This is a U.S. national stage of application No. PCT/EP2007/050447, filed on Jan. 17, 2007.
The present invention relates to a circuit arrangement for discharge lamps, primarily those discharge lamps which have preheatable electrodes. The invention also relates to a method for starting and operating a discharge lamp.
Electronic ballasts for discharge lamps have proven to be very successful in recent times owing to their known advantages such as increased luminous efficiency and improved efficiency. Conventional low-pressure discharge lamps have heating filaments in the form of electrodes which are heated prior to lamp starting (so-called preheating) in order to increase their emission capacity and therefore to increase the willingness of the lamp to start. In order to ensure effective heating of the filaments, various circuit variants have proven successful in the prior art.
Before the lamp can be operated, it needs to be started by a relatively high voltage. For this purpose, resonance excitation of the lamp resonant circuit is used in many cases. In the case of discharge lamps with preheatable electrodes, the electrodes are first preheated for a specific time before the actual starting voltage is applied. The preheating time is in this case determined by a lamp filament heating controller, which in many cases damps the resonant circuit and/or sets the resonant circuit to off-resonance and therefore keeps the voltage low, with at the same time a current flowing through the lamp filaments.
A simple and extended variant of ensuring preheating is a circuit in which a PTC thermistor is connected in parallel with the lamp and with the resonant capacitor. If the electronic ballast is switched on and the inverter starts up, the PTC thermistor will initially be conducting and allows a preheating current to flow through the electrodes. Owing to the preheating current, the PTC thermistor itself also heats up and ultimately assumes a high resistance value. Therefore, the resonant circuit, which is responsible for the lamp starting, is now only weakly damped and a starting voltage, which is sufficient for starting the lamp, can be built up.
An improved variant of this circuit is specified in DE 41 29 430 A1. Here, the resonant capacitor is split in two, and the PTC thermistor is connected in parallel with one part of the resonant capacitor. This has the advantage that the frequency is closer to the resonant frequency during preheating and therefore a higher preheating current flows, which reduces the preheating time.
Both circuits have the disadvantage that a current flows through the PTC thermistor throughout the entire operating time in order to heat said PTC thermistor such that it keeps a high resistance value. Therefore, it causes a power loss of approximately 0.5-1 watt, which reduces the efficiency of the entire electronic ballast. A further disadvantage is the long cooling-down time of the PTC thermistor, which entails insufficient preheating of the lamp electrodes when the lamp is briefly switched off.
DE 44 25 859 A1 has disclosed an improved circuit which does not have these disadvantages. This circuit simulates a PTC thermistor without having the disadvantage thereof with respect to the high power loss. In principle, in this case, the PTC thermistor is simulated by a transistor (Q3) with a series resistor (Z). During the preheating, the transistor is switched on and represents a resistive load, which drives a preheating current through the lamp electrodes. At the end of the preheating period, the transistor is disconnected in order thus to initiate starting. In the disconnected state, no relevant losses occur. This circuit does not have the disadvantage of insufficient preheating in the event of a brief interruption to the lamp operation either. However, this circuit, as can be seen from the figures of the document, is relatively complex in terms of construction and is therefore cost-intensive.
One object of the present invention is to provide a circuit which provides effective preheating of the lamp electrodes, but can be produced in a more cost-effective manner.
In accordance with one aspect of the invention, a circuit arrangement with a self-oscillating inverter is used as a basis, as is often used in cost-effective ballasts. The half bridge has, in addition to starting voltage limitation, additional current limitation of the resonant circuit, which is used for cost-effective preheating. The current limitation is provided by virtue of an additional variable resistor in the current path of the half bridge, which variable resistor can be bypassed by a transistor. The transistor is driven by means of a simple circuit in such a way that a type of sequential control is provided for preheating and starting. Thus, effective preheating of the lamp electrodes is realized in a cost-effective manner.
The lamp filament heating controller finally likewise measures the resonant current in the form of a voltage across the resistors R1 and R2 which are connected in series, and disconnects the lower transistor, in time with the resonant frequency, above a specific current level which is lower than the starting voltage control in order thus to limit the voltage across the lamp to a greater extent. As a result, the lamp electrodes are preheated until the resistor R2 is “active”. Since the voltage across the zener diode D4 is now markedly higher owing to the resistors connected in series, the transistor Q4 turns on markedly earlier than in the case of only starting voltage control and therefore disconnects the half-bridge transistor earlier. This results in an increase in the frequency, with the result that in this case the frequency is now also markedly above the resonant frequency, which assists in even more effectively avoiding premature lamp starting with electrodes which are too cold.
The sequential control of preheating and starting is realized by the remaining components of the lamp filament heating controller (4). The capacitor C6 is charged by the resistor R3. If the voltage of said capacitor exceeds the switching threshold of Q3, the latter switches on and bypasses the resistor R2. The control of the current limitation is therefore inhibited in the filament preheating mode, and the inverter can be brought to resonance. This works because the voltage across the diode D4 is now only present across R1 owing to the fact that the resistor R2 is bypassed, and therefore D4 only responds at relatively high currents, whereupon the bypassing transistor Q2 can remain switched on for longer again. After the filament preheating, the lamp is therefore started, and the inverter can assume its normal operating mode after starting. The preheating time after brief interruptions to the power supply can be shortened by virtue of the selection of the resistor R4.
This sequence of preheating, starting and operating is shown in
An embodiment of a 49 W fluorescent lamp is illustrated by way of example in the table below. In this case, the diode D4 is a normal silicon diode which is introduced in the direction of flow, with the result that the forward voltage of the diode is used as the “zener voltage”.
It goes without saying that the circuit can also be matched to other lamp types without deviating from the concept in accordance with the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/050447 | 1/17/2007 | WO | 00 | 7/17/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/086892 | 7/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5424611 | Moriarty, Jr. | Jun 1995 | A |
5925984 | Fischer et al. | Jul 1999 | A |
6057611 | Reiser | May 2000 | A |
6316886 | Luger et al. | Nov 2001 | B1 |
6744219 | Neidlinger | Jun 2004 | B2 |
6744220 | Neidlinger | Jun 2004 | B2 |
7394206 | Yu et al. | Jul 2008 | B2 |
7863830 | Schemmel et al. | Jan 2011 | B2 |
7911148 | Fischer et al. | Mar 2011 | B2 |
8008873 | Bakre et al. | Aug 2011 | B2 |
20050116662 | Sanchez | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
44 25 859 | Jan 1996 | DE |
0 417 315 | Mar 1991 | EP |
1 359 791 | Nov 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20100013401 A1 | Jan 2010 | US |