The invention relates to a circuit arrangement in accordance with the preamble of patent claim 1.
Such a circuit arrangement is disclosed, for example, in EP-A 0 868 833. This document describes a circuit arrangement for operating a high pressure discharge lamp having a voltage transformer, designed as an inverter, a load circuit that is fed by the inverter and is provided with connections for a high pressure discharge lamp and with an inductor for limiting the lamp current, and a pulse ignition device for igniting the gas discharge in the high pressure discharge lamp. The circuit arrangement further has a transformer for the galvanic isolation of the inverter from the load circuit and the pulse ignition device.
It is an object of the invention to provide a simplified circuit arrangement for operating a high pressure discharge lamp.
This object is achieved according to the invention by means of the features of patent claim 1. Particularly advantageous designs of the invention are described in the dependent patent claims.
The circuit arrangement according to the invention for operating a high pressure discharge lamp has a voltage transformer, a load circuit fed by the voltage transformer and which is provided with connections for a high pressure discharge lamp and with an inductor for limiting the current through the high pressure discharge lamp, and having a pulse ignition device for igniting the gas discharge in the high pressure discharge lamp, in which the inductor is designed as secondary winding of the ignition transformer of the pulse ignition device. This simplifies the structure of the circuit arrangement by comparison with the prior art, since the inductor takes over two functions, and there is no need for a semiconductor switch to deactivate the pulse ignition device. Moreover, the circuit arrangement according to the invention is suitable for operating high pressure discharge lamps that have no separate auxiliary ignition electrode.
In accordance with the preferred exemplary embodiment of the invention, a transformer is provided for adapting the input voltage of the voltage transformer to the voltage required in the load circuit, and for the galvanic isolation between voltage transformer and load circuit. The transformer preferably has two secondary windings, a first secondary winding serving to supply power to the load circuit, and the second secondary winding, if appropriate together with the first secondary winding, serving to supply power to the pulse ignition device, in order additionally also to enable a galvanic isolation between the voltage transformer and the pulse ignition device. The abovenamed transformer serves not only for the galvanic isolation, but also further permits the output voltage of the voltage transformer to be transformed to a higher value. Alternatively, instead of the abovenamed transformer, it is also possible to use an autotransformer when there is no need for a galvanic isolation between the voltage transformer and the load circuit or pulse ignition device.
In order to prevent a voltage overload of the secondary winding, arranged in the load circuit, of the transformer, a voltage-limiting, bidirectional component, for example a bidirectional Transil diode, which is also denoted as a suppressor diode or TVS diode, is advantageously connected in parallel with this secondary winding.
The load circuit advantageously has at least one capacitor that is connected in series with the inductor and whose capacitance is dimensioned in such a way that it effects a partial compensation of the inductance of the inductor during operation of the lamp, after termination of the ignition phase of the high pressure discharge lamp, in order to reduce the power loss in the circuit. If it is possible to ensure a relatively small secondary inductance of the pulse transformer, a partial compensation can then be eliminated. In any case, there should be a certain size of the secondary inductance of the pulse transformer for the purpose of stabilizing the discharge if the stabilization is not accomplished by the transformer for the purpose of adapting the input voltage of the voltage transformer to that in the load circuit, which to this end would have to exhibit a correspondingly large secondary leakage inductance. It is likewise possible to stabilize the discharge with the inclusion of two components.
The voltage transformer is advantageously designed as a single-transistor transformer for the purpose of further simplification of the circuit arrangement. This is to be understood in the sense of a single transistor switched at high frequency. The circuit is distinguished by very low switching losses, since owing to the selection of the switching frequency and of the pulse duty factor the switching transistor is driven in such a way that it is switched on and off only in the de-energized state (zero-voltage switching, ZVS).
The voltage transformer of the circuit arrangement according to the invention preferably comprises at least one switching means that switches at periodically recurring time intervals, and means for changing the switching frequency of the at least one switching means after ignition of the gas discharge has been performed in the high pressure discharge lamp, in order in a simple way to enable the power of the high pressure discharge lamp to be regulated after ignition of the gas discharge has been performed. In particular, the means for changing the switching frequency of the at least one switching means are preferably designed in such a way that immediately after ignition of the gas discharge has been performed in the high pressure discharge lamp there is a sudden change in the switching frequency of the at least one switching means, and there is a continuous or quasi-continuous change in the switching frequency subsequently, during the run-up or start-up phase of the high pressure discharge lamp. Owing to the sudden change in the switching frequency, the ignition device is deactivated, and regulation of the power of the high pressure discharge lamp is enabled by virtue of the continuous or, in the case of a digital control device, quasi-continuous change in the switching frequency of the at least one switching means of the voltage transformer. As the high pressure discharge lamp is being run up or started up, that is to say while the constituents of the discharge medium are vaporizing, the switching frequency can therefore be set such that the high pressure discharge lamp is operated at a power revised above the nominal power, in order to shorten the duration of the start-up phase. Subsequently, the switching frequency can be varied continuously or quasi-continuously until a final value of the switching frequency is reached in stationary operation of the high pressure discharge lamp, in order to operate the high pressure discharge lamp with a power that corresponds substantially to its nominal power.
The invention is explained in more detail below with the aid of a preferred exemplary embodiment. In the drawing:
The second exemplary embodiment of the invention, depicted in
k1, k1a, k1b denoting the capacitances of the capacitors C1, C1a, C1b and n1a, n1b denoting the number of turns per unit length of the primary winding L1a or secondary winding L1b of the transformer T1.
The capacitor C1 or C1a can also be connected in parallel with the primary winding L1a of the transformer T1 instead of in parallel with the switching transistor S.
The value of the capacitance C1 can be varied in order to adapt to different load conditions or to ensure the switching function in the case of a restricted frequency range. This is advantageously performed in stages, MOSFET transistors being used as switches. MOSFET transistors enable a bidirectional flow of current in the switched-on state, and the body diode present in the switched-off state is not an obstacle in this application, since no negative voltage across C1 can occur, given the diode D present in the circuit, and so the switches used for varying C1 need not exhibit any reverse blocking ability.
The circuit arrangement in accordance with the fifth exemplary embodiment of the invention, which is illustrated schematically in
The high pressure discharge lamp La is a mercury-free halogen metal vapor high pressure gas discharge lamp with a nominal power of 35 W in stationary operation, and a nominal lamp voltage of 45 V, for use in a motor vehicle headlight. Apart from a small air gap, the ignition transformer L2a, L2b has a magnetic circuit closed in a soft magnetic material (for example ferrite).
Number | Date | Country | Kind |
---|---|---|---|
10 2004 055 976.7 | Nov 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/002031 | 11/11/2005 | WO | 00 | 9/26/2008 |