The invention relates to a circuit arrangement for supplying energy to a fuel injection valve for inductive heating, comprising a capacitor, whose first connection forms a first circuit node, and whose second connection forms a second circuit node, comprising a first coil, which is arranged in the fuel injection valve and whose first connection is connected to the first circuit node and whose second connection is connected to the second circuit node and which forms, with the capacitor, a parallel resonant circuit, comprising a first controllable switching element, whose first connection is connected to the first circuit node and whose second connection is connected to a connecting point connected to ground potential, and comprising a second controllable switching element, whose first connection is connected to the second circuit node and whose second connection is connected to the connecting point, comprising a first diode, whose anode is connected to the control connection of the first controllable switching element and whose cathode is connected to the second circuit node, and comprising a second diode, whose anode is connected to the control connection of the second controllable switching element and whose cathode is connected to the first circuit node, wherein the control connections of the two switching elements are connected to the positive potential of a supply source.
This circuit arrangement forms an oscillator, which generates radiofrequency electromagnetic energy in the resonant circuit coil and is known essentially from US 2007/200006 A1. In said document, however, the resonant coil is in the form of a primary winding of a transformer, whose secondary winding, together with a filter capacitor which is connected in series with the secondary winding, is connected in parallel with the solenoid drive of an electromagnetic fuel injection valve, with the series circuit comprising a heating winding and a further filter capacitor also being connected in parallel with said solenoid drive. In this case, the secondary winding of the transformer, the two filter capacitors and the heating winding form a resonant circuit, into which radiofrequency electromagnetic energy is transferred via the transformer in order to convert said energy in the heating winding in conjunction with the ferromagnetic material of the valve housing into heat. The advantage of the complex construction disclosed therein consists in that only two connecting lines need to be passed to the injection valve.
However, the transformer is necessary for the wireless coupling-in of the radiofrequency electromagnetic energy of the oscillator which is required for this purpose, which transformer is very expensive in the case of the required power of approximately 1 kW and the typical values for the frequency of 50 kHz to 100 kHz, especially since said transformer needs to be constructed from a plurality of partially tapped windings, which are additionally insulated from one another. Owing to the skin effect occurring at the high frequencies, the windings additionally need to be manufactured from litz wires with individual wire insulation, so-called RF litz wires, which further increases costs.
In order to avoid the high level of complexity in terms of circuitry for the circuit arrangement according to US 2007/200006 A1, the application DE 10 2010 063 112.4, which has not yet been published, proposes omitting the transformer and instead using the coil of the parallel resonance circuit directly as inductive heating winding. However, this coil, together with the housing of the fuel injection valve, which is intended to be heated inductively by the coil, actually forms a transformer subjected to an ohmic resistance, wherein the conductive housing can be considered to be a secondary winding. This loading results in damping of the oscillation of the parallel resonant circuit, which needs to be compensated for by supplying energy from the supply source. For this, in the prior art, the energy compensating for the losses is supplied to the resonant circuit via a further coil, which is connected to a center tap of the resonant circuit coil or the primary winding of the transformer.
This third connecting line required owing to the center tap nevertheless also requires additional plug-type connections at the control device which contains the electronics and at the injection valve in addition to the connecting cable in the case of the technical implementation in a motor vehicle, however. And it is precisely at these locations that the physical space available is particularly restricted and an additional or larger plug-type connector is undesirable. The implementation of the heating winding using a center tap also results in additional manufacturing costs.
The object of the invention consists in providing a simpler and less expensive circuit arrangement.
The object is achieved in the case of a circuit arrangement of the generic type by virtue of the fact that the first circuit node is connected to the positive potential of a supply source via a second coil and the second circuit node is connected to said positive potential via a third coil.
The essential step consists in the fact that a transformer is completely dispensed with. This is based on the knowledge that the further coil can be replaced, without any notable additional costs, by two smaller coils with the same value, but in each case with half the direct current-carrying capacity. The magnitude of the partial inductances is thus approximately halved. This facilitates the installation of the coils in electronics which are otherwise constructed substantially using SMT (surface mounted technology) and can even result in a reduction in the production costs. The resonant circuit coil is therefore no longer formed with a center tap, but is in the form of a simple coil.
By dividing the further coil into two smaller coils, it is again possible to connect the heating winding, which now consists of an individual winding, to the supply voltage at the two connections of said heating winding without in the process losing the advantages of the resonant polarity reversal.
By suitable selection of the turns number for the coil and of the capacitance of the resonant circuit capacitor, both the resonant frequency and the heating power can be set.
In a development of the invention, a plurality of inductive heating windings are operated in parallel or in series from an electronic circuit. In this case, however, it is necessary to ensure that the total inductance effective for the resonant circuit changes as a result of the parallel or series connection of the heating windings, which possibly makes matching of the resonant capacitance and/or the turns number of the heating windings necessary.
In an advantageous development of the circuit arrangement, the connecting point between the first and second switching elements is connected to ground via a third switching element, with the result that the circuit arrangement can be switched on and off by means of this third switching element.
In a development, instead of the third switching element arranged in the grounding cable, a fourth switching element is introduced into the feed line for the supply voltage. If, in an advantageous embodiment of the fourth switching element, a circuit comprising two transistors arranged in opposition is used instead of a single MOSFET (metal-oxide silicon field-effect transistor), which is only off in one voltage direction owing to the inner substrate diode resulting from the technology used, additional polarity reversal protection function is provided in a simple manner.
This is of particular interest in the case of use in a motor vehicle since; in this case, the supply voltage is generally obtained from the 12 V vehicle electrical distribution system voltages. In the case of faulty installation of the vehicle battery, the polarity of the supply voltage can be reversed, which in turn can result in damage to the transistors. By inserting the second transistor, in the case of incorrect polarity of the supply voltage, an undesired current path through the coils according to the invention and the substrate diodes of the first, second and fourth switching elements, from ground to the supply voltage is prevented from being produced. Care should be taken to ensure that the actuation of the polarity reversal protection circuit takes place with reference to the potential of the supply voltage. This is described in more detail in DE 10 2005 032 085 A1, for example.
The invention will be described in more detail below with reference to exemplary embodiments with the aid of figures, in which:
The control connection of the third switching element T3 is connected to a control connection E/A for switching on and off the circuit arrangement shown in
In order to supply energy to the parallel resonant circuit comprising the coil L3 and the capacitor C1 in order again to replace the energy dissipated in the coil L3 acting as heating winding, the first circuit node 1 is connected to the positive potential V0 of the supply source via a second coil L1a, and the second circuit node 2 is connected to said positive potential via a third coil L1b.
In the further
As an extension of the circuit arrangement shown in
The third switching element T3, which connects the connecting point of the first and second switching elements to ground potential can also be replaced, as shown in
As illustrated in
In the circuit arrangement according to the invention, advantageously the third cable for a center tap of the resonant circuit coil L3 can be dispensed with, with the result that it is not necessary for an extra lead through to be provided for this coil arranged in a fuel injection valve. In addition, the two individual coils L1a and L1b can be implemented so as to be smaller than the individual coil known from the prior art, with the result that said coils can possibly be constructed using SMT. This enables simplified circuitry and therefore a cost saving.
Number | Date | Country | Kind |
---|---|---|---|
102011085085.6 | Oct 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/070790 | 10/19/2012 | WO | 00 | 4/24/2014 |