 uses the Edge signal to gate the system clock signal on line 18. The output of the AND gate 80 is coupled to the input of a variable latching clock delay circuit 82 of the latching clock delay circuit 78 that functions to delay the output of the AND gate 80 and whose delay value is set as a function of the n-bit phase value output on lines 14 to which its delay control input is coupled.
The output of the variable latching clock delay circuit 82 is shown as being coupled to a fixed latching clock delay circuit 84 having an output coupled to the clock inputs of the n-bit phase value flip flop 60 and the marker flip-flop 68. The fixed latching clock delay circuit 84 is not an actual discrete circuit element in the design but represents the inherent delay through the latching clock delay signal path from the Edge output of the phase and marker signal generator 52 to the clock inputs of the n-bit phase value flip flop 60 and the marker flip-flop 68. The amount of delay provided by the fixed latching clock delay circuit 84 represents the distributed delay paths inherent in the design. The variable latching clock delay circuit 82 is set to provide a latching clock delay that is longer than each of the variable phase delay circuit 56 and the variable marker delay circuit 64 and to have a delay long enough to assure that the delayed n-bit phase value signal output by fixed phase delay circuit 58 and the delayed marker signal output by fixed marker delay circuit 66 both meet the setup times required by the n-bit phase flip flop 60 and the marker flip flop 68 when the n-bit phase value is zero. The delay of the variable latching clock delay circuit 82 is selected as a function of the characteristics of the particular design. The reason for providing the variable latching clock delay circuit 82 in addition to the n-bit variable phase delay circuit 56 is that delays need to be provided in both the clock and data paths to the n-bit phase flip flop 60 and the marker flip-flop 68 is to assure that the n-bit phase value being set up and held for latching is the correct one. This is necessary because, depending on the period of the latching clock output signal 86, the fixed circuit delays inherent in the circuit 50 represented by reference numerals 58, 66, and 84 can be longer than the period of the latching clock output signal 86. In such instances, failure to delay signal on both the data paths and the clock paths to the n-bit phase flip flop 60 and the marker flip-flop 68 will lead to the wrong n-bit phase value being latched. Delaying the data path signals as well as the clock path signal to the n-bit phase flip flop 60 and the marker flip-flop 68 assures that the correct n-bit phase data is being latched in the n-bit phase flip flop 60 and that the Marker signal has not ended prior to the latching clock output signal 86 arriving at the clock input to the marker flip-flop 68.
The output of the fixed latching clock delay circuit 84 is the output of the latching clock delay circuit 78 and forms the latching clock output signal and is coupled to the clock inputs of the n-bit phase flip-flops 60 and the marker flip-flop 68. The latching clock output signal on line 86 is in the second clock domain and is generated in response to the edge of the system clock signal on line 18 gated by the Edge signal and the corresponding delay provided by the variable output latching clock delay circuit 82 and the fixed output latching clock delay circuit 84. The latching clock output signal on line 86 is non-synchronous to the system clock signal on line 18.
Referring now to
At reference numeral 94, the system waits in a loop for a system clock signal edge. At the edge of the system clock signal as indicated by the decision at reference numeral 94, a new n-bit phase value is generated by accumulating a frequency control word at reference numeral 96. At reference numeral 98, a delay for the new n-bit phase value (and optionally marker signal) is set to be a function of the value of the new n-bit phase value and a fixed period, optionally derived from the characteristics of the circuit.
At reference numeral 100, it is determined whether the new n-bit phase value is equal to, or greater than, an integer overflow value. If not, the method returns to reference numeral 94, where the system waits in a loop for another system clock edge.
If at reference numeral 100 it is determined that the new n-bit phase value is equal to. or greater than, the integer overflow value (reference numeral 26 of
At reference numeral 106 a latching clock output signal is generated, responsive to the Edge signal, and delayed from the edge of the system clock by a latching clock delay (e.g. by the output clock delay circuit 78), whose delay is equal to the transfer n-bit phase value and a fixed latching clock delay (e.g. by a serial combination of the variable output latching clock delay circuit 82 and the fixed output latching clock delay circuit 84 of
The present invention requires less circuitry than would be required by a solution that re-creates the phase information, by for example, replicating the binary phase accumulator circuit 10 in the output clock domain. Such a solution would also require additional synchronization circuitry. The present invention saves power and area/cost compared to such an alternative solution.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/947,195, filed on Dec. 12, 2019, the contents of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5343482 | Penner et al. | Aug 1994 | A |
5371765 | Guilford | Dec 1994 | A |
5600824 | Williams et al. | Feb 1997 | A |
5640398 | Carr et al. | Jun 1997 | A |
5838512 | Okazaki | Nov 1998 | A |
5850422 | Chen | Dec 1998 | A |
5905766 | Nguyen | May 1999 | A |
6044122 | Ellersick et al. | Mar 2000 | A |
6052073 | Carr et al. | Apr 2000 | A |
6138061 | McEnnan et al. | Oct 2000 | A |
6150965 | Carr et al. | Nov 2000 | A |
6188699 | Lang et al. | Feb 2001 | B1 |
6333935 | Carr et al. | Dec 2001 | B1 |
6345052 | Tse et al. | Feb 2002 | B1 |
6359479 | Oprescu | Mar 2002 | B1 |
6584521 | Dillabough et al. | Jun 2003 | B1 |
6603776 | Fedders et al. | Aug 2003 | B1 |
6668297 | Karr et al. | Dec 2003 | B1 |
6671758 | Cam et al. | Dec 2003 | B1 |
6744787 | Schatz et al. | Jun 2004 | B1 |
6820159 | Mok et al. | Nov 2004 | B2 |
6823001 | Chea | Nov 2004 | B1 |
6870831 | Hughes et al. | Mar 2005 | B2 |
7117112 | Mok | Oct 2006 | B2 |
7161999 | Parikh | Jan 2007 | B2 |
7165003 | Mok | Jan 2007 | B2 |
7187741 | Pontius et al. | Mar 2007 | B2 |
7203616 | Mok | Apr 2007 | B2 |
7239650 | Rakib et al. | Jul 2007 | B2 |
7239669 | Cummings et al. | Jul 2007 | B2 |
7295945 | Mok | Nov 2007 | B2 |
7388160 | Mok et al. | Jun 2008 | B2 |
7417985 | McCrosky et al. | Aug 2008 | B1 |
7468974 | Carr et al. | Dec 2008 | B1 |
7492760 | Plante et al. | Feb 2009 | B1 |
7593411 | McCrosky et al. | Sep 2009 | B2 |
7656791 | Mok et al. | Feb 2010 | B1 |
7668210 | Mok et al. | Feb 2010 | B1 |
7751411 | Cam et al. | Jul 2010 | B2 |
7772898 | Cheung | Aug 2010 | B2 |
7807933 | Mok et al. | Oct 2010 | B2 |
8010355 | Rahbar | Aug 2011 | B2 |
8023641 | Rahbar | Sep 2011 | B2 |
8085764 | McCrosky et al. | Dec 2011 | B1 |
8243759 | Rahbar | Aug 2012 | B2 |
8335319 | Rahbar | Dec 2012 | B2 |
8413006 | Mok et al. | Apr 2013 | B1 |
8428203 | Zortea et al. | Apr 2013 | B1 |
8483244 | Rahbar | Jul 2013 | B2 |
8542708 | Mok et al. | Sep 2013 | B1 |
8599986 | Rahbar | Dec 2013 | B2 |
8774227 | Rahbar | Jul 2014 | B2 |
8854963 | Muma et al. | Oct 2014 | B1 |
8913688 | Jenkins | Dec 2014 | B1 |
8957711 | Jin et al. | Feb 2015 | B2 |
8971548 | Rahbar et al. | Mar 2015 | B2 |
8976816 | Mok et al. | Mar 2015 | B1 |
8989222 | Mok et al. | Mar 2015 | B1 |
9019997 | Mok et al. | Apr 2015 | B1 |
9025594 | Mok et al. | May 2015 | B1 |
9209965 | Rahbar et al. | Dec 2015 | B2 |
9276874 | Mok et al. | Mar 2016 | B1 |
9313563 | Mok et al. | Apr 2016 | B1 |
9374265 | Mok et al. | Jun 2016 | B1 |
9444474 | Rahbar et al. | Sep 2016 | B2 |
9473261 | Tse et al. | Oct 2016 | B1 |
9503254 | Rahbar et al. | Nov 2016 | B2 |
9525482 | Tse | Dec 2016 | B1 |
10069503 | Zhang et al. | Sep 2018 | B2 |
10104047 | Muma et al. | Oct 2018 | B2 |
10128826 | Jin et al. | Nov 2018 | B2 |
10250379 | Haddad et al. | Apr 2019 | B2 |
10432553 | Tse | Oct 2019 | B2 |
10608647 | Ranganathan et al. | Mar 2020 | B1 |
10715307 | Jin | Jul 2020 | B1 |
20010056512 | Mok et al. | Dec 2001 | A1 |
20050110524 | Glasser | May 2005 | A1 |
20060056560 | Aweya et al. | Mar 2006 | A1 |
20060076988 | Kessels et al. | Apr 2006 | A1 |
20070036173 | McCrosky et al. | Feb 2007 | A1 |
20070064834 | Yoshizawa | Mar 2007 | A1 |
20070132259 | Ivannikov et al. | Jun 2007 | A1 |
20080000176 | Mandelzys et al. | Jan 2008 | A1 |
20080202805 | Mok et al. | Aug 2008 | A1 |
20100052797 | Carley | Mar 2010 | A1 |
20110095830 | Tsangaropoulos et al. | Apr 2011 | A1 |
20140055179 | Gong et al. | Feb 2014 | A1 |
20140139275 | Dally et al. | May 2014 | A1 |
20160277030 | Burbano et al. | Sep 2016 | A1 |
20160301669 | Muma et al. | Oct 2016 | A1 |
20170244648 | Tse | Aug 2017 | A1 |
20180131378 | Haroun et al. | May 2018 | A1 |
20180159541 | Spijker | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2003039061 | May 2003 | WO |
PCTUS2038947 | Jun 2020 | WO |
Entry |
---|
U.S. Appl. No. 16/563,399, filed Sep. 6, 2019, Qu Gary Jin. |
U.S. Appl. No. 16/795,520, filed Feb. 19, 2020, Peter Meyer. |
U.S. Appl. No. 62/953,301, filed Dec. 24, 2019, Peter Meyer. |
Abdo Ahmad et al: “Low-Power Circuit for Measuring and Compensating Phase Interpolator Non-Linearity”, 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), IEEE, Oct. 17, 2019 (Oct. 17, 2019), pp. 310-313. |
PCT/US2020/037630, International Search Report, European Patent Office, dated Sep. 11, 2020. |
Number | Date | Country | |
---|---|---|---|
62947195 | Dec 2019 | US |