The external high-speed electro-optic modulator is a necessary device for varieties of optical communication systems, where the direct modulation of the laser is not applicable due to either operation speed limitation or the frequency chirp or poor signal integrality causing unbearable impairment during the transmission.
Being able to fabricate the electro-optic modulator on silicon using standard VLSI process possesses the advantages of low-cost and easy integration with electronics. Recently, extensive efforts of developing electro-optic modulator on silicon have been taken, and lots of breakthrough development. The published works include forward biased PIN diode structure[1][2] and metal-on-semiconductor (MOS) capacitance structure[3], which was able to demonstrate IGbps operation speed. The inventor of this patent has made the most critical original contribution to this field, and successfully demonstrated the first 10 Gbps silicon EO modulator fabricated standard CMOS process. The attached patent documents[4-6] present part of the silicon modulator technologies that the inventor have developed in the past.
All the previous designs and inventions have regarded the EO modulator as a device, in which the physical device of the modulator is separated from its driving electronics. This conventional technique does not take the advantage of the monolithic integration between transistors and optical waveguides. The performance is fundamentally limited due to the separation of the driving electronics and the optical waveguide itself.
In this invention, I discard this conventional design concept. The EO modulators invented in this application are actually circuits: the electrical-optical interaction occurs in the waveguide-capacitor, which is seamlessly, in one body or distributive manner, part of a modulator-circuit. In such way, many existing circuit design techniques can be used in the EO modulator design. The invention will show that the modulator based on free-carrier dispersion design is noting but a switching circuit design. This new design approach and the modulator circuits can improve the performance of the modulator to its physical limit, in both operation speed and power consumption.
The invention comprises the design approach, fundamental structure, and a variety of high performance EO modulator-circuits based on free-carrier dispersion effect, and several new waveguide capacitor structures that can be used the modulator circuits.
In circuits, the way to charge a capacitor is to pump current through it. The charge accumulated inside capacitor can be solved by the following differential equation is:
where id(t) is the charging current from the voltage-controlled current source in the modulator circuit. The R represents the self-discharge path <10>. It could be the parasitic parallel resistance of the capacitor. It could also be the self-recombination of the hole and electrons inside the PIN junction, if so, the C(Q)·R should be replaced by the time constant determined by the minority carrier lifetime.
Since the carrier density inside the waveguide volume is directly proportional to the charge Q, which determines the refractive index of the semiconductor material, silicon or III-V, by the free carrier dispersion effect, the charge Q in equation (1) actually represents the phase (intensity) of the lightwave after the modulator waveguide (interferometer).
We find that, as presented by
Using CMOS or SiGe BiCMOS process, we can monolithic integrate electronic circuits and photonic waveguide circuits together.
If the waveguide capacitor uses the majority carrier of the semiconductor, the self-discharge path can be ignored; the equation (1) can be simplified to:
The required Q(t) is a NRZ data waveform. The code conversion circuits can be an edge triggered one-shot circuit <14><15>, and the voltage-controlled current source can be a simple charge pump circuit <16><17> as shown in
Since changing the refraction index of silicon is realized by manipulating the carrier density (either majority carrier density or minority carrier density), driving the modulator is actually charging or discharging the semiconductor junction capacitor or other capacitance structure in semiconductor (for example, MOS capacitor). In traveling wave devices, the electrical energy will propagate along the device and eventually dissipated at the termination end. The device invented here will allow us to re-use that energy for the following bits. Another description for this is, assuming always drive the modulator by return-to-zero (RZ) data, when the charging and discharging finished for one bit (logic 1 at that current bit), the energy released from the modulator-capacitor will be stored in somewhere else. If the following bit is also logic 1, the stored energy will be injected back to the modulator-capacitor and then released (charging and discharging) again. If the following bit is logic 0, then do nothing (keep holding the energy in that omewhere else?.
The way of realize such procedure is to construct a resonator with switched capacitor, as shown in
The way it works is, assuming at the first oscillation cycle, the Dmod is charged to the top voltage level and then discharged completely, at that moment, the current flowing through the inductor L1 is at the maximum (electrical field energy in Dmod is released and stored in L1 as magnetic field energy). In the following next bit period, if the bit is logic 0, X1 will be switched off and X2 will be switched on, the recharging will be performed from L1 to Cdummy. The cycle will be continued until another logic 1 comes in, then X1 will be switched on and X2 will be switched off. The oscillation cycle goes back between L1 and Dmod. Either X1 or X2 will be switched on at any given time but not both. The Vsource is just a power source to maintain the oscillation to overcome the parasitic ohm loss.
In practice, the Cdummy <33> in
In this simulation, the electro-optic modulation circuit in
Another part of this invention is three new modulator waveguide capacitor structures. They are: (1) the I-type or Y-type of waveguide with gate capacitor (
The I-type or Y-type of waveguide with MOS capacitor is shown in
For the I-type waveguide capacitor, as shown in the left of
In both I-type and Y-type, there is a thin gate oxide <63> thermal grown before poly silicon deposition or silicon-I growth. This thin gate oxide guarantees the high capacitance between <61> and <65>, and between <71> and <65>.
The I-type/Y-type waveguide is generally a waveguide structures that have the high index ridge existing between two high index slabs. The top high index slab can be flat, or not flat according to the process. No-flat top slab is usually an advantage to form a more lateral confined guiding mode. The lateral confinement to the lightwave is provided by the effective index difference just like in the regular ridge waveguide. The mode will be mainly confined at the center part defined by the ridge. Therefore, the contacts to the both slabs with enough distance from the center will have no effect to the mode.
The capsulated waveguide capacitor is shown in
In <73>, after the gate oxide growth or deposition, the silicon ridge is capsulated by the poly silicon film <71>. The shape of the ridge is reserved after capsulation. Therefore, the lateral confinement is reserved as well. The contact away enough from the ridge has no effect to the guiding mode. And the thin gate oxide makes sure the sufficient capacitance between the poly silicon and the crystal silicon layer underneath.
In <74>, it is a Y-type waveguide with a slot in the middle of the silicon ridge. After the gate oxide growth or deposition and the field oxide deposition (outside the slot), the slot is filled by the poly silicon film <71>, which is conductive. The capacitor exists between the poly film and the crystal silicon underneath the gate oxide. The pros of this structure are that the capacitor is more overlapped with the center of the optical guiding mode, and the field oxide make the poly silicon and crystal silicon further apart (therefore, less capacitance) at the location where no significant optical field due to the lateral confinement of the guiding mode.
In this bipolar transistor junction structure, the complementary lateral bipolar transistor pair is made out of the ridge waveguide by implants. Using the field oxide as implant mask, the base implant can be self-aligned. A base width as narrow as top ridge width can be achieved. In this bipolar transistor modulator structure, the base width needs to be as narrow as possible to improve the operation speed. The waveguide will be designed and fabricated in this way to make the base width narrow. One effective way is to use the selective thermal oxidation to form the field oxide and the waveguide ridge. The top of the base (waveguide ridge), can have more density of doping to reduce the resistance, however, the trade-off needs to be played between resistance and the waveguide loss.
As we can see from the top view in
By the complementary bipolar transistor pair, the slow parasitic emitter-base current of the NPN can be turned to a fast collector current of PNP.
By the self-aligned base doping, this bipolar transistor modulator can operate very fast. As a bipolar transistor by itself, it brings the gain into the modulator junction. The voltage-controlled current source in
The invention embodiment here is to construct slow traveling wave structure for both electrical signal and lightwave in the modulator circuit. The electrical slow traveling wave structure is a quasi-transmission line, as shown in
In
To make this slow electrical traveling wave structure can be applied into the modulator, the optical waveguide must be a slow optical traveling wave structure, in which longitudinal traveling speed of the lightwave matches with the traveling speed of the electrical signal in the slow-wave transmission line. There are varieties of the approaches to realize such slow-wave optical structure.
which is the group velocity of the guiding mode along the waveguide grating.
One of the most important advantages of having slow wave traveling wave structure is to reduce the power consumption of the modulator circuit. Due to the charge accumulated in the waveguide capacitor is proportional to the voltage between its two terminals, low power consumption will require high impedance of the electrical traveling wave structure, which in turns, require high distributive inductance. However, increasing the distributive inductance in conventional transmission line will inevitably slow down the electrical signal propagation. By slowing down the lightwave propagation as well, the group velocity of the light can be re-aligned with the propagation velocity of the electrical signal along the electrode after its inductance is intentionally increased, therefore maintain the bandwidth of the modulator circuit.
This application is a continuation of U.S. patent application Ser. No. 12/906,863, filed Oct. 18, 2010, which is a divisional of U.S. patent application Ser. No. 11/756,490, filed May 31, 2007, which claims the benefit of U.S. Provisional Patent Application No. 60/810,684, filed Jun. 1, 2006, the entire contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5220296 | von Flotow et al. | Jun 1993 | A |
5355422 | Sullivan et al. | Oct 1994 | A |
5963688 | Campi et al. | Oct 1999 | A |
6654729 | Hickman et al. | Nov 2003 | B1 |
6999670 | Gunn, III et al. | Feb 2006 | B1 |
7010208 | Gunn, III et al. | Mar 2006 | B1 |
7136544 | Gunn, III et al. | Nov 2006 | B1 |
7474973 | Goodwin | Jan 2009 | B2 |
7817881 | Li | Oct 2010 | B2 |
7991249 | Li | Aug 2011 | B2 |
20020110309 | Devaux et al. | Aug 2002 | A1 |
20050123242 | Walker et al. | Jun 2005 | A1 |
20060008223 | Gunn, III et al. | Jan 2006 | A1 |
20070292073 | Li | Dec 2007 | A1 |
Entry |
---|
Beiju et al., “A High-Performance Silicon Electro-Optic Phase Modulator with a Triple MOS Capacitor,” Chinese Journal of Semiconductors, vol. 27, No. 12, Dec. 2006, pp. 2089-2093. |
Liao et al., “High speed silicon Mach-Zehnder modulator,” Optics Express, vol. 13, No. 8, Apr. 18, 2005, pp. 3129-3135. |
Liu et al., “Recent advances in high speed silicon optical modulator,” Proc. of SPIE vol. 6477, (2007), pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
20120045162 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
60810684 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11756490 | Aug 2007 | US |
Child | 12906863 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12906863 | Oct 2010 | US |
Child | 13191301 | US |